3 research outputs found

    A Distance Measure and a Feature Likelihood Map Concept for Scale-Invariant Model Matching

    No full text
    This paper presents two approaches for evaluating multi-scale feature-based object models. Within the first approach, a scale-invariant distance measure is proposed for comparing two image representations in terms of multi-scale features. Based on this measure, the maximisation of the likelihood of parameterised feature models allows for simultaneous model selection and parameter estimation. The idea of the second approach is to avoid an explicit feature extraction step and to evaluate models using a function defined directly from the image data. For this purpose, we propose the concept of a feature likelihood map, which is a function normalised to the interval [0, 1], and that approximates the likelihood of image features at all points in scale-space. To illustrate the applicability of both methods, we consider the area of hand gesture analysis and show how the proposed evaluation schemes can be integrated within a particle filtering approach for performing simultaneous tracking and recognition of hand models under variations in the position, orientation, size and posture of the hand. The experiments demonstrate the feasibility of the approach, and that real time performance can be obtained by pyramid implementations of the proposed concepts.QC 20110923</p

    Long Range Automated Persistent Surveillance

    Get PDF
    This dissertation addresses long range automated persistent surveillance with focus on three topics: sensor planning, size preserving tracking, and high magnification imaging. field of view should be reserved so that camera handoff can be executed successfully before the object of interest becomes unidentifiable or untraceable. We design a sensor planning algorithm that not only maximizes coverage but also ensures uniform and sufficient overlapped camera’s field of view for an optimal handoff success rate. This algorithm works for environments with multiple dynamic targets using different types of cameras. Significantly improved handoff success rates are illustrated via experiments using floor plans of various scales. Size preserving tracking automatically adjusts the camera’s zoom for a consistent view of the object of interest. Target scale estimation is carried out based on the paraperspective projection model which compensates for the center offset and considers system latency and tracking errors. A computationally efficient foreground segmentation strategy, 3D affine shapes, is proposed. The 3D affine shapes feature direct and real-time implementation and improved flexibility in accommodating the target’s 3D motion, including off-plane rotations. The effectiveness of the scale estimation and foreground segmentation algorithms is validated via both offline and real-time tracking of pedestrians at various resolution levels. Face image quality assessment and enhancement compensate for the performance degradations in face recognition rates caused by high system magnifications and long observation distances. A class of adaptive sharpness measures is proposed to evaluate and predict this degradation. A wavelet based enhancement algorithm with automated frame selection is developed and proves efficient by a considerably elevated face recognition rate for severely blurred long range face images
    corecore