801 research outputs found

    Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity

    Full text link
    The aim of this paper is to compare a hyperelastic with a hypoelastic model describing the Eulerian dynamics of solids in the context of non-linear elastoplastic deformations. Specifically, we consider the well-known hypoelastic Wilkins model, which is compared against a hyperelastic model based on the work of Godunov and Romenski. First, we discuss some general conceptual differences between the two approaches. Second, a detailed study of both models is proposed, where differences are made evident at the aid of deriving a hypoelastic-type model corresponding to the hyperelastic model and a particular equation of state used in this paper. Third, using the same high order ADER Finite Volume and Discontinuous Galerkin methods on fixed and moving unstructured meshes for both models, a wide range of numerical benchmark test problems has been solved. The numerical solutions obtained for the two different models are directly compared with each other. For small elastic deformations, the two models produce very similar solutions that are close to each other. However, if large elastic or elastoplastic deformations occur, the solutions present larger differences.Comment: 14 figure

    Trefftz discontinuous Galerkin methods on unstructured meshes for the wave equation

    Full text link
    We describe and analyse a space-time Trefftz discontinuous Galerkin method for the wave equation. The method is defined for unstructured meshes whose internal faces need not be aligned to the space-time axes. We show that the scheme is well-posed and dissipative, and we prove a priori error bounds for general Trefftz discrete spaces. A concrete discretisation can be obtained using piecewise polynomials that satisfy the wave equation elementwise.Comment: 8 pages, submitted to the XXIV CEDYA / XIV CMA conference, Cadiz 8-12 June 201

    Error estimation and adaptive moment hierarchies for goal-oriented approximations of the Boltzmann equation

    Full text link
    This paper presents an a-posteriori goal-oriented error analysis for a numerical approximation of the steady Boltzmann equation based on a moment-system approximation in velocity dependence and a discontinuous Galerkin finite-element (DGFE) approximation in position dependence. We derive computable error estimates and bounds for general target functionals of solutions of the steady Boltzmann equation based on the DGFE moment approximation. The a-posteriori error estimates and bounds are used to guide a model adaptive algorithm for optimal approximations of the goal functional in question. We present results for one-dimensional heat transfer and shock structure problems where the moment model order is refined locally in space for optimal approximation of the heat flux.Comment: arXiv admin note: text overlap with arXiv:1602.0131

    Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation

    Get PDF
    We investigate the propagation of uncertainties in the Aw-Rascle-Zhang model, which belongs to a class of second order traffic flow models described by a system of nonlinear hyperbolic equations. The stochastic quantities are expanded in terms of wavelet-based series expansions. Then, they are projected to obtain a deterministic system for the coefficients in the truncated series. Stochastic Galerkin formulations are presented in conservative form and for smooth solutions also in the corresponding non-conservative form. This allows to obtain stabilization results, when the system is relaxed to a first-order model. Computational tests illustrate the theoretical results

    Review of Summation-by-parts schemes for initial-boundary-value problems

    Full text link
    High-order finite difference methods are efficient, easy to program, scales well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback have been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-by-parts operators and weak boundary conditions during the last 20 years have removed this drawback and now reached a mature state. It is now possible to construct stable and high order accurate multi-block finite difference schemes in a systematic building-block-like manner. In this paper we will review this development, point out the main contributions and speculate about the next lines of research in this area
    • …
    corecore