503 research outputs found

    Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics

    Get PDF
    We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented

    Adaptive optics with an infrared pyramid wavefront sensor at Keck

    Get PDF
    The study of cold or obscured, red astrophysical sources can significantly benefit from adaptive optics (AO) systems employing infrared (IR) wavefront sensors. One particular area is the study of exoplanets around M-dwarf stars and planet formation within protoplanetary disks in star-forming regions. Such objects are faint at visible wavelengths but bright enough in the IR to be used as a natural guide star for the AO system. Doing the wavefront sensing at IR wavelengths enables high-resolution AO correction for such science cases, with the potential to reach the contrasts required for direct imaging of exoplanets. To this end, a new near-infrared pyramid wavefront sensor (PyWFS) has been added to the Keck II AO system, extending the performance of the facility AO system for the study of faint red objects. We present the Keck II PyWFS, which represents a number of firsts, including the first PyWFS installed on a segmented telescope and the first use of an IR PyWFS on a 10-m class telescope. We discuss the scientific and technological advantages offered by IR wavefront sensing and present the design and commissioning of the Keck PyWFS. In particular, we report on the performance of the Selex Avalanche Photodiode for HgCdTe InfraRed Array detector used for the PyWFS and highlight the novelty of this wavefront sensor in terms of the performance for faint red objects and the improvement in contrast. The system has been commissioned for science with the vortex coronagraph in the NIRC2 IR science instrument and is being commissioned alongside a new fiber injection unit for NIRSPEC. We present the first science verification of the system—to facilitate the study of exoplanets around M-type stars

    Adaptive optics with an infrared pyramid wavefront sensor at Keck

    Get PDF
    The study of cold or obscured, red astrophysical sources can significantly benefit from adaptive optics (AO) systems employing infrared (IR) wavefront sensors. One particular area is the study of exoplanets around M-dwarf stars and planet formation within protoplanetary disks in star-forming regions. Such objects are faint at visible wavelengths but bright enough in the IR to be used as a natural guide star for the AO system. Doing the wavefront sensing at IR wavelengths enables high-resolution AO correction for such science cases, with the potential to reach the contrasts required for direct imaging of exoplanets. To this end, a new near-infrared pyramid wavefront sensor (PyWFS) has been added to the Keck II AO system, extending the performance of the facility AO system for the study of faint red objects. We present the Keck II PyWFS, which represents a number of firsts, including the first PyWFS installed on a segmented telescope and the first use of an IR PyWFS on a 10-m class telescope. We discuss the scientific and technological advantages offered by IR wavefront sensing and present the design and commissioning of the Keck PyWFS. In particular, we report on the performance of the Selex Avalanche Photodiode for HgCdTe InfraRed Array detector used for the PyWFS and highlight the novelty of this wavefront sensor in terms of the performance for faint red objects and the improvement in contrast. The system has been commissioned for science with the vortex coronagraph in the NIRC2 IR science instrument and is being commissioned alongside a new fiber injection unit for NIRSPEC. We present the first science verification of the system—to facilitate the study of exoplanets around M-type stars

    Laboratory and telescope demonstration of the TP3-WFS for the adaptive optics segment of AOLI

    Get PDF
    AOLI (Adaptive Optics Lucky Imager) is a state-of-art instrument that combines adaptive optics (AO) and lucky imaging (LI) with the objective of obtaining diffraction limited images in visible wavelength at mid- and big-size ground-based telescopes. The key innovation of AOLI is the development and use of the new TP3-WFS (Two Pupil Plane PositionsWavefront Sensor). The TP3-WFS, working in visible band, represents an advance over classical wavefront sensors such as the Shack-Hartmann WFS (SH-WFS) because it can theoretically use fainter natural reference stars, which would ultimately provide better sky coverages to AO instruments using this newer sensor. This paper describes the software, algorithms and procedures that enabled AOLI to become the first astronomical instrument performing real-time adaptive optics corrections in a telescope with this new type of WFS, including the first control-related results at the William Herschel Telescope (WHT)This work was supported by the Spanish Ministry of Economy under the projects AYA2011-29024, ESP2014-56869-C2-2-P, ESP2015-69020-C2-2-R and DPI2015-66458-C2-2-R, by project 15345/PI/10 from the FundaciĂłn SĂ©neca, by the Spanish Ministry of Education under the grant FPU12/05573, by project ST/K002368/1 from the Science and Technology Facilities Council and by ERDF funds from the European Commission. The results presented in this paper are based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de AstrofĂ­sica de Canarias. Special thanks go to Lara Monteagudo and Marcos Pellejero for their timely contributions

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu
    • 

    corecore