1,150 research outputs found

    MIRAI Architecture for Heterogeneous Network

    Get PDF
    One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless integration of various wireless access systems for practical use by 2005. This article describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multiservice user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless-supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-of-concept experimental demonstration system is available

    QoS Framework for wireless networks

    Get PDF
    This paper presents a work in progress about a cross-layer approach to support Quality of Service for wireless multimedia applications, building a suitable framework over the top of the heterogeneous wireless MACs. It lets to enhance the existing QoS support provided by standard MAC protocols and it uses the contract model to guarantee QoS, taking into account the applications requests. It negotiates dynamically Application Level Contracts which will be translated seamlessly in Resource Level Contracts for the underlying network services from which it receives the feedback to adjust the scheduling algorithms and policies to provide soft guarantees. The framework comprises QoS Manager, Admission Control, Enhanced Scheduler and Feedback System. The QoS manager component is a middleware able to dynamically manage available resources under different load conditions in a transparent manner to application level

    An adaptive policy-based framework for network services management

    No full text
    This paper presents a framework for specifying policies for the management of network services. Although policy-based management has been the subject of considerable research, proposed solutions are often restricted to condition-action rules, where conditions are matched against incoming traffic flows. This results in static policy configurations where manual intervention is required to cater for configuration changes and to enable policy deployment. The framework presented in this paper supports automated policy deployment and flexible event triggers to permit dynamic policy configuration. While current research focuses mostly on rules for low-level device configuration, significant challenges remain to be addressed in order to:a) provide policy specification and adaptation across different abstraction layers; and, b) provide tools and services for the engineering of policy-driven systems. In particular, this paper focuses on solutions for dynamic adaptation of policies in response to changes within the managed environment. Policy adaptation includes both dynamically changing policy parameters and reconfiguring the policy objects. Access control for network services is also discussed.Accepted versio

    Transmissão de video melhorada com recurso a SDN em ambientes baseados em cloud

    Get PDF
    The great technological development of informatics has opened the way for provisioning various services and new online-based entertainment services, which have expanded significantly after the increase in social media applications and the number of users. This significant expansion has posed an additional challenge to Internet Service Providers (ISP)s in terms of management for network, equipment and the efficiency of service delivery. New notions and techniques have been developed to offer innovative solutions such as SDN for network management, virtualization for optimal resource utilization and others like cloud computing and network function virtualization. This dissertation aims to manage live video streaming in the network automatically by adding a design architecture to the virtual network environment that helps to filter video packets from the remaining ones into a certain tunnel and this tunnel will be handled as a higher priority to be able to provide better service for customers. With the dedicated architecture, side by side, a monitoring application integrated into the system was used to detect the video packets and notify the SDN server to the existence of the video through the networkOs grandes avanços tecnológicos em informática abriram o caminho para o fornecimento de vários serviços e novos aplicações de entretenimento baseadas na web, que expandiram significativamente com a explosão no número de aplicações e utilizadores das redes sociais. Esta expansão significativa colocou desafios adicionais aos fornecedores de serviços de rede, em termos de gestão de rede, equipamento e a eficácia do fornecimento de serviços. Novas noções e técnicas foram desenvolvidas para oferecer soluções inovadoras, tais como redes definidas por software (SDN) para a gestão de rede, virtualização para a optimização da utilização dos recursos e outros, tais como a computação em nuvem e as funções de rede virtualizadas. Esta dissertação pretende gerir automaticamente a emissão de vídeo ao vivo na rede, através da adição de uma arquitetura ao ambiente de rede virtualizado, que auxilie a filtragem de pacotes de vídeo dos do restante tráfego, para um túnel específico, que será gerido com uma prioridade maior, capaz de fornecer melhor serviço aos clientes. Além do desenho da arquitectura, scripts de Python foram usados para detectar os pacotes de vídeo e injetar novas regras no controlador SDN que monitoriza o tráfego ao longo da rede.Mestrado em Engenharia de Computadores e Telemátic

    Enabling self-adaptive QoE/QoS control

    Get PDF
    Handling quality requirements of multimedia services and the expectations of end-users regarding the perceived service quality is currently a major issue for service providers in order to sustain service diversity and improve competitiveness. In this context, this paper presents ongoing work toward a service-oriented architecture for QoE/QoS evaluation and control, which can be deployed to assist the provision of multi-constrained services. Considering the users' QoE perspective and the negotiated service levels, the architecture lays on per service class online monitoring to assist self-adaptive control of multimedia flows entering the network. To perform online monitoring, a distributed and versatile QoS monitoring tool oriented to multiservice networks is proposed. Preliminary results shows that the presented control strategy is effective in providing consistent quality levels to heterogeneous services

    SDN-BASED MECHANISMS FOR PROVISIONING QUALITY OF SERVICE TO SELECTED NETWORK FLOWS

    Get PDF
    Despite the huge success and adoption of computer networks in the recent decades, traditional network architecture falls short of some requirements by many applications. One particular shortcoming is the lack of convenient methods for providing quality of service (QoS) guarantee to various network applications. In this dissertation, we explore new Software-Defined Networking (SDN) mechanisms to provision QoS to targeted network flows. Our study contributes to providing QoS support to applications in three aspects. First, we explore using alternative routing paths for selected flows that have QoS requirements. Instead of using the default shortest path used by the current network routing protocols, we investigate using the SDN controller to install forwarding rules in switches that can achieve higher bandwidth. Second, we develop new mechanisms for guaranteeing the latency requirement by those applications depending on timely delivery of sensor data and control signals. The new mechanism pre-allocates higher priority queues in routers/switches and reserves these queues for control/sensor traffic. Third, we explore how to make the applications take advantage of the opportunity provided by SDN. In particular, we study new transmission mechanisms for big data transfer in the cloud computing environment. Instead of using a single TCP path to transfer data, we investigate how to let the application set up multiple TCP paths for the same application to achieve higher throughput. We evaluate these new mechanisms with experiments and compare them with existing approaches

    System Support for Bandwidth Management and Content Adaptation in Internet Applications

    Full text link
    This paper describes the implementation and evaluation of an operating system module, the Congestion Manager (CM), which provides integrated network flow management and exports a convenient programming interface that allows applications to be notified of, and adapt to, changing network conditions. We describe the API by which applications interface with the CM, and the architectural considerations that factored into the design. To evaluate the architecture and API, we describe our implementations of TCP; a streaming layered audio/video application; and an interactive audio application using the CM, and show that they achieve adaptive behavior without incurring much end-system overhead. All flows including TCP benefit from the sharing of congestion information, and applications are able to incorporate new functionality such as congestion control and adaptive behavior.Comment: 14 pages, appeared in OSDI 200
    corecore