27,901 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Agent-based transportation planning compared with scheduling heuristics

    Get PDF
    Here we consider the problem of dynamically assigning vehicles to transportation orders that have di¤erent time windows and should be handled in real time. We introduce a new agent-based system for the planning and scheduling of these transportation networks. Intelligent vehicle agents schedule their own routes. They interact with job agents, who strive for minimum transportation costs, using a Vickrey auction for each incoming order. We use simulation to compare the on-time delivery percentage and the vehicle utilization of an agent-based planning system to a traditional system based on OR heuristics (look-ahead rules, serial scheduling). Numerical experiments show that a properly designed multi-agent system may perform as good as or even better than traditional methods

    Opportunity costs calculation in agent-based vehicle routing and scheduling

    Get PDF
    In this paper we consider a real-time, dynamic pickup and delivery problem with timewindows where orders should be assigned to one of a set of competing transportation companies. Our approach decomposes the problem into a multi-agent structure where vehicle agents are responsible for the routing and scheduling decisions and the assignment of orders to vehicles is done by using a second-price auction. Therefore the system performance will be heavily dependent on the pricing strategy of the vehicle agents. We propose a pricing strategy for vehicle agents based on dynamic programming where not only the direct cost of a job insertion is taken into account, but also its impact on future opportunities. We also propose a waiting strategy based on the same opportunity valuation. Simulation is used to evaluate the benefit of pricing opportunities compared to simple pricing strategies in different market settings. Numerical results show that the proposed approach provides high quality solutions, in terms of profits, capacity utilization and delivery reliability

    A development framework for artificial intelligence based distributed operations support systems

    Get PDF
    Advanced automation is required to reduce costly human operations support requirements for complex space-based and ground control systems. Existing knowledge based technologies have been used successfully to automate individual operations tasks. Considerably less progress has been made in integrating and coordinating multiple operations applications for unified intelligent support systems. To fill this gap, SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems is being constructed. SOCIAL consists of three primary language based components defining: models of interprocess communication across heterogeneous platforms; models for interprocess coordination, concurrency control, and fault management; and for accessing heterogeneous information resources. DAI applications subsystems, either new or existing, will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL will reduce the complexity of distributed communications, control, and integration, enabling developers to concentrate on the design and functionality of the target DAI system itself

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    Design choices for agent-based control of AGVs in the dough making process

    Get PDF
    In this paper we consider a multi-agent system (MAS) for the logistics control of Automatic Guided Vehicles (AGVs) that are used in the dough making process at an industrial bakery. Here, logistics control refers to constructing robust schedules for all transportation jobs. The paper discusses how alternative MAS designs can be developed and compared using cost, frequency of messages between agents, and computation time for evaluating control rules as performance indicators. Qualitative design guidelines turn out to be insufficient to select the best agent architecture. Therefore, we also use simulation to support decision making, where we use real-life data from the bakery to evaluate several alternative designs. We find that architectures in which line agents initiate allocation of transportation jobs, and AGV agents schedule multiple jobs in advance, perform best. We conclude by discussing the benefits of our MAS systems design approach for real-life applications
    corecore