3,584 research outputs found

    Critical scaling in linear response of frictionless granular packings near jamming

    Get PDF
    We study the origin of the scaling behavior in frictionless granular media above the jamming transition by analyzing their linear response. The response to local forcing is non-self-averaging and fluctuates over a length scale that diverges at the jamming transition. The response to global forcing becomes increasingly non-affine near the jamming transition. This is due to the proximity of floppy modes, the influence of which we characterize by the local linear response. We show that the local response also governs the anomalous scaling of elastic constants and contact number.Comment: 4 pages, 3 figures. v2: Added new results; removed part of discussion; changed Fig.

    Superfluidity of bosons on a deformable lattice

    Full text link
    We study the superfluid properties of a system of interacting bosons on a lattice which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon model. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective soundwave-like mode with sound velocity vv, arising from gauge symmetry breaking: i) The sound velocity v0v_0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of phonon mediated interaction in the static limit. ii) the second order correction to the sound velocity is enhanced as compared to the one of bosons on a rigid lattice when the the boson-phonon interaction is switched on due to the retarded nature of phonon mediated interaction. The overall effect is that the sound velocity is practically unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system, driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detections of superfluid properties of the bosons. Our results are based on an extension of the Beliaev - Popov formalism for a weakly interacting Bose gas on a rigid lattice to that on a deformable lattice with which it interacts.Comment: 12 pages, 14 figures, to appear in Phys. Rev.

    Fragile topological phases in interacting systems

    Full text link
    Topological phases of matter are defined by their nontrivial patterns of ground-state quantum entanglement, which is irremovable so long as the excitation gap and the protecting symmetries, if any, are maintained. Recent studies on noninteracting electrons in crystals have unveiled a peculiar variety of topological phases, which harbors nontrivial entanglement that can be dissolved simply by the the addition of entanglement-free, but charged, degrees of freedom. Such topological phases have a weaker sense of robustness than their conventional counterparts, and are therefore dubbed "fragile topological phases." In this work, we show that fragile topology is a general concept prevailing beyond systems of noninteracting electrons. Fragile topological phases can generally occur when a system has a U(1)\mathrm{U}(1) charge conservation symmetry, such that only particles with one sign of the charge are physically allowed (e.g. electrons but not positrons). We demonstrate that fragile topological phases exist in interacting systems of both fermions and of bosons.Comment: 14 pages. Comments welcome; v2: several discussions are improve

    Soft grain compression: beyond the jamming point

    Get PDF
    We present the experimental studies of highly strained soft bidisperse granular systems made of hyperelastic and plastic particles. We explore the behavior of granular matter deep in the jammed state from local field measurement from the grain scale to the global scale. By mean of digital image correlation and accurate image recording we measure for each compression step the evolution of the particle geometries and their right Cauchy-Green strain tensor fields. We analyze the evolution of the usual macroscopic observables (stress, packing fraction, coordination, fraction of non-rattlers, \textit{etc}.) along the compression process through the jamming point and far beyond. We also analyze the evolution of the local strain statistics and evidence a crossover in the material behavior deep in the jammed state. We show that this crossover depends on the particle material. We argue that the strain field is a reliable observable to describe the evolution of a granular system through the jamming transition and deep in the dense packing state whatever is the material behavior.Comment: 10 figure

    Significance of thermal fluctuations and hydrodynamic interactions in receptor-ligand mediated adhesive dynamics of a spherical particle in wall bound shear flow

    Full text link
    The dynamics of adhesion of a spherical micro-particle to a ligand-coated wall, in shear flow, is studied using a Langevin equation that accounts for thermal fluctuations, hydrodynamic interactions and adhesive interactions. Contrary to the conventional assumption that thermal fluctuations play a negligible role at high Peˊ\acute{e}clet numbers, we find that for particles with low surface densities of receptors, rotational diffusion caused by fluctuations about the flow and gradient directions aids in bond formation, leading to significantly greater adhesion on average, compared to simulations where thermal fluctuations are completely ignored. The role of wall hydrodynamic interactions on the steady state motion of a particle, when the particle is close to the wall, has also been explored. At high Peˊ\acute{e}clet numbers, the shear induced force that arises due to the stresslet part of the Stokes dipole, plays a dominant role, reducing the particle velocity significantly, and affecting the states of motion of the particle. The coupling between the translational and rotational degrees of freedom of the particle, brought about by the presence of hydrodynamic interactions, is found to have no influence on the binding dynamics. On the other hand, the drag coefficient, which depends on the distance of the particle from the wall, plays a crucial role at low rates of bond formation. A significant difference in the effect of both the shear force and the position dependent drag force, on the states of motion of the particle, is observed when the Peˊ\acute{e}let number is small.Comment: The manuscript has been accepted as an article in Physical Review E Journa

    A unified operator splitting approach for multi-scale fluid-particle coupling in the lattice Boltzmann method

    Get PDF
    A unified framework to derive discrete time-marching schemes for coupling of immersed solid and elastic objects to the lattice Boltzmann method is presented. Based on operator splitting for the discrete Boltzmann equation, second-order time-accurate schemes for the immersed boundary method, viscous force coupling and external boundary force are derived. Furthermore, a modified formulation of the external boundary force is introduced that leads to a more accurate no-slip boundary condition. The derivation also reveals that the coupling methods can be cast into a unified form, and that the immersed boundary method can be interpreted as the limit of force coupling for vanishing particle mass. In practice, the ratio between fluid and particle mass determines the strength of the force transfer in the coupling. The integration schemes formally improve the accuracy of first-order algorithms that are commonly employed when coupling immersed objects to a lattice Boltzmann fluid. It is anticipated that they will also lead to superior long-time stability in simulations of complex fluids with multiple scales

    GARTEUR Helicopter Cooperative Research

    Get PDF
    This paper starts with an overview about the general structure of the Group for Aeronautical Research and Technology in EURope (GARTEUR). The focus is on the activities related to rotorcraft which are managed in the GARTEUR Helicopter Group of Responsables (HC GoR). The research activities are carried out in so-called Action Groups. Out of the 5 Action Groups which ended within the last four years results generated in the Helicopter Action Groups HC(AG14) “Methods for Refinement of Structural Dynamic Finite Element Models”, HC(AG15) “Improvement of SPH methods for application to helicopter ditching” and HC(AG16) “Rigid Body and Aeroelastic Rotorcraft-Pilot Coupling” are briefly summarized

    Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces

    Full text link
    At the heart of the structured architecture and complex dynamics of biological systems are specific and timely interactions operated by biomolecules. In many instances, biomolecular agents are spatially confined to flexible lipid membranes where, among other functions, they control cell adhesion, motility and tissue formation. Besides being central to several biological processes, \emph{multivalent interactions} mediated by reactive linkers confined to deformable substrates underpin the design of synthetic-biological platforms and advanced biomimetic materials. Here we review recent advances on the experimental study and theoretical modelling of a heterogeneous class of biomimetic systems in which synthetic linkers mediate multivalent interactions between fluid and deformable colloidal units, including lipid vesicles and emulsion droplets. Linkers are often prepared from synthetic DNA nanostructures, enabling full programmability of the thermodynamic and kinetic properties of their mutual interactions. The coupling of the statistical effects of multivalent interactions with substrate fluidity and deformability gives rise to a rich emerging phenomenology that, in the context of self-assembled soft materials, has been shown to produce exotic phase behaviour, stimuli-responsiveness, and kinetic programmability of the self-assembly process. Applications to (synthetic) biology will also be reviewed.Comment: 63 pages, revie
    corecore