206 research outputs found

    inSense: A Variation and Fault Tolerant Architecture for Nanoscale Devices

    Get PDF
    Transistor technology scaling has been the driving force in improving the size, speed, and power consumption of digital systems. As devices approach atomic size, however, their reliability and performance are increasingly compromised due to reduced noise margins, difficulties in fabrication, and emergent nano-scale phenomena. Scaled CMOS devices, in particular, suffer from process variations such as random dopant fluctuation (RDF) and line edge roughness (LER), transistor degradation mechanisms such as negative-bias temperature instability (NBTI) and hot-carrier injection (HCI), and increased sensitivity to single event upsets (SEUs). Consequently, future devices may exhibit reduced performance, diminished lifetimes, and poor reliability. This research proposes a variation and fault tolerant architecture, the inSense architecture, as a circuit-level solution to the problems induced by the aforementioned phenomena. The inSense architecture entails augmenting circuits with introspective and sensory capabilities which are able to dynamically detect and compensate for process variations, transistor degradation, and soft errors. This approach creates ``smart\u27\u27 circuits able to function despite the use of unreliable devices and is applicable to current CMOS technology as well as next-generation devices using new materials and structures. Furthermore, this work presents an automated prototype implementation of the inSense architecture targeted to CMOS devices and is evaluated via implementation in ISCAS \u2785 benchmark circuits. The automated prototype implementation is functionally verified and characterized: it is found that error detection capability (with error windows from ≈\approx30-400ps) can be added for less than 2\% area overhead for circuits of non-trivial complexity. Single event transient (SET) detection capability (configurable with target set-points) is found to be functional, although it generally tracks the standard DMR implementation with respect to overheads

    A survey of cross-layer power-reliability tradeoffs in multi and many core systems-on-chip

    Full text link
    As systems-on-chip increase in complexity, the underlying technology presents us with significant challenges due to increased power consumption as well as decreased reliability. Today, designers must consider building systems that achieve the requisite functionality and performance using components that may be unreliable. In order to do so, it is crucial to understand the close interplay between the different layers of a system: technology, platform, and application. This will enable the most general tradeoff exploration, reaping the most benefits in power, performance and reliability. This paper surveys various cross layer techniques and approaches for power, performance, and reliability tradeoffs are technology, circuit, architecture and application layers. © 2013 Elsevier B.V. All rights reserved

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    Characterisation and mitigation of long-term degradation effects in programmable logic

    No full text
    Reliability has always been an issue in silicon device engineering, but until now it has been managed by the carefully tuned fabrication process. In the future the underlying physical limitations of silicon-based electronics, plus the practical challenges of manufacturing with such complexity at such a small scale, will lead to a crunch point where transistor-level reliability must be forfeited to continue achieving better productivity. Field-programmable gate arrays (FPGAs) are built on state-of-the-art silicon processes, but it has been recognised for some time that their distinctive characteristics put them in a favourable position over application-specific integrated circuits in the face of the reliability challenge. The literature shows how a regular structure, interchangeable resources and an ability to reconfigure can all be exploited to detect, locate, and overcome degradation and keep an FPGA application running. To fully exploit these characteristics, a better understanding is needed of the behavioural changes that are seen in the resources that make up an FPGA under ageing. Modelling is an attractive approach to this and in this thesis the causes and effects are explored of three important degradation mechanisms. All are shown to have an adverse affect on FPGA operation, but their characteristics show novel opportunities for ageing mitigation. Any modelling exercise is built on assumptions and so an empirical method is developed for investigating ageing on hardware with an accelerated-life test. Here, experiments show that timing degradation due to negative-bias temperature instability is the dominant process in the technology considered. Building on simulated and experimental results, this work also demonstrates a variety of methods for increasing the lifetime of FPGA lookup tables. The pre-emptive measure of wear-levelling is investigated in particular detail, and it is shown by experiment how di fferent reconfiguration algorithms can result in a significant reduction to the rate of degradation

    Dielectrics for Two-Dimensional Transition Metal Dichalcogenide Applications

    Full text link
    Despite over a decade of intense research efforts, the full potential of two-dimensional transition metal dichalcogenides continues to be limited by major challenges. The lack of compatible and scalable dielectric materials and integration techniques restrict device performances and their commercial applications Conventional dielectric integration techniques for bulk semiconductors are difficult to adapt for atomically thin two-dimensional materials. This review provides a brief introduction into various common and emerging dielectric synthesis and integration techniques and discusses their applicability for 2D transition metal dichalcogenides. Dielectric integration for various applications is reviewed in subsequent sections including nanoelectronics, optoelectronics, flexible electronics, valleytronics, biosensing, quantum information processing, and quantum sensing. For each application, we introduce basic device working principles, discuss the specific dielectric requirements, review current progress, present key challenges, and offer insights into future prospects and opportunities
    • …
    corecore