2,615 research outputs found

    Tagged repair techniques for defect tolerance in hybrid nano/CMOS architecture

    No full text
    We propose two new repair techniques for hybrid nano/CMOS computing architecture with lookup table based Boolean logic. Our proposed techniques use tagging mechanism to provide high level of defect tolerance and we present theoretical equations to predict the repair capability including an estimate of the repair cost. The repair techniques are efficient in utilization of spare units and capable of targeting upto 20% defect rates, which is higher than recently reported repair techniques

    Fault-tolerance techniques for hybrid CMOS/nanoarchitecture

    Get PDF
    The authors propose two fault-tolerance techniques for hybrid CMOS/nanoarchitecture implementing logic functions as look-up tables. The authors compare the efficiency of the proposed techniques with recently reported methods that use single coding schemes in tolerating high fault rates in nanoscale fabrics. Both proposed techniques are based on error correcting codes to tackle different fault rates. In the first technique, the authors implement a combined two-dimensional coding scheme using Hamming and Bose-Chaudhuri-Hocquenghem (BCH) codes to address fault rates greater than 5. In the second technique, Hamming coding is complemented with bad line exclusion technique to tolerate fault rates higher than the first proposed technique (up to 20). The authors have also estimated the improvement that can be achieved in the circuit reliability in the presence of Don-t Care Conditions. The area, latency and energy costs of the proposed techniques were also estimated in the CMOS domain

    Array-based architecture for FET-based, nanoscale electronics

    Get PDF
    Advances in our basic scientific understanding at the molecular and atomic level place us on the verge of engineering designer structures with key features at the single nanometer scale. This offers us the opportunity to design computing systems at what may be the ultimate limits on device size. At this scale, we are faced with new challenges and a new cost structure which motivates different computing architectures than we found efficient and appropriate in conventional very large scale integration (VLSI). We sketch a basic architecture for nanoscale electronics based on carbon nanotubes, silicon nanowires, and nano-scale FETs. This architecture can provide universal logic functionality with all logic and signal restoration operating at the nanoscale. The key properties of this architecture are its minimalism, defect tolerance, and compatibility with emerging bottom-up nanoscale fabrication techniques. The architecture further supports micro-to-nanoscale interfacing for communication with conventional integrated circuits and bootstrap loading

    Error-power tradeoffs in QCA design

    Get PDF
    In this work we present an error-power tradeoff study in a Quantum-dot Cellular Automata (QCA) circuit design. Device parameter variation to optimize performance is a very crucial step in the development of a technology. In this work we vary the maximum kink energy of a QCA circuit to perform an error-power tradeoff study in QCA design. We make use of graphical probabilistic models to estimate polarization errors and non-adiabatic energy dissipated in a clocked QCA circuit and demonstrate the tradeoff studies on the basic QCA circuits such as majority gate and inverter. We also show how this study can be used by comparing two single bit adder designs. The study will be of great use to designers and fabrication scientists to choose the most optimum size and spacing of QCA cells to fabricate QCA logic designs

    Fault Secure Encoder and Decoder for NanoMemory Applications

    Get PDF
    Memory cells have been protected from soft errors for more than a decade; due to the increase in soft error rate in logic circuits, the encoder and decoder circuitry around the memory blocks have become susceptible to soft errors as well and must also be protected. We introduce a new approach to design fault-secure encoder and decoder circuitry for memory designs. The key novel contribution of this paper is identifying and defining a new class of error-correcting codes whose redundancy makes the design of fault-secure detectors (FSD) particularly simple. We further quantify the importance of protecting encoder and decoder circuitry against transient errors, illustrating a scenario where the system failure rate (FIT) is dominated by the failure rate of the encoder and decoder. We prove that Euclidean geometry low-density parity-check (EG-LDPC) codes have the fault-secure detector capability. Using some of the smaller EG-LDPC codes, we can tolerate bit or nanowire defect rates of 10% and fault rates of 10^(-18) upsets/device/cycle, achieving a FIT rate at or below one for the entire memory system and a memory density of 10^(11) bit/cm^2 with nanowire pitch of 10 nm for memory blocks of 10 Mb or larger. Larger EG-LDPC codes can achieve even higher reliability and lower area overhead

    Sequential circuit design in quantum-dot cellular automata

    Get PDF
    In this work we present a novel probabilistic modeling scheme for sequential circuit design in quantum-dot cellular automata(QCA) technology. Clocked QCA circuits possess an inherent direction for flow of information which can be effectively modeled using Bayesian networks (BN). In sequential circuit design this presents a problem due to the presence of feedback cycles since BN are direct acyclic graphs (DAG). The model presented in this work can be constructed from a logic design layout in QCA and is shown to be a dynamic Bayesian Network (DBN). DBN are very powerful in modeling higher order spatial and temporal correlations that are present in most of the sequential circuits. The attractive feature of this graphical probabilistic model is that that it not only makes the dependency relationships amongst node explicit, but it also serves as a computational mechanism for probabilistic inference. We analyze our work by modeling clocked QCA circuits for SR F/F, JK F/F and RAM designs

    Nonphotolithographic nanoscale memory density prospects

    Get PDF
    Technologies are now emerging to construct molecular-scale electronic wires and switches using bottom-up self-assembly. This opens the possibility of constructing nanoscale circuits and memories where active devices are just a few nanometers square and wire pitches may be on the order of ten nanometers. The features can be defined at this scale without using photolithography. The available assembly techniques have relatively high defect rates compared to conventional lithographic integrated circuits and can only produce very regular structures. Nonetheless, with proper memory organization, it is reasonable to expect these technologies to provide memory densities in excess of 10/sup 11/ b/cm/sup 2/ with modest active power requirements under 0.6 W/Tb/s for random read operations
    corecore