26,371 research outputs found

    Deep Learning: The Many Approaches of Intrusion Detection System Can Be Implemented and Improved Upon

    Get PDF
    For my research topic I decided to look at Deep learning. Deep learning can be used in many ways for example in web searching. Deep learning can also can improve new businesses and products. Deep learning could lead to amazing discoveries. Deep learning is making a neural network learn something. In my research I talk about Intrusion detection system, traditional approach for intrusion detection, existing intrusion detection, machine learning and deep learning based intrusion detection system, and future work

    A Deep Learning Approach to Network Intrusion Detection

    Get PDF
    Software Defined Networking (SDN) has recently emerged to become one of the promising solutions for the future Internet. With the logical centralization of controllers and a global network overview, SDN brings us a chance to strengthen our network security. However, SDN also brings us a dangerous increase in potential threats. In this paper, we apply a deep learning approach for flow-based anomaly detection in an SDN environment. We build a Deep Neural Network (DNN) model for an intrusion detection system and train the model with the NSL-KDD Dataset. In this work, we just use six basic features (that can be easily obtained in an SDN environment) taken from the forty-one features of NSL-KDD Dataset. Through experiments, we confirm that the deep learning approach shows strong potential to be used for flow-based anomaly detection in SDN environments

    Anomal-E: A Self-Supervised Network Intrusion Detection System based on Graph Neural Networks

    Full text link
    This paper investigates Graph Neural Networks (GNNs) application for self-supervised network intrusion and anomaly detection. GNNs are a deep learning approach for graph-based data that incorporate graph structures into learning to generalise graph representations and output embeddings. As network flows are naturally graph-based, GNNs are a suitable fit for analysing and learning network behaviour. The majority of current implementations of GNN-based Network Intrusion Detection Systems (NIDSs) rely heavily on labelled network traffic which can not only restrict the amount and structure of input traffic, but also the NIDSs potential to adapt to unseen attacks. To overcome these restrictions, we present Anomal-E, a GNN approach to intrusion and anomaly detection that leverages edge features and graph topological structure in a self-supervised process. This approach is, to the best our knowledge, the first successful and practical approach to network intrusion detection that utilises network flows in a self-supervised, edge leveraging GNN. Experimental results on two modern benchmark NIDS datasets not only clearly display the improvement of using Anomal-E embeddings rather than raw features, but also the potential Anomal-E has for detection on wild network traffic

    Learning to Detect: A Data-driven Approach for Network Intrusion Detection

    Get PDF
    With massive data being generated daily and the ever-increasing interconnectivity of the world’s Internet infrastructures, a machine learning based intrusion detection system (IDS) has become a vital component to protect our economic and national security. In this paper, we perform a comprehensive study on NSL-KDD, a network traffic dataset, by visualizing patterns and employing different learning-based models to detect cyber attacks. Unlike previous shallow learning and deep learning models that use the single learning model approach for intrusion detection, we adopt a hierarchy strategy, in which the intrusion and normal behavior are classified firstly, and then the specific types of attacks are classified. We demonstrate the advantage of the unsupervised representation learning model in binary intrusion detection tasks. Besides, we alleviate the data imbalance problem with SVM-SMOTE oversampling technique in 4-class classification and further demonstrate the effectiveness and the drawback of the oversampling mechanism with a deep neural network as a base model. Index Terms—Intrusio

    Enhancing Intrusion Detection Systems with a Hybrid Deep Learning Model and Optimized Feature Composition

    Get PDF
    Systems for detecting intrusions (IDS) are essential for protecting network infrastructures from hostile activity. Advanced methods are required since traditional IDS techniques frequently fail to properly identify sophisticated and developing assaults. In this article, we suggest a novel method for improving IDS performance through the use of a hybrid deep learning model and feature composition optimization. RNN and CNN has strengths that the proposed hybrid deep learning model leverages to efficiently capture both spatial and temporal correlations in network traffic data. The model can extract useful features from unprocessed network packets using CNNs and RNNs, giving a thorough picture of network behaviour. To increase the IDS's ability to discriminate, we also offer feature optimization strategies. We uncover the most pertinent and instructive features that support precise intrusion detection through a methodical feature selection and engineering process. In order to reduce the computational load and improve the model's efficiency without compromising detection accuracy, we also use dimensionality reduction approaches. We carried out extensive experiments using a benchmark dataset that is frequently utilized in intrusion detection research to assess the suggested approach. The outcomes show that the hybrid deep learning model performs better than conventional IDS methods, obtaining noticeably greater detection rates and lower false positive rates. The performance of model is further improved by the optimized feature composition, which offers a more accurate depiction of network traffic patterns

    Enabling intrusion detection systems with dueling double deep Q-learning

    Get PDF
    Purpose – In this research, the authors demonstrate the advantage of reinforcement learning (RL) based intrusion detection systems (IDS) to solve very complex problems (e.g. selecting input features, considering scarce resources and constrains) that cannot be solved by classical machine learning. The authors include a comparative study to build intrusion detection based on statistical machine learning and representational learning, using knowledge discovery in databases (KDD) Cup99 and Installation Support Center of Expertise (ISCX) 2012. Design/methodology/approach – The methodology applies a data analytics approach, consisting of data exploration and machine learning model training and evaluation. To build a network-based intrusion detection system, the authors apply dueling double deep Q-networks architecture enabled with costly features, k-nearest neighbors (K-NN), support-vector machines (SVM) and convolution neural networks (CNN). Findings – Machine learning-based intrusion detection are trained on historical datasets which lead to model drift and lack of generalization whereas RL is trained with data collected through interactions. RL is bound to learn from its interactions with a stochastic environment in the absence of a training dataset whereas supervised learning simply learns from collected data and require less computational resources. Research limitations/implications – All machine learning models have achieved high accuracy values and performance. One potential reason is that both datasets are simulated, and not realistic. It was not clear whether a validation was ever performed to show that data were collected from real network traffics. Practical implications – The study provides guidelines to implement IDS with classical supervised learning, deep learning and RL. Originality/value – The research applied the dueling double deep Q-networks architecture enabled with costly features to build network-based intrusion detection from network traffics. This research presents a comparative study of reinforcement-based instruction detection with counterparts built with statistical and representational machine learning

    A Multilayer Approach for Intrusion Detection with Lightweight Multilayer Perceptron and LSTM Deep Learning Models

    Get PDF
    Intrusion detection is essential in the field of cybersecurity for protecting networks and computer systems from nefarious activity. We suggest a novel multilayer strategy that combines the strength of the Lightweight Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) deep learning models in order to improve the precision and effectiveness of intrusion detection.The initial layer for extraction of features and representation is the Lightweight MLP. Its streamlined architecture allows for quick network data processing while still maintaining competitive performance. The LSTM deep learning model, which is excellent at identifying temporal correlations and patterns in sequential data, receives the extracted features after that.Our multilayer technique successfully manages the highly dimensional and dynamic nature of data from networks by merging these two models. We undertake extensive tests on benchmark datasets, and the outcomes show that our strategy performs better than conventional single-model intrusion detection techniques.The suggested multilayer method also demonstrates outstanding efficiency, which makes it particularly ideal for real-time intrusion detection in expansive network environments. Our multilayer approach offers a strong and dependable solution for identifying and reducing intrusions, strengthening the security position of computer systems and networks as cyber threats continue to advance

    E-GraphSAGE: A Graph Neural Network based Intrusion Detection System for IoT

    Full text link
    This paper presents a new Network Intrusion Detection System (NIDS) based on Graph Neural Networks (GNNs). GNNs are a relatively new sub-field of deep neural networks, which can leverage the inherent structure of graph-based data. Training and evaluation data for NIDSs are typically represented as flow records, which can naturally be represented in a graph format. This establishes the potential and motivation for exploring GNNs for network intrusion detection, which is the focus of this paper. Current studies on machine learning-based NIDSs only consider the network flows independently rather than taking their interconnected patterns into consideration. This is the key limitation in the detection of sophisticated IoT network attacks such as DDoS and distributed port scan attacks launched by IoT devices. In this paper, we propose \mbox{E-GraphSAGE}, a GNN approach that overcomes this limitation and allows capturing both the edge features of a graph as well as the topological information for network anomaly detection in IoT networks. To the best of our knowledge, our approach is the first successful, practical, and extensively evaluated approach of applying Graph Neural Networks on the problem of network intrusion detection for IoT using flow-based data. Our extensive experimental evaluation on four recent NIDS benchmark datasets shows that our approach outperforms the state-of-the-art in terms of key classification metrics, which demonstrates the potential of GNNs in network intrusion detection, and provides motivation for further research.Comment: 9 pages, 5 figures, 6 table
    • …
    corecore