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Abstract

Purpose – In this research, the authors demonstrate the advantage of reinforcement learning (RL) based
intrusion detection systems (IDS) to solve very complex problems (e.g. selecting input features, considering
scarce resources and constrains) that cannot be solved by classical machine learning. The authors include a
comparative study to build intrusion detection based on statistical machine learning and representational
learning, using knowledge discovery in databases (KDD) Cup99 and Installation Support Center of Expertise
(ISCX) 2012.
Design/methodology/approach – The methodology applies a data analytics approach, consisting of data
exploration andmachine learningmodel training and evaluation. To build a network-based intrusion detection
system, the authors apply dueling double deepQ-networks architecture enabledwith costly features, k-nearest
neighbors (K-NN), support-vector machines (SVM) and convolution neural networks (CNN).
Findings – Machine learning-based intrusion detection are trained on historical datasets which lead
to model drift and lack of generalization whereas RL is trained with data collected through interactions.
RL is bound to learn from its interactions with a stochastic environment in the absence of a training
dataset whereas supervised learning simply learns from collected data and require less computational
resources.
Research limitations/implications –Allmachine learningmodels have achieved high accuracy values and
performance. One potential reason is that both datasets are simulated, and not realistic. It was not clearwhether
a validation was ever performed to show that data were collected from real network traffics.
Practical implications –The study provides guidelines to implement IDSwith classical supervised learning,
deep learning and RL.
Originality/value – The research applied the dueling double deep Q-networks architecture enabled with
costly features to build network-based intrusion detection from network traffics. This research presents a
comparative study of reinforcement-based instruction detection with counterparts built with statistical and
representational machine learning.

Keywords Cybersecurity, Reinforcement learning, Deep learning, Convolution neural network,

Double deep Q-network, Intrusion detection, Supervised machine learning

Paper type Research paper

1. Introduction
With the exponential increase in the use of internet applications, the internet-connected
systems have an increasing threat from cyber-attacks. The complexity and dynamics of
cyber-attacks require intrusion detection systems (IDS) to intercept cyber-attacks at
large-scale.

We are witnessing an exponential advancement in technology and its usage andwith that,
the data generated has been growing at an increased pace as well. With the increased data,
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the security emerges as a major source of concern and thus cyber-security becomes an
important department in any industry. Therefore, it is important for any organization to have
reliable systems in place to ensure security of their databases and network systems. To this
end, IDS are used to monitor traffic moving on networks to identify suspicious activity and
known threats. They are conceived as software applications that scan a network or a system
to detect malicious activity or policy breaches. Furthermore, an ideal IDS monitors network
packets inbound to the system and sends out a warning signal whenever a harmful activity is
detected.

According to the National Institute of Standards and Technology (NIST)
Scarfone and Mell (2007), IDS can be classified into 5 types:

(1) Network Intrusion Detection Systems (NIDS): NIDS are established at a
planned point while setting up a system to monitor traffic from all the devices on the
network. It observes the incoming traffic and compares the samewith the collection of
known errors or checks for abnormal behavior. When detected, the system sends a
signal to the administrator for further investigation.

(2) Host Intrusion Detection System (HIDS): HIDS runs on hosts or devices on the
network and examines incoming and outgoing network packets. The administrator is
sent a warning signal if the current snapshot of system files becomes different from a
previous snapshot.

(3) Protocol-based Intrusion Detection System (PIDS): PIDS incorporates a
system or an agent running on servers to control and interpret protocols (like HTTPS
(hypertext transfer protocol secure), etc.) between remote devices and servers to
secure the web server from any malicious activity.

(4) Application Protocol-based Intrusion Detection System (APIDS): APIDS is
similar to the PIDS in terms of operation but it predominantly resides within a group
of servers. It identifies intrusion by interpreting the exchanged packets between
application specific protocols.

(5) Hybrid Intrusion Detection System (HIDS): HIDS is made by a combination
two or more approaches discussed above. In HIDS, the system and network data are
combined to have a complete network system and thus the Intrusion Detection
System is more effective when compared with the traditional approaches.

Alternatively, IDS can also be classified based upon the detection method incorporated. The
two primary methods of detection are signature-based and anomaly-based. Signature-based
IDS use a predefined set of instructions to look for known attack patterns. These systems can
easily identify the attacks whose information is already stored in instructions, but it becomes
a daunting task to identify newmalware attacks on the system. On the other hand, Anomaly-
based IDS first establish the baseline performance under normal operating conditions to
observe the normal behavior of the network.

Supervised machine learning are extensively used to build IDS by training models on
network packets (e.g. transmission control protocol (TCP), user datagram protocol (UDP)) to
classify normal traffics from abnormal activities caused by unknown malware attacks.
Machine learning based methods have a better generalized property in comparison to
signature-based IDS. They are trained from data collected from communications or generated
syntactically for simulations. On the other side, supervised machine learning requires large
amount of data and hyper-tuning to obtain classifiers that generalize well on unforeseen data.
In addition, they are subject to model and data drifts when they are deployed for inference in
real time. Drifts imply degradation of intrusion detection classifiers’ prediction power due to
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changes in their environments, and thus the relationships between the packet’s input features
and the corresponding labels (e.g., normal or abnormal). The most common ways to address
the drifts are periodically refit the classifiers with updated training datasets, learn the change
or weight input features.

Reinforcement learning (RL) is an alternative approach to build IDSs. RL is a branch of
machine learning that trains an agent (model) to choose an optimum solution for a problem. In
fact, RL agent learns from interactions with its environment to choose an optimal action not
from a label as in the supervised learning case but from a time-delayed label called a reward (a
scalar value). The reward informs whether the decision of classifying an action such as
detecting abnormal behavior is good or bad decision. Hence, the goal of RL is to process a
sequence of actions in order to maximize the reward. In contrast to supervised machine
learning algorithms which require huge amount of data, RL build the training data from
interactions of its agent with the environment (e.g. network).

In this study, we explore Q-learning, an off-policy RL algorithm to build IDS agent that
detects the anomaly in network packets. These anomalies can be categorized into various
attack types based on the network configuration. A Q-learning-based agent takes actions at
random, learns the value of an action in a particular state and aims at choosing the best action
to take given the current state and by maximizing the reward. In addition, we propose novel
IDS agent-based on double deep Q-network (DQN) with dueling architecture to maximize a
cumulative reward by detecting intrusions and attacks. To this end, we train deep neural
networks to approximate theQ-value function. The state is given as input and theQ-value of
all possible actions are generated as output. The action space is defined as the selection of
right set of features and classification of network packets. The reward function is thus
defined to give a negative score whenever the RL agent misclassifies a network packet or a
partial negative score when it selects a set of features which do not improve the model
performance.

We have also compared the performance of our proposed double dueling deepQ-network
with retrace architecture and the results from two machine learning models: convolution
neural networks (CNN) and K-nearest neighbors (K-NN). We thus observed that the
convergence obtained by ouble dueling DQN architecture is faster and better. Our results are
also aligned with similar studies (Lopez-Martin, Carro, Sanchez-Esguevillas, & Lloret, 2019).

The remaining paper is organized as follows. Section 2 introduces basic concepts of RL
and presents algorithms used in this study. Section 3 sheds light on the related works on IDS
and forces on Deep Reinforcement Learning (DRL) based intrusion detection. Section 4
presents the data analytics methodology, introduces the proposed dueling double deep
Q-networks architecture enabled with costly features to build a RL based IDS architecture. In
addition, Section 4 presents the exploratory data analysis and data preprocessing. In Section
5 covers a range of models from the classical supervised machine learning trained on the
knowledge discovery in databases (KDD) Cup 99 dataset (K-NN, (Support-Vector Machines)
SVM) and installation support center of expertise (ISCX) datasets (CNN,K-NN and SVM), and
the double dueling deep Q-network with retrace models and compares the results from
different models. Finally, Section 6 concludes the study and provides future research
directions.

2. Reinforcement learning preliminaries
RL is a branch of machine learning based on rewarding desired behaviors from sequences of
decisions taken throughout the course of training. As shown in Figure 1, RL is described by
concepts of state, action and reward and environment. An agent learns to behave in an
environment by choosing actions and observe the results from taking such actions. For each
good action, the agent gets a reward, and for each bad action, the agent receives penalty. The
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RL’s architecture is thus based on interactions between the agent and the environment, and
the cumulative reward obtained at the end of the entire training episode. RL training consists
of trials and errors to come up with a solution to a problem. The goal of RL training is to
maximize the total reward.

DRL use deep neural networks to tackle problems that considered too complex for classic
RL algorithms.

2.1 Elements of reinforcement learning
For each and every RL system, there are six components to define in order to learn to solve
problems. According to Sutton and Barto (2018), these components include:

(1) Environment: Environment (E) provides information about the state of the system.
The environment is assumed to be stochastic, which means it is random in nature.

(2) Agent: An entity that can perceive or explore the environment and act upon it by
selecting an action.

(3) Actions: Actions (A) causes the environment to transit from current state to a new
state. Actions could be discrete (e.g. turning on/off) or continuous (e.g. turning a
wheel).

(4) States: A state (S) is an immediate situation returned by the environment after each
action taken by the agent.

(5) Reward: Based on the current state and the performed action, the agent receives
rewards from the environment as a result of the agent’s action.

(6) Policy: Based on the current state, a policy (π) is a strategy used by the agent to
choose the next action.

There are four categories of RL algorithms to map states to actions in a way that maximizes
rewards, namely policy-based algorithms (e.g. REINFORCE algorithm), value-based
algorithms (e.g. State Action Reward State Action [SARSA] and DQN), model-based
algorithms (e.g. Monte-Carlo Tree Search) and combined methods (i.e. Actor-Critic
algorithms).

In this paper, we focus on the value-based functions by which the RL agent evaluates the
possible long-term return rewards based on the current state and actions under a policy π.
The value-based functions are divided into two categories:Q-values andV-values. Put it simply,
theQ-value represents the value of choosing a specific action at a given statewhereas theV-value
represents the value of the given state regardless of the action taken. In addition, the advantage-
value (A-value) estimates how advantageous selecting an action is relative to the other actions at
the given state. The A-value is the difference between the Q-value and the V-value. Q functions
estimate the expected return on state-action pairs. Based onQ functions, state-action pairs could
easily transform into an RL policy. Finally, V functions estimate the value of states.

Figure 1.
The agent-
environment
interaction in RL
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2.2 Q-learning and deep Q-network
Most existing RL algorithms work with combinations of finite or discrete actions (action
space) and continuous or discrete states (states space). A typical intrusion detection system
requires discrete actions (e.g. classification into two or more classes) taken in response to
high-dimensional real-valued input features (e.g. continuous states space).

Q-learning is an off-policy RL algorithm which is constrained to discrete states and
discrete actions and generates a table of state-action-reward values based on the interactions
between the environment and the agent. One approach to formulate problems with
continuous states space and continuous states space is to extendQ-learning with deep neural
networks (called Deep Q-Networks or DQN for short) to process continuous input features
and approximate the table of state-action-reward values.

As depicted in Figure 2, the Q-learning function learns from discrete actions that are
outside the current policy to choose the best action to take given the current state. By such,
Q-learning function learns a policy that maximizes the total reward.

Based on Mnih et al. (2013), the parameters used in updating the Q-value process are:

(1) α: refers to the learning rate taking values between 0 and 1. If the learning rate has the
value of 0, the Q-values are never updated and the agent is learning nothing. The
value of 0.9 indicates that the learning can occur quickly.

(2) γ: refers the discount factor and its value indicates that future rewards are worth less
than immediate rewards. The value of 0 means that the agent cares for its immediate
reward only whereas the value of 1 indicates that the agent cares for all future
rewards.

(3) max α: refers to the maximum reward which is attainable in the state following the
current one.

Q-learning builds a memory table Q[s, a] to store Q-values for all possible combinations of s
and a. By sampling an action from the current state, the Q-learning function finds out the
reward (R) and the new states. TheQ table determines the next action a’ to take which has the
maximumQ (s’, a’). By running the agent several episodes, theQ-learning functionmaintains
a running average for Q values which converge to optimal values. Q-learning performs well
when dealing with simple environments where the number of states and actions are
relatively small.

However, nondeterministic and complex environments, where the combined number of
actions and states can reach a large number, require extensive computation and storage
resources to evaluate every possible state-action pair. In addition, the amount of time required
to explore each state andmanage largeQ-table would be unfeasible. To deal with these cases,
Q-learning could be supported by deep neural networks, which yields DQ, to approximate Q
values and learn an optimal policywithout going through all possible states. TheQ-learning’s

Algorithm 1: Q-learning: An off-policy TD control
Initialize Q(s, a) arbitrarily
Repeat foreach episode do

Initialize S;
Repeat foreach step of episode do

Choose A from S using policy derived from Q (e.g., ε-greedy);
Take action A, observe R, S′;
Q(S, A) ← Q(S, A) + α[R + γ maxα Q(S′, a) – Q(S, A)];
S ← S′;
until S is terminal

end foreach
end foreach

Figure 2.
Q-learning: an off-

policy temporal
difference (TD) control

algorithm

Enabling IDS
with dueling
double DQN

119



table is thus replaced by deep neural networks and denoted as Q (s, a; θ), where θ represents
the trainable parameters of the neural network.

3. Related work
There have been numerous works on building IDS based on different techniques, including
classical supervised machine learning and RL to detect anomalies in network traffics. The
review in (Bhuyan, Bhattacharyya, & Kalita, 2013) covers a range of anomaly-based network
IDS and methods. Furthermore, it presents different detection techniques and discusses
several evaluation criteria for testing performances and accuracy. Similar work was
developed in the context of IoT by (Hussain, Hussain, Hassan, & Hossain, 2020) in which
various machine learning and deep learning techniques were presented and discussed within
the context and IoT applications and their cyber-security. A basic workflow of practical
guideline to explore machine learning paradigms for networking research is discussed in
(Wang, Cui, Wang, Xiao, & Jiang, 2017). In this work, a comprehensive study of advanced
machine learning techniques for networking was presented, including networking
measurement, prediction and scheduling.

An area of active research has emerged and aims to apply machine learning techniques to
IDS by collecting and learning models from networking packets. For example, authors in
(Costa, Papa, Lisboa, Munoz, & Albuquerque, 2019) present several intelligent techniques
and their applied intrusion detection architectures in computer networks within the context
of IoT. Yet another survey on anomaly based IDSs using unsupervised techniques (Nisioti,
Mylonas, Yoo, & Katos, 2018) and exhibits the ability to detect unknown attacks, based on
packet features that describe each attack class without any prior knowledge or the need of
labeled data for training and testing.

Authors in (Tsai, Hsu, Lin, & Lin, 2009) focus on various machine learning (ML) models
which include simple classifiers such as (K-NN), SVMs, decision trees, as well as ensemble
classifiers to address intrusion detection problems. Deep learning techniques such as
recurrent neural networks (RNN) and generative adversarial networks (GAN) also used to
detect a wide variety of cyber-security attacks that target networks, application software,
systems and identify anomalies in early stages (Berman, Buczak, Chavis, & Corbett, 2019).

One of the prominent work on the KDD Cup 1999 dataset was developed in Shone, Ngoc,
Phai, and Shi (2018) where authors implemented nonsymmetric deep auto encoders and deep
learning-based stacked nonsymmetric deep auto encoders for the attack classification. They
describe the different attack classes and their groups. Authors in Lopez-Martin et al. (2019)
proposed a shallow linear architecture withmulticlass hinge loss and a kernel approximation-
based feature transformation to train on the NSL-KDDdataset, which is an updated version of
KDD cup99 to tackle IDS trained.

Authors in Javaid, Niyaz, Sun, and Alam (2016) introduced a self-learning approach based
on deep learning incorporated in intrusion detection system. This approach relies on two
stages, including feature selection and attack classification to improve the performance.

Apart from classic machine learning approaches, RL also used to build IDS. Authors in
Sukhanov, Kovalev, and Stỳskala (2015) used temporal-difference RL enabled with observed
states stored in look up tables. This approach is inspired by the Markov reward modeling
with least-square temporal-difference learning.

A kernel-based RL approach has been also proposed by Xu and Luo (2007) to detect
anomalies in host-based IDS which improved the generalization capabilities of RL in large
and nonlinear spaces, a multi-agent RL for IDS proposed by Servin and Kudenko (2005) with
look-up tables.

Recently, many approaches have been proposed, exploring different techniques for
different types of IDS (Phadke, Kulkarni, Bhawalkar, & Bhattad, 2019; Lansky et al., 2021). In
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particular, anomaly-based network intrusion detection emerged as an important research
and development direction of intrusion detection (Bhuyan et al., 2013; Yang et al., 2022). We
also observed the emergence of specialized IDS in domains such as IoT (Tiwari & Narain,
2021), smart phones (Ahmad, Shah, & Al-Khasawneh, 2021), vehicles (Badukale, Thorat, &
Rojatkar, 2021) and smart grids (Liu, Hagenmeyer, & Keller, 2021) just to mention a few.

Within the context of IDS, the side-by-side comparison and evaluation of these
representative approaches and techniques is a drastic challenge. Firstly, these approaches
revolve around different datasets collected from real-world scenarios or synthetically generated
by simulators. Secondly, IDS, which are conceived with classic machine learning or RL, are
completely different. Machine learning-based intrusion detections are trained on historical
datasets which make them subject to drift and lack of generalization to detect new attacks
whereas RL trains agents with data collected through interactions with the environment. This
leads to problems if agents collect poor quality data from trajectories with no rewards.

To the best of our knowledge, an end-to-end study to compare these approaches with the
same datasets is not yet available. In addition, the shortcomings of DQN based intrusion
detection to handle the overestimation ofQ-values remains an open problem.We develop our
study by considering two benchmark datasets used by the intrusion detection community:
the KDD Cup 99 dataset (Tavallaee, Bagheri, Lu, & Ghorbani, 2009) and the ISCX 2012
dataset (Shiravi, Shiravi, Tavallaee, & Ghorbani, 2012) to build classical machine land RL
models and compare their performance. In addition, recent variants of deep Q networks
(DQN), like double DQN, dueling DQN Sewak (2019) are not yet applied to intrusion
detections. In our study, we build dueling double deepQ-Learning based intrusion detections
and compare its performance with classical machine learning.

4. Methodology
Our methodology considers two benchmark datasets; the KDD Cup 99 dataset and ISCX
datasets to build and compare NIDS built with classical supervised machine learning (CNN,
K-NN and SVM) and the double DQN with dueling architecture. These datasets are often
selected by researchers for the purpose of simulation for network IDS and used in many
studies during last two decades along with the citation in many studies. The ISCX is a
benchmark intrusion detection dataset of synthetically recorded packets during seven days,
replicating real time network traffics whereas the KDD Cup 99 is seven weeks of network
traffics acquired from rawTCP dump data, simulating a typical United States (U.S.) Air Force
local-area network (LAN). The methodology also applies a data analytics approach,
consisting of data exploration and preprocessing, machine learning training and evaluation.

In this section, we introduce our double DQN with dueling architecture for intrusion
detection and the preprocessing steps of datasets; KDD Cup 99 and ISCX 2012. In Sections 5
and 6, we respectively train classical machine learning models and the double DQN with
dueling system, and compare their performance to detect attacks.

4.1 Double DQN with dueling-based IDS
The global architecture for anomaly-based intrusion detection using DRL is illustrated in
Figure 3. The architecture aims to build robust IDS by implementing a double DQN with
dueling. The architecture involves the observation and interpretation of network traffics in real
time. By integrating, deep learning and RL, it becomes possible to detect unknown malware
rapidly. As demonstrated in the evaluation section, the double DQN with dueling tends to
convergence faster with improved capabilities of detecting anomalies in network traffics.

In Figure 3, networking packets received or transmitted from devices are intercepted and
forwarded for data preprocessing and featuring engineering before stored in a database for
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training. The RL based IDS system learns from packets to detect anomalies. The learned
policy is then used for evaluation against realistic scenarios and deployment to automate
decision-making or inform network administrators the occurrence of an anomaly.

More precisely, we propose a double DQN with dueling, retrace and classification with
costly features (CwCF) based neural networks to implement the RL based IDS system in the
global architecture. The proposed architecture is depicted in Figure 4 and consists of four
sub-neural networks to respectively process the input features with masks, and estimate
V-values and A-values and finally output the Q-values.

In the context of intrusion detection, the huge amount of data collected from network
packets and state-action pairs make the Q-learning a computationally intensive task and the
state-action table (Q table) is extremely large. The previous section discusses DQN, a variant
ofQ-learning, by utilizing neural networks to approximateQ-values and thus replacing theQ
table. A major problem with Q-learning is the overestimation bias due to the max operator
which overestimates Q-Values for certain actions and leads to a poor performance in some
stochastic environments. The solution for this problem is doubleQ-learning (Hasselt, Guez, &
Silver, 2016) which uses two estimatorsQA andQB instead of one estimator,Q-Value, for each
state-action pair. Double Q-learning focuses on finding action a* that maximizes QA in the
state next states’ and then uses a* to get the value of QB-Value (see Figure 5).

From an implementation perspective, the double Q-learning combines the two target
networks both with and without delay to reduce the bias induced by the max function. The

Figure 3.
Global architecture for
IDS enabled with DRL

Figure 4.
Double DQN with
dueling, retrace and
classification with
costly features
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doubleQ-learningmaintains twoQ-value functionsQA andQB, each one gets update from the
other for the next state. The update consists of finding the action a* that maximizesQA in the
next state (Q (s’, a*) 5 max Q (s’, a)), then use a* to get the value of QB (s’, a*) in order to
update QA (s, a).

In addition to a Double Q-learning we have included a Dueling architecture Wang et al.
(1995) which is a type of Q-network with two streams to separately estimate the
representation of state values and state-dependent action advantages. The motivation
behind the dueling architecture is that for advanced IDS, it is unnecessary to know the value
of each action at every time step or where actions might not always affect the environment in
meaningful ways.

The proposed double Q-learning with dueling is also coupled with retrace Munos,
Stepleton, Harutyunyan and Bellemare (2016) which is a method to efficiently utilize long
traces of experience with truncated importance sampling.

As depicted in Figure 4, the right side of the architecture shows the dueling network with
two branches to separately estimate state-value (red neural network) and the advantages
(blue neural network) for each action; the last module (green neural network) combined the
two branches with an aggregating layer to output an estimate of the state-action value
function Q. Formally, the forward mapping to combine them is given by:

Qðs; a; θ; α; βÞ ¼ Vðs; θ; βÞ þ Aðs; a; θ; αÞ � max
a0∈jAj

Aðs; a; θ; αÞ
� �

(1)

Alternatively, Wang et al. (1995) represents this formulation in their experiments as:

Qðs; a; θ; α; βÞ ¼ V ðs; θ; βÞ þ Aðs; a; θ; αÞ � 1

jAj
X
a0

Aðs; a; θ; αÞ
 !

(2)

This formulation shows that the advantage function has zero advantage for the chosen action. In
addition, the average operator is used instead of amaximum tomaintain the optimization stable.

Moreover, the optimal action a* is given by:

ErrorconvertingfromMathMLtoLaTeX (3)

The dueling architecture and the standard DQN architecture have a similar input-output
interface, and thus, their training remains similar.

The loss function to update the neural networks parameters θ is given by:

LðθÞ ¼ 1

N

X
i∈N

Qθ si; aið Þ � Q
0
θ si; aið Þ� �2

(4)

Where Q0
θ ¼ R st; atð Þ þ γmaxa0

i
Qθ s0i; a

0
i

� �

Figure 5.
Algorithm taken from
double Q-learning by

Hado van Hasselt
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Since the intrusion detection is a classification problem, each feature from raw packets
captured from the network communication can be acquired for a cost and the goal is to
optimize a trade-off between the expected classification error and the feature cost. The cost
come in the form of time required to process packets by several layers of machine learning
algorithms, or performance such as sending queries to vulnerability databases with limited
number of queries (scarce resources) etc. Our double Q-learning with dueling and retrace is
extended to incorporate CwCF proposed in (Janisch, Pevnỳ, & Lisỳ, 2019).

At each step, the agent takes a decision and takes two types of actions: selecting a feature
or making a classification. The agent receives a negative reward for requesting to acquire a
new feature. In this case, the reward equals to the feature cost. The agent also receives
rewards for correct and wrong classification.

For this model we will consider a sample (x, y) ∈ Dwhere the set (x, y) resembles a sample
and D represents the entire data distribution.

LetX andY denote respectively the packet features and their corresponding labels (binary
classification).

Vector x ∈ X ⊆ Rn contains feature values, where xi is a value of feature fi ∈ F, where
F 5 {f1, . . ., fn}, n is the number of features and y ∈ Y is a class.

Let c:F→Rbe a functionmapping a feature f into its real-valued cost c ( f ), and let λ∈ [0, 1]
be a cost scaling factor.

The neural network for classifying one sample for example, is a parameterized couple of
functions (yθ, zθ) such as yθ:X→Y, zθ:X→ c (F ), where yθ classifies and zθ returns the features
used in the classification.

As defined by Janisch et al. (2019), the objective function is to find parameters θ that
minimize the expected classification error (l) along with λ scaled expected feature cost:

argmin
θ

1

jDj
X

ðx;yÞ∈D
l yθðxÞ; yð Þ þ λ

X
f∈ zθðxÞ

cðf Þ
" #

(5)

Given the state space S, the set of actions A, and the reward r transition function t, the states
based on the sample (x, y) is defined as s 5 (x, y, F) ∈ S where F is currently selected set of
features.

An action a ∈ A 5 Ac ∪ Af could be one of the classification actions Ac 5 Y, or feature
selecting actions Af5 F. Obviously, the set of available feature selecting actions is limited to
features not yet selected by the agent.

In the sequential steps, the agent selects a feature at each step to make a class prediction.
By such, the agent receives only an observation o 5 {(xi, fi) j ∀ fi ∈ F}, that is, the selected
parts of x without the label.

(1) Classification actionsAc terminate the episode and the agent receives a reward of 0 in
case of correct classification or a reward of �1 in case of wrong classification.

(2) Feature selecting actionsAf reveals the corresponding value xi and the agent receives
a negative reward of �λc ( fi).

Reward function r : S 3 A → R is defined by Janisch et al. (2019) as:

r
��
x; y; �F�; a� ¼ �λc f ið Þ if a∈Af ; a ¼ f i

0 if a∈Ac and a ¼ y

�1 if a∈Ac and a≠ y

8<
: (6)

The CwCF is implemented in the left side of Figure 4, the input layer consists of the feature
vector x concatenated with binary mask m to specify the number of features selected for a
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particular episode. The input x and m are fed into the neural networks which gives out the
output as Qf and Qc corresponding to Q value for feature selection and Q value for
classification respectively.

In the next sections we explore the datasets and discuss each part of the global
architecture in details, including network datasets selecting, data preprocessing steps,
feature selection and the DRL model.

4.2 Intrusion detection datasets
In order to build robust RL-based IDS based on supervisedmachine learning, datasets should
not only be labeled (dependent variable) to classify the status of network as normal or under
attack state but also consider the following requirements (Ring, Wunderlich, Scheuring,
Landes, & Hotho, 2019):

(1) An inherent problem with most network traffic flow is the presence of more normal
user behavior than attack traffic. Imbalanced datasets should be balanced by
appropriate techniques such as weighted classes to have the same number of data
points from each class.

(2) Network-based datasets should be publicly available to be used a benchmark for
comparing intrusion detection methods from across different approaches and
techniques.

(3) The datasets should also have a high-data volume to obtain significant results when
training with any machine learning model (Shone et al., 2018; Injadat, Salo, Nassif,
Essex, & Shami, 2018).

Considering these requirements, two datasets are considered in this study: the KDD Cup 99
dataset (Tavallaee et al., 2009) and the ISCX 2012 dataset (Shiravi et al., 2012) which satisfy
most of the above-mentioned requirements. These datasets consist of a number of features,
numeric and categorical which are taggedwith a dependent variable that determineswhether
the given state is normal or under attack.

4.2.1 KDD Cup 1999 dataset. The KDD Cup 1999 dataset is a well-recognized standard in
the research of IDS (Tavallaee et al., 2009). The dataset consists of high data volume of
samples and includes a wide variety of intrusions simulated in a military network
environment.

The original KDD Cup 1999 dataset is described in (Lopez-Martin et al., 2019) and initially
consists of 42 features in total out of which 34 features are continuous while the rest of the
features represented as symbolic features. The entire dataset consists of 4,898,431 records,
representing 7 weeks of network traffic. For our research we generate samples from the
original dataset with dependent variable consisting of 39 classes to build a training dataset of
311,029 samples and testing dataset of 494,021 samples. The training and testing dataset do
not have overlapping samples. All samples are unique. Unlike binary classification detection
developed in Xu and Luo (2007), Servin and Kudenko (2005) and Javaid et al. (2016), we are
implementing the multi-class classification by considering all labels during the training
process.

Figure 6 shows the frequency of classes in the KDD Cup 1999. The number of records is
transformed to a logarithmic scale to better visualize the imbalanced training and testing
datasets. Table 1 summarizes attacks into four categories in both training and testing
dataset.

4.2.2 ISCX 2012 dataset. The ISCX 2012 dataset consists of labeled network traces,
including full packet payloads in the pcap format (Shiravi et al., 2012). The dataset was
generated by capturing traffic in an emulated network environment over one week with
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normal as well as malicious network behaviors. The dataset is based on the concepts of
profiles, which contain descriptions of intrusions and abstract distribution models for
applications, protocols or network entities. For example, α profiles define attack scenarios
while β profiles characterize normal user behavior like browsing the Web. The ISCX 2012
dataset consists of 481,677 records for training and 160,519 records for validation and testing.

Figure 7 shows the frequency of classes in the ISCX 2012 training and test datasets. In
addition, Wireshark, a network protocol analyzer visualizes the entire conversations and the
exchanged packets from the ISCX 2012 in Figure 8.

4.2.3 Data preprocessing – KDD Cup 1999 dataset. The data preprocessing of KDD Cup
1999 dataset consists of removing duplicate rows, checking skewness, transforming
categorical variables to numeric variables, applying features importance and splitting data
into training dataset and testing dataset.

In this phase, the dependent variable has 38 classes for the 311,029 records. The
distribution of classes per samples is displayed in Figure 6 and shows that the majority of the

Figure 6.
Frequency distribution
among classes in train
and test KDD Cup 1999
dataset (logarithmic)
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samples are observed across smurf, normal and neptune classes. It is worth noting that
several classes in the network status column are not attacks like Internet Message Access
Protocol (IMAP), perl, multihop, etc.

Supervised learning and RL trained on this dataset consider all these classes which make
our approach is slightly different to the prior work in the state of the art where the different
classes are clubbed into a binary classification of normal or attack classes.

After examining attack types in the dependent variable, all the remaining features were
then carried forward to perform skewness and kurtosis test to understand the data
distribution. Skewness values between 0.5 and 0.5 are considered to represent normal
distribution. Features like d, src_bytes, dst_bytes, hot have skewness values over 70 which
indicates highly skewed data may lead to biased models in prediction. To treat the skewness,
box-cox transformation is applied to get normal distributions.

Attack category Attack type
KDD Cup 99

Test set Training set

Denial of service Neptune 107,201 58,001
Smurf 164,091 28,0790
Pod 264 87
Teardrop 979 12
Land 21 9
Back 2,203 1,098
Apache2 – 794
Udpstorm – 2
Process-table – 759
Mail-bomb – 5,000

User to root Buffer-overflow 30 22
Load-module 9 2
Perl 3 2
Rootkit 10 13
Spy 2 –
Xterm – 13
PS – 16
HTTP-tunnel – 158
SQL-attack – 2
Worm – 2
Snmp-guess – 2,406

Remote to local Guess-password 53 4,367
FTP-write 8 3
IMPA 12 1
Phf 4 2
Multihop 7 18
Warezmaster 20 1,602
Warezclient 1,020 –
Snmpgetattack – 7,741
Named – 17
Xlock – 9
Xsnoop – 4
Send-mail – 17

Probe Port-sweep 1,040 354
IP-sweep 1,247 306
Nmap 231 84
Satan 1,589 1,633
Saint – 736
Mscan – 1,053

Table 1.
Distribution of attacks

into four attack
categories
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Sincemany features have different ranges of values, we standardize features by removing the
mean and scaling to unit variance. In addition, qualitative features were encoded as numeric
features since the machine learning models expect numeric features for training and
evaluation. By such, the dataset has 39 features in total with all variables, consisting of
numerical features.

The next important step in the exploratory data analysis is to identify the most important
features to reduce the complexity of trained models and improve their performance. The
application of the principal component analysis (PCA) identifies a minimum set of features
that can explain the main axes of variances within the data. Figure 9 shows that the top 27
features explain 99% of the variance in the data and thus these features are selected to build
intrusion detection classifiers.

Finally, the preprocessed dataset is then divided into train and validation sets with a 75:25
ratio. The obtained datasets include 248,823 records for the train data, 62,606 records for the
validation data and 492,999 records for the test data.

4.2.4 Data preprocessing – ISCX 2012 dataset. The ISCX 2012 dataset consists of labeled
network traces, including packet payloads in pcap format.

As illustrated in Figure 10, the pcap file consists of the file header (24 bytes), followed by
the Pcap packet header (16 bytes). The Pcap packet data can have a varying length. The

Figure 7.
Frequency distribution
among classes in train
(left) and test ISCX
2012 dataset
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global file headers are further divided into 7 segments, referring to magic number (4 bytes)
followed by the major and minor numbers (4 bytes). The next set of elements includes GMT
local, time stamp, max length and data link type of varying lengths. The pcap packet header
consists of Timeval, capture length and data link type. An example of a pcap is shown in (see
Figure 11).

In the data preprocessing, the Wireshark interface is used to load the ISCX 2012 dataset
and export the required fields to CSV format. Wireshark also shows a typical analysis of
network packets (see Figure 8) where different network packets are color coded based on their
status of the network packet.

The dataset initially consists of 20 features ranging from appName, source bytes,
destination bytes, destination packets, source packets, etc. These features also included

Figure 8.
An instance from the
Wireshark to display

different network
packets

Figure 9.
PCA explained

variances
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categorical variables like direction, protocol, etc. For this study, we are only concerned about
the destination payload as Universal Transformation Format (UTF) feature and the network
status as flag which becomes the dependent variable. The destination payload feature
specifies packet’s content and byte counts. The payload data is present in the pcap packet
data which follows the pcap packet header in a network packet.

The length of the destination payload varies for each observation. To obtain a uniform
data, we set an upper threshold of 7,500 units and concatenated its value with itself until
length of the observation is just equal to the threshold of 7,500 units. Finally, we transform the
obtained data into numeric by American Standard Code for Information Interchange (ASCII)
transformation (Figure 12), and then to images (Figure 13). The rational to transform packets
to visual presentations is motivated by our approach (see next section) to training CNN to
detect patterns from images and classify then as normal or attacks or train RL policy. Each
image has a shape of 50 3 50 pixels.

Finally, the ISCX 2012 dataset is divided into test, train and validation sets with a ratio of
20:60:20 which results in data splits of 160,519, 480,677 and 160,599 records respectively.

5. Supervised learning-based IDS models
In the context of IDS, classical machine learning techniques are often used in the early
classification of attacks. However, due to a large number of algorithms available, the selection
of the best algorithm is a challenging task.

Figure 10.
Structure of the pcap
file format

Figure 11.
A pcap example

Figure 12.
Destination payload
sample for normal
network status
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In this section, we have considered and evaluated the performance of the SVM and theK-NN
as baselinemodels for the KDDCup 1999 dataset and the ISCX 2012 dataset. These classifiers
perform binary and multiclass attacks in terms of detecting whether or not the traffic has
been considered as benign or an attack. In addition, we evaluated a CNN based on Visual
Geometry Group (VGG)-19 using the ISCX 2012 dataset. Table 2 shows a summary of the
parameters and the datasets used to train and evaluate these modes.

5.1 Supervised learning with the KDD Cup 1999 dataset
The K-NN algorithm is a nonparametric supervised learning algorithm. It learns nonlinear
decision boundaries based on the k closest training examples in a dataset. In K-NN, finding
the value of k is a challenging task. A small value of k means that noise will have a higher
influence on the decision boundary whereas a large value of K requires extensive
computations. One potential solution consists of iterating over a number of K values and
identifying the highest performance metrics like accuracy, F1, precision and recall.

Table 4 shows the performance of the K-NN models trained and tested on the KDD Cup
1999 dataset. As a result, we observed that the K value of 3 produced the best result in terms
of the performance metrics (see Table 3).

SVM is one of the most popular supervised learning algorithms, which is used for
classification as well as regression problems. SVM is particularly effective in high
dimensional spaces. However, SVM requires hyper-tuning to find the optimal hyper-
parameters which result in the most accurate classification. To this end, we perform grid-
search with 3-fold cross validation to identify the best optimal hyper-parameters by iterating
over 3 kernels namely, radial basis function, sigmoid and linear kernels. In addition, the C
parameter is set to 10 which informs the SVM optimization howmuch to avoidmisclassifying
each training example. By setting the value of gamma to 0.1, the grid search returns the kernel
radial basis function, which gives the best performance with the accuracy, F1, precision and
recall metrics in Table 4.

The experimental results demonstrate that the K-NN model with K-value of 3 has
produced an average accuracy of 92.6% compared to the accuracy of 88.5% in case of SVM
model on the KDD Cup 1999 dataset. As shown in Figure 14, the AUC values also indicate
constructive performance from the K-NN model when compared with the SVM model.

Models Parameters KDD dataset ISCX dataset

SVM kernel ¼ linear; rbf
γ ¼ 0:1 C ¼ 10; CV ¼ 3

X X

K-NN k ∈ [1, 13] X X
CNN Based on VGG19 – X
DQN epoch ¼ 10; 000; episode ¼ 4; 000

step ¼ 5; 000; learning rate ¼ 5:0e− 4
X –

Figure 13.
Image representation
of the network data

Table 2.
Hyper-parameters for
supervised machine
learning algorithms

and DQN
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5.2 Supervised learning with the ISCX 2012 dataset
In a similar process, we fit two binary classifiers; K-NN and SVM, to the ISCX 2012 dataset
and compare their performance results. We also fit a CNN-based classifier with transfer
learning on Red, Green, Blue (RGB) images generated from packets in order to detect
malicious behavior using image recognition. By such, we discuss the strengths and
limitations of these models with respect to ISCX 2012 dataset and KDD Cup 1999 dataset.

CNN-based models have been successfully applied to the KDD CUP 1999 dataset to
classify individual attacks belonging to the same category such as the DoS attacks rather
than distinguishing attacks from benign samples Kim, Kim, Kim, Shim and Choi (2020).
Multistage deep learning with pretrained ResNet50 image recognition also proposed and
trained on network features transformed into four-channel (Red, Green, Blue and Alpha)
images and evaluated using two publicly available benchmark datasets, UNSW-NB15 and
BOUN Ddos Toldinas et al. (2021). To the best of our knowledge, CNN model for binary
classification on ISCX 2012 is not yet developed and compared with classical machine
learning models such as SVM and K-NN.

To this end, we build an extended CNNmodel based on the VGG-19 pretrained model with
the ImageNet database. Our model consists of 16 convolution layers, including the output
with Rectified Linear Unit (ReLU) activation for classification and the binary cross-entropy
loss function with RMSProp optimizer.

As part of the data preprocessing phase, each packet payload feature from the ISCX 2012
dataset is transformed into a 3-dimensional array by setting the row and width to a
predefined shape of 50 3 50. Finally, the ISCX 2012 dataset is divided into train, validation
and test sets.

The loss and accuracy plots for training our CNN model with 15 epochs are illustrated in
Figure 15. In addition, Table 5 shows the accuracy, exceeding 99% along with other
performance metrics. The AUC value reaches 98.58 which represents the degree or measure
of separability and indicates how much the model is capable of distinguishing between
normal and attack classes.

By considering the ISCX dataset, we train K-NN and SVM model and check their
performance in comparison to the CNNmodel accuracy. In order to preprocess the dataset, we

K-value Accuracy Precision Recall F1

2 92.3% 90.4% 84.1% 86.8%
3 92.6% 90.5% 85.1% 87.4%
4 92.1% 90.2% 83.7% 86.4%
5 92.2% 90.1% 84.2% 86.8%
6 92.1% 90.1% 83.7% 86.4%
7 92.1% 89.9% 84.1% 86.6%
8 92.1% 90.0% 84.0% 86.5%
9 92.1% 89.9% 84.1% 86.6%
10 92.1% 89.9% 83.9% 86.5%
11 92.1% 89.7% 84.1% 86.5%
12 92.0% 89.7% 83.9% 86.4%
13 92.0% 89.6% 84.1% 86.4%

Kernel Accuracy Precision Recall F1

Radial basis function 88.5% 86.7% 74.4% 78.5%

Table 3.
Finding the value of K
in K-NN

Table 4.
Optimal SVM hyper-
parameters with
search grid
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removed accumulative and redundant features (e.g., sourcePayloadAsBase64,
destinationPayloadAsBase64, destinationPayloadAsUTF and sourcePayloadAsUTF) and
selected 16 features for building the dataset based on their importance (Figure 16) (i.e.,
appName, Tag, destination, direction, source, protocolName, totalSourceBytes,
totalDestinationBytes, totalDestinationPackets, totalSourcePackets, sourcePort,
destinationTCPFlagsDescription, startDateTime, sourceTCPFlagsDescription, and

Figure 14.
ROC-AUC plots for

best performing K-NN
model (left) and SVM
model (right) on KDD

dataset
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destinationPort, stopDateTime). The preprocessing steps also include the transformations of
date and time fields from string type to extract relevant information like hours and minutes,
the transformation of IP addresses to integer format and removing skewness.

In order to find the bestK-NNmodel, we compare differentK values as depicted in Table 6
and observe from the model performance that there is significant difference based on the
change of K-values. The K value of 2 gives the highest accuracy of 98.6%.

Model Accuracy Precision Recall F1

CNN 99% 92% 98% 95%

Figure 15.
Loss and accuracy
plots on the ISCX 2012
dataset

Table 5.
Performance metrics
for CNN on the ISCX
dataset
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Similar results were obtained with the SVM model to predict the anomaly in the network
traffic data of ISCX 2012 dataset. After an extensive grid search, the SVM algorithm returns
the best parameters, which correspond to the Radial Basis Function Kernel (Table 7). The
feature importance shows in Figure 16 that the destinationPayloadAsUTF feature plays an
important role in predicting the anomalies in the dataset.

Finally, the receiver operating characteristic-area under the curve (ROC-AUC) plots in
Figure 17 show the best performing K-NN model and SVM with AUC values of 0.9207
and 0.9374.

6. Dueling double DQN-based IDS
Since we are using the dueling double deepQ network to classify attackswith costly features,
we generate a meta dataset, consisting of values between 0 and 1 for each feature in the KDD

K-value Accuracy Precision Recall F1

2 98.6% 90.9% 93.9% 92.4%
3 98.3% 92.4% 88.7% 90.4%
4 98.5% 91.8% 91.2% 91.5%
5 98.1% 92.8% 85.3% 88.6%
6 98.3% 92.6% 87.5% 89.8%
7 98.2% 92.6% 86.4% 89.2%
8 98.2% 92.3% 87.1% 89.5%
9 97.5% 90.6% 79.3% 83.9%
10 97.7% 91.0% 81.5% 85.5%
11 97.4% 90.5% 78.2% 83.2%
12 97.5% 90.7% 79.8% 84.3%
13 97.4% 90.8% 77.9% 83.0%

Kernel Accuracy Precision Recall F1

Radial basis function 98.6% 92.3% 92.1% 92.2%

Figure 16.
PCA explained

variance

Table 6.
Performance metrics

for K-NN on ISCX 2012
dataset

Table 7.
Performance metrics

for SVM on ISCX 2012
dataset
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Cup 1999 dataset and the ISCX 2012 dataset. These values act as the cost associated with the
selection of the specific features during the training.

For training the reinforcement agent, we select samples from each dataset to form a single
episode. For each sample, the agent chooses a set of features and sequentially decides
whether to acquire additional features and then decides how to classify the sample.

Figure 17.
ROC-AUC plots for
best performing K-NN
model (left) and
SVM (right)
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The deepQ-network consists of three fully connected hidden layers of neurons with ReLU
activation functions (Figure 4). The number of neurons in each layer depends on the dataset
used. All rewards are to be nonpositive, and therefore the Q-function is also nonpositive.
Therefore, the agent objective throughout the reinforcement training is to achieve a total
Q-value to be as close to zero as possible.

The agent has two sets of actions; action to select features and action to classify the
network attack types (e.g. multi-class classification or binary classification). For a
misclassification, the agent is awarded with 1 as reward. The agent is given a partial
negative reward when selecting features that reduce the Q-values. For each correct
classification, the agent is awarded with 0 as reward. The agent learns to bring the total
reward as close to zero as possible.

The environments are set up as episodic with a short average length of episodes for short
samples selected in each iteration. In addition, we use an undiscounted return with γ 5 1.0
and « – greedy policy to take random actions with the probability «. The exploration rate is
set to linearly decrease over time to its minimum value.

The hyper-parameters used in the KDD Cup 1999 dataset and the ISCX 2012 dataset are
summarized in Table 8.

As depicted in Table 9, the dueling double DQN model performs fairly well on both
datasets and reduces the computation time by multiple folds when its compared to
Q-learning. A closer look at the performance of dueling double DQN with retrace and costly
feature classification is shown in Figure 18 with reward and accuracy plots for the KDD Cup
1999 dataset.

The accuracy metrics obtained from the KDD Cup 1999 and ISCX 2012 datasets with RL
and supervised machine learning (CNN, SVM and K-NN) show different performances and
should not be considered as a determinant factor to build data-driven IDS.

The main difference between our proposed RL architecture and classical supervised
learning is that the former is the process of learning from a training set and then applying that
learning to unseen data in real time whether the latter is the process of dynamically learning
by adjusting actions based on continuous feedback through trial and error in order to
maximize a reward. As demonstrated, the RL approach can be used to solve very complex
problems (e.g. selecting input features, considering scarce resources and constrains) that
cannot be solved by classical machine learning. In addition, RL is bound to learn from its
interactions with a stochastic environment in the absence of a training dataset. Conversely,
supervised learning approaches simply learn from collected data and require less

Datasets Acc. training Acc. validation Acc. testing

KDD Cup 1999 90.1% 93.9% 98.2%
IDS 2012 95.3% 95.3% 95.2%

Hyper-parameters Values

Learning rate 5.00E-04
Batch size 4,000
Training length 4,000
Epochs 10,000
Exploration step 10 epochs
Exploration final 0.1

Table 9.
Dueling DDQN with
classification with

costly features (CwCF)

Table 8.
Hyper-parameters

used for initializing the
dueling double DQN
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computational resources. For example, the baseline CNNmodel has achieved the accuracy of
99% on the IDS 2012 data training whereas the dueling double DQN enabled with
classification with costly features achieved 95.3% on the training dataset. However, the
accuracy of the CNN model can degrade within days of deployment and lead to incorrect
predictions and significant risk exposure because production data differs from the training
data and the model’s accuracy will decrease (or drift) at run time.

Figure 18.
Reward and accuracy
plots for KDDCup 1999
dataset
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7. Conclusion
IDS are core tools to protect computers and network-based systems by constantlymonitoring
protocols traffics for any potential invasions and attacks. IDS can be modified and changed
according to outside and inner threats to computers and networks.

In this study, we compare performance side-by-side of machine learning models, namely
K-NN, SVM and CNN and a dueling double deep Q-networks architecture feature using
benchmark datasets; KDD Cup 1999 and ISCX 2012. Despite high accuracy values and
performance, these models are fundamentally different yet complementary to each other.

In complex and uncertain environments, building IDS with DRL offers advantages in
terms of computation as minimal updates are required when compared with traditional
machine learning algorithms. Hyper-parameter tuning is another advantage while working
with DRL as minimal update is required to improve performance.

Classical supervised learning models learn from historical data and continuously need to
be retrained to detect new attacks. The limitation of this study is that both datasets are
simulated and not realistic Ghurab, Gaphari, Alshamy, Othman and Suad (2021). Many
criticisms of the KDD Cup 1999 for example are related the fact that no validation was ever
performed to show that the dataset is actually similar to real network trafficWang, Yang, Jing
and Jin (2014). Modern attacks look different from attacks in the early ’90s. Realistic network
traffics remain an open challenge to improve the development of network IDS.

Future work could address the development of a multi-class classification model to
identify the specific attack typewhenmalicious activity is detected. Additionally, considering
recent datasets to build IDSs could offer insights into more recently developed attack types
which do not currently exist in the two datasets, KDD Cup 99 and ISCX 2012, respectively
published in 2009 and 2012.
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