9 research outputs found

    A Deep Evolutionary Approach to Bioinspired Classifier Optimisation for Brain-Machine Interaction

    Get PDF
    This study suggests a new approach to EEG data classification by exploring the idea of using evolutionary computation to both select useful discriminative EEG features and optimise the topology of Artificial Neural Networks. An evolutionary algorithm is applied to select the most informative features from an initial set of 2550 EEG statistical features. Optimisation of a Multilayer Perceptron (MLP) is performed with an evolutionary approach before classification to estimate the best hyperparameters of the network. Deep learning and tuning with Long Short-Term Memory (LSTM) are also explored, and Adaptive Boosting of the two types of models is tested for each problem. Three experiments are provided for comparison using different classifiers: One for attention state classification, one for emotional sentiment classification, and a third experiment in which the goal is to guess the number a subject is thinking of. The obtained results show that an Adaptive Boosted LSTM can achieve an accuracy of 84.44%, 97.06%, and 9.94% on the attentional, emotional, and number datasets, respectively. An evolutionary-optimised MLP achieves results close to the Adaptive Boosted LSTM for the two first experiments and significantly higher for the number-guessing experiment with an Adaptive Boosted DEvo MLP reaching 31.35%, while being significantly quicker to train and classify. In particular, the accuracy of the nonboosted DEvo MLP was of 79.81%, 96.11%, and 27.07% in the same benchmarks. Two datasets for the experiments were gathered using a Muse EEG headband with four electrodes corresponding to TP9, AF7, AF8, and TP10 locations of the international EEG placement standard. The EEG MindBigData digits dataset was gathered from the TP9, FP1, FP2, and TP10 locations

    Universal EEG Encoder for Learning Diverse Intelligent Tasks

    Full text link
    Brain Computer Interfaces (BCI) have become very popular with Electroencephalography (EEG) being one of the most commonly used signal acquisition techniques. A major challenge in BCI studies is the individualistic analysis required for each task. Thus, task-specific feature extraction and classification are performed, which fails to generalize to other tasks with similar time-series EEG input data. To this end, we design a GRU-based universal deep encoding architecture to extract meaningful features from publicly available datasets for five diverse EEG-based classification tasks. Our network can generate task and format-independent data representation and outperform the state of the art EEGNet architecture on most experiments. We also compare our results with CNN-based, and Autoencoder networks, in turn performing local, spatial, temporal and unsupervised analysis on the data

    Mental State Prediction Using Machine Learning and EEG Signal

    Get PDF
    One of the most exciting areas of computer science right now is brain-computer interface (BCI) research. A conduit for data flow between both the brain as well as an electronic device is the brain-computer interface (BCI). Researchers in several disciplines have benefited from the advancements made possible by brain-computer interfaces. Primary fields of study include healthcare and neuroergonomics. Brain signals could be used in a variety of ways to improve healthcare at every stage, from diagnosis to rehabilitation to eventual restoration. In this research, we demonstrate how to classify EEG signals of brain waves using machine learning algorithms for predicting mental health states. The XGBoost algorithm's results have an accuracy of 99.62%, which is higher than that of any other study of its kind and the best result to date for diagnosing people's mental states from their EEG signals. This discovery will aid in taking efforts [1] to predict mental state using EEG signals to the next level

    Towards ai-based interactive game intervention to monitor concentration levels in children with attention deficit

    Get PDF
    —Preliminary results to a new approach for neurocognitive training on academic engagement and monitoring of attention levels in children with learning difficulties is presented. Machine Learning (ML) techniques and a Brain-Computer Interface (BCI) are used to develop an interactive AI-based game for educational therapy to monitor the progress of children’s concentration levels during specific cognitive tasks. Our approach resorts to data acquisition of brainwaves of children using electroencephalography (EEG) to classify concentration levels through model calibration. The real-time brainwave patterns are inputs to our game interface to monitor concentration levels. When the concentration drops, the educational game can personalize to the user by changing the challenge of the training or providing some new visual or auditory stimuli to the user in order to reduce the attention loss. To understand concentration level patterns, we collected brainwave data from children at various primary schools in Brazil who have intellectual disabilities e.g. autism spectrum disorder and attention deficit hyperactivity disorder. Preliminary results show that we successfully benchmarked (96%) the brainwave patterns acquired by using various classical ML techniques. The result obtained through the automatic classification of brainwaves will be fundamental to further develop our full approach. Positive feedback from questionnaires was obtained for both, the AI-based game and the engagement and motivation during the training sessions

    Mind Games: How Robots Can Help Regulate Brain-Computer Interfaces

    Get PDF
    corecore