4,251 research outputs found

    Towards Intelligent Databases

    Get PDF
    This article is a presentation of the objectives and techniques of deductive databases. The deductive approach to databases aims at extending with intensional definitions other database paradigms that describe applications extensionaUy. We first show how constructive specifications can be expressed with deduction rules, and how normative conditions can be defined using integrity constraints. We outline the principles of bottom-up and top-down query answering procedures and present the techniques used for integrity checking. We then argue that it is often desirable to manage with a database system not only database applications, but also specifications of system components. We present such meta-level specifications and discuss their advantages over conventional approaches

    On abduction and answer generation through constrained resolution

    Get PDF
    Recently, extensions of constrained logic programming and constrained resolution for theorem proving have been introduced, that consider constraints, which are interpreted under an open world assumption. We discuss relationships between applications of these approaches for query answering in knowledge base systems on the one hand and abduction-based hypothetical reasoning on the other hand. We show both that constrained resolution can be used as an operationalization of (some limited form of) abduction and that abduction is the logical status of an answer generation process through constrained resolution, ie., it is an abductive but not a deductive form of reasoning

    Hypothetical answers to continuous queries over data streams

    Full text link
    Continuous queries over data streams may suffer from blocking operations and/or unbound wait, which may delay answers until some relevant input arrives through the data stream. These delays may turn answers, when they arrive, obsolete to users who sometimes have to make decisions with no help whatsoever. Therefore, it can be useful to provide hypothetical answers - "given the current information, it is possible that X will become true at time t" - instead of no information at all. In this paper we present a semantics for queries and corresponding answers that covers such hypothetical answers, together with an online algorithm for updating the set of facts that are consistent with the currently available information

    CHR as grammar formalism. A first report

    Full text link
    Grammars written as Constraint Handling Rules (CHR) can be executed as efficient and robust bottom-up parsers that provide a straightforward, non-backtracking treatment of ambiguity. Abduction with integrity constraints as well as other dynamic hypothesis generation techniques fit naturally into such grammars and are exemplified for anaphora resolution, coordination and text interpretation.Comment: 12 pages. Presented at ERCIM Workshop on Constraints, Prague, Czech Republic, June 18-20, 200

    Magic Sets for Disjunctive Datalog Programs

    Get PDF
    In this paper, a new technique for the optimization of (partially) bound queries over disjunctive Datalog programs with stratified negation is presented. The technique exploits the propagation of query bindings and extends the Magic Set (MS) optimization technique. An important feature of disjunctive Datalog is nonmonotonicity, which calls for nondeterministic implementations, such as backtracking search. A distinguishing characteristic of the new method is that the optimization can be exploited also during the nondeterministic phase. In particular, after some assumptions have been made during the computation, parts of the program may become irrelevant to a query under these assumptions. This allows for dynamic pruning of the search space. In contrast, the effect of the previously defined MS methods for disjunctive Datalog is limited to the deterministic portion of the process. In this way, the potential performance gain by using the proposed method can be exponential, as could be observed empirically. The correctness of MS is established thanks to a strong relationship between MS and unfounded sets that has not been studied in the literature before. This knowledge allows for extending the method also to programs with stratified negation in a natural way. The proposed method has been implemented in DLV and various experiments have been conducted. Experimental results on synthetic data confirm the utility of MS for disjunctive Datalog, and they highlight the computational gain that may be obtained by the new method w.r.t. the previously proposed MS methods for disjunctive Datalog programs. Further experiments on real-world data show the benefits of MS within an application scenario that has received considerable attention in recent years, the problem of answering user queries over possibly inconsistent databases originating from integration of autonomous sources of information.Comment: 67 pages, 19 figures, preprint submitted to Artificial Intelligenc

    Logic Programming as Constructivism

    Get PDF
    The features of logic programming that seem unconventional from the viewpoint of classical logic can be explained in terms of constructivistic logic. We motivate and propose a constructivistic proof theory of non-Horn logic programming. Then, we apply this formalization for establishing results of practical interest. First, we show that 'stratification can be motivated in a simple and intuitive way. Relying on similar motivations, we introduce the larger classes of 'loosely stratified' and 'constructively consistent' programs. Second, we give a formal basis for introducing quantifiers into queries and logic programs by defining 'constructively domain independent* formulas. Third, we extend the Generalized Magic Sets procedure to loosely stratified and constructively consistent programs, by relying on a 'conditional fixpoini procedure
    corecore