48 research outputs found

    Convergence Analysis and Error Estimates for a Second Order Accurate Finite Element Method for the Cahn-Hilliard-Navier-Stokes System

    Get PDF
    In this paper, we present a novel second order in time mixed finite element scheme for the Cahn-Hilliard-Navier-Stokes equations with matched densities. The scheme combines a standard second order Crank-Nicholson method for the Navier-Stokes equations and a modification to the Crank-Nicholson method for the Cahn-Hilliard equation. In particular, a second order Adams-Bashforth extrapolation and a trapezoidal rule are included to help preserve the energy stability natural to the Cahn-Hilliard equation. We show that our scheme is unconditionally energy stable with respect to a modification of the continuous free energy of the PDE system. Specifically, the discrete phase variable is shown to be bounded in ℓ∞(0,T;L∞)\ell^\infty \left(0,T;L^\infty\right) and the discrete chemical potential bounded in ℓ∞(0,T;L2)\ell^\infty \left(0,T;L^2\right), for any time and space step sizes, in two and three dimensions, and for any finite final time TT. We subsequently prove that these variables along with the fluid velocity converge with optimal rates in the appropriate energy norms in both two and three dimensions.Comment: 33 pages. arXiv admin note: text overlap with arXiv:1411.524

    A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation

    Full text link
    We propose a novel second order in time numerical scheme for Cahn-Hilliard-Navier- Stokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, we prove that the scheme is uncondition- ally uniquely solvable at each time step by exploring the monotonicity associated with the scheme. Thanks to the weak coupling of the scheme, we design an efficient Picard iteration procedure to further decouple the computation of Cahn-Hilliard equation and Navier-Stokes equation. We implement the scheme by the mixed finite element method. Ample numerical experiments are performed to validate the accuracy and efficiency of the numerical scheme

    A Positivity Preserving, Energy Stable Finite Difference Scheme for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes System

    Get PDF
    In this paper, we propose and analyze a finite difference numerical scheme for the Cahn-Hilliard-Navier-Stokes system, with logarithmic Flory-Huggins energy potential. in the numerical approximation to the singular chemical potential, the logarithmic term and the surface diffusion term are implicitly updated, while an explicit computation is applied to the concave expansive term. Moreover, the convective term in the phase field evolutionary equation is approximated in a semi-implicit manner. Similarly, the fluid momentum equation is computed by a semi-implicit algorithm: implicit treatment for the kinematic diffusion term, explicit update for the pressure gradient, combined with semi-implicit approximations to the fluid convection and the phase field coupled term, respectively. Such a semi-implicit method gives an intermediate velocity field. Subsequently, a Helmholtz projection into the divergence-free vector field yields the velocity vector and the pressure variable at the next time step. This approach decouples the Stokes solver, which in turn drastically improves the numerical efficiency. the positivity-preserving property and the unique solvability of the proposed numerical scheme is theoretically justified, i.e., the phase variable is always between -1 and 1, following the singular nature of the logarithmic term as the phase variable approaches the singular limit values. in addition, an iteration construction technique is applied in the positivity-preserving and unique solvability analysis, motivated by the non-symmetric nature of the fluid convection term. the energy stability of the proposed numerical scheme could be derived by a careful estimate. a few numerical results are presented to validate the robustness of the proposed numerical scheme

    Error Estimate of a Decoupled Numerical Scheme for the Cahn-Hilliard-Stokes-Darcy System

    Get PDF
    We analyze a fully discrete finite element numerical scheme for the Cahn-Hilliard-Stokes-Darcy system that models two-phase flows in coupled free flow and porous media. To avoid a well-known difficulty associated with the coupling between the Cahn-Hilliard equation and the fluid motion, we make use of the operator-splitting in the numerical scheme, so that these two solvers are decoupled, which in turn would greatly improve the computational efficiency. The unique solvability and the energy stability have been proved in Chen et al. (2017, Uniquely solvable and energy stable decoupled numerical schemes for the Cahn-Hilliard-Stokes-Darcy system for two-phase flows in karstic geometry. Numer. Math., 137, 229-255). In this work, we carry out a detailed convergence analysis and error estimate for the fully discrete finite element scheme, so that the optimal rate convergence order is established in the energy norm, i.e., in the ℓ ∞(0, T; H1) ∩2 (0, T; H2) norm for the phase variables, as well as in the ℓ ∞ (0, T; H1) ∩ ℓ2 (0, T; H2) norm for the velocity variable. Such an energy norm error estimate leads to a cancelation of a nonlinear error term associated with the convection part, which turns out to be a key step to pass through the analysis. In addition, a discrete ℓ2 (0;T; H3) bound of the numerical solution for the phase variables plays an important role in the error estimate, which is accomplished via a discrete version of Gagliardo-Nirenberg inequality in the finite element setting

    Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System

    Get PDF
    We present and analyze a uniquely solvable and unconditionally energy stable numerical scheme for the ternary Cahn-Hilliard system, with a polynomial pattern nonlinear free energy expansion. One key difficulty is associated with presence of the three mass components, though a total mass constraint reduces this to two components. Another numerical challenge is to ensure the energy stability for the nonlinear energy functional in the mixed product form, which turns out to be non-convex, non-concave in the three-phase space. to overcome this subtle difficulty, we add a few auxiliary terms to make the combined energy functional convex in the three-phase space, and this, in turn, yields a convex-concave decomposition of the physical energy in the ternary system. Consequently, both the unique solvability and the unconditional energy stability of the proposed numerical scheme are established at a theoretical level. in addition, an optimal rate convergence analysis in the ℓ∞(0,T;HN-1)∩ℓ2(0,T;HN1) norm is provided, with Fourier pseudo-spectral discretization in space, which is the first such result in this field. to deal with the nonlinear implicit equations at each time step, we apply an efficient preconditioned steepest descent (PSD) algorithm. a second order accurate, modified BDF scheme is also discussed. a few numerical results are presented, which confirm the stability and accuracy of the proposed numerical scheme
    corecore