477 research outputs found

    CONTROLLING AND MONITORING OF SERVO MOTOR THROUGH EMBEDDED HTTP SERVER ON ARM BOARD

    Get PDF
    The positioning of servo motor is controlled by sourcing the servo with PWM signal of varying pulse width. The pulse width of the PWM signal can be manipulated through a web interface hosted on ARM board programmed as an embedded HTTP server where control application by an embedded system can be monitored and managed remotely. Embedded HTTP server network stack is based on modified TCP/IP protocol suite where only important features are used. A web server for user interface is created using HTML and JavaScript is hosted together with the network stack. The ARM board is equipped with RTOS to enable real time control response between the interface and the servo motor. Two tasks namely PWM and TCP/IP task are configured to enable execution from RTOS based on their priorities. Under executions, a slider inside web interface controls the turning of servo motor with the degree of rotation is displayed on the web interface

    Schedulability-driven scratchpad memory swapping for resource-constrained real-time embedded systems

    Get PDF
    In resource-constrained real-time embedded systems, scratchpad memory (SPM) is utilized in place of cache to increase performance and enforce consistent behavior of both hard and soft real-time tasks via software-controlled SPM management techniques (SPMMTs). Real-time systems depend on time critical (hard) tasks to complete execution before their deadline times. Many real-time systems also depend on the execution of soft tasks that do not have to complete by hard deadlines. This thesis evaluates a new SPMMT that increases both worst-case task slack time (TST) and soft task processing capabilities, by combining two existing SPMMTs. The schedulability-driven ACETRB / WCETRB swapping (SDAWS) SPMMT of this thesis uses task schedulability characteristics to control the selection of either the average-case execution time reduction based (ACETRB) SPMMT or the worst-case execution time reduction based (WCETRB) SPMMT. While the literature contains examples of combined management techniques, until now there have been none that combine both WCETRB and ACETRB SPMMTs. The advantage of combining them is to achieve WCET reduction comparable to what can be achieved with the WCETRB SPMMT, while achieving significantly reduced ACET relative to the WCETRB SPMMT. Using a stripped-down RTOS and an SPMMT simulator implemented for this work, evaluated resource-constrained scenarios show a reduction in task slack time from the SDAWS SPMMT relative to the WCETRB SPMMT between 20% and 45%. However, the evaluated scenarios also conservatively show that SDAWS can reduce ACET relative to the WCETRB SPMMT by up to 60%

    Teaching embedded software development utilising QNX and Qt with an automotive-themed coursework application

    Get PDF

    Development of Real Time Operating Systen for PIC18F Microcontrollers for Educational Purposes

    Get PDF
    Real Time Operating System (RTOS) is a small operating system designed to manage the peripherals of Microcontrollers and exhibit a low level layer to enhance the parallel execution of multiple programs. In addition to that, RTOSes are most of concern about guarantee the processing at real time. This project aims to implement and develop RTOS on PIC18Fxxx family. This RTOS is to be developed under MPLAB IDE integrated development environment. The kernel of this RTOS is written in Assembly language while the users may use both assembly and C to develop their applications. A previous RTOS project called PICos18 developed by Pragamtec inc. is being considered. The selection of this system is due to its free license and the availability of its documentations. PICos18 is based on OSEK/VDX (German/French industrial standards for operating systems). The main contribution in this project is first, by developing RTOS to review and demonstrate the concept of RTOS and secondly, by developing drivers and application compatible with the developed RTOS and finally presenting the developed RTOS in educational form for future use as a teaching tool in microcontroller-based courses

    EKKO: an open-source RISC-V soft-core microcontroller

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e Computadores (especialização em Sistemas Embebidos e Computadores)Com o surgimento da Internet das Coisas (IoT em inglês) nos últimos anos, o número de “coisas” conectadas está a crescer a um ritmo bastante rápido. Estes dispositivos tornaram-se rapidamente parte do nosso dia a dia e já podem ser encontrados nos mais diversos domínios de aplicação, tais como, telecomunicações, saúde, agricultura, e automação industrial. Devido a este crescimento exponencial, a demanda por sistemas embebidos é cada vez maior, trazendo assim diversos desafios no seu desenvolvimento. De todos os desafios, o time-to-market e os custos de desenvolvimento são de inegável importância, logo, a escolha de uma plataforma de desenvolvimento adequada é essencial no desenho destes sistemas. Devido a este novo paradigma, o grupo de investigação da Universidade do Minho onde esta dissertação se insere tem desenvolvido aplicações neste domínio. No entanto, as atuais plataformas de desenvolvimento utilizadas são complexas, têm custos associados e são de código fechado. Por estas razões, o grupo de investigação tem interesse em ter a sua própria plataforma de desenvolvimento. De modo a solucionar os problemas enumerados acima, esta dissertação tem como objetivo desenvolver uma plataforma de desenvolvimento tanto para hardware como para software. A plataforma deve ser simples de utilizar e open-source, reduzindo assim os custos e a tornando a gestão de licenças mais simples. Para além disto, o facto de o sistema ser de código aberto faz também com que este possa ser facilmente estendido e customizado de acordo com os requisitos da aplicação. Neste sentido, esta dissertação apresenta um soft-core microcontroller, o qual contem um processador RISC-V, uma RAM, uma unidade de depuração, um temporizador, um periférico I2C e um barra mento AXI. Em adição, este contem também um kit de desenvolvimento de software (SDK em inglês), o qual inclui um depurador, a opção de utilizar o sistema operativo Azure RTOS ThreadX, e outras ferramentas importantes, tornando o ciclo de desenvolvimento mais fácil, rápido e seguro.With the advent of the Internet of Things (IoT) in most recent years, the number of connected “things” is increasing quickly. These devices rapidly became part of our daily lives and can be found in the most different applications domains, such as telecommunications, health care, agriculture and industrial automation. With this exponential growth, the demand for embedded devices is increasing, bringing several challenges to the development of these systems. From these challenges, the time-to-market and development costs are undeniable extremely important. Thus, choosing a suitable development platform is essential when designing an embedded system. Due to this new paradigm, the University of Minho research group where this dissertation fits has been developing applications in this domain. However, the current development platforms are complex, have associated costs and are closed-source. For these reasons, the research group has interesting in having its development platform. To solve these problems, this dissertation aims to build a development platform for both hardware and software. The platform must be simple and open-source, reducing development costs and simplifying license management. Besides, due to its open nature, it will also be easier to extend and modify the system according to the application’s needs. In this context, this dissertation presents EKKO, an open-source soft-core microcontroller that contains a RISC-V core, an on-chip RAM, a debug unit, a timer and an I2C peripheral, and an AXI bus. In addition, it also contains a Software Development Kit (SDK), which includes a debugger, the option to use Azure RTOS ThreadX, and other crucial tools, turning the development cycle more accessible, faster and safer

    A portable real-time operating system for embedded platforms

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2004Includes bibliographical references (leaves: 55)Text in English; Abstract: Turkish and Englishix, 74 leavesIn today's world, from TV sets to washing machines or cars, almost every electronic device is controlled by an embedded system. These systems are handling many tasks simultaneously. By using an operating system, handling of different tasks simultaneously is done in a more standardized fashion. The purpose of this thesis is to design and write a portable real-time operating system for embedded systems, which can be compiled with any application by using an ANSI C compiler. The main target is to design it as small as possible to fit the smallest microcontrollers. Other targets are high flexibility, optimal modularity, high readability and maintainability of the source code

    ReSP: A Nonintrusive Transaction-Level Reflective MPSoC Simulation Platform for Design Space Exploration

    Full text link

    Integration of UAVS with Real Time Operating Systems and Establishing a Secure Data Transmission

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)In today’s world, the applications of Unmanned Aerial Vehicle (UAV) systems are leaping by extending their scope from military applications on to commercial and medical sectors as well. Owing to this commercialization, the need to append external hardware with UAV systems becomes inevitable. This external hardware could aid in enabling wireless data transfer between the UAV system and remote Wireless Sensor Networks (WSN) using low powered architecture like Thread, BLE (Bluetooth Low Energy). The data is being transmitted from the flight controller to the ground control station using a MAVlink (Micro Air Vehicle Link) protocol. But this radio transmission method is not secure, which may lead to data leakage problems. The ideal aim of this research is to address the issues of integrating different hardware with the flight controller of the UAV system using a light-weight protocol called UAVCAN (Unmanned Aerial Vehicle Controller Area Network). This would result in reduced wiring and would harness the problem of integrating multiple systems to UAV. At the same time, data security is addressed by deploying an encryption chip into the UAV system to encrypt the data transfer using ECC (Elliptic curve cryptography) and transmitting it to cloud platforms instead of radio transmission

    Prototype on FreeRTOS and RISC-V of the application software of the EPD ICU onboard Solar Orbiter

    Get PDF
    Solar Orbiter es un ambicioso proyecto desarrollado por la Agencia Espacial Europea que tiene como objetivo investigar más cercanamente nuestro sol. La ICU de su instrumento EPD corre su software de aplicación en RTEMS, el cual se ha demostrado que es confiable. Sin embargo, podemos tratar de mejorarlo desarrollando un puerto en FreeRTOS, el cual es más popular y puede proporcionar más escalabilidad. Este software correrá en una novedosa arquitectura llamada RISC-V. Para lograr esto, construiremos un prototipo y lo probaremos en la placa RV32M1-VEGA desarrollada por OpenISA.Solar Orbiter is an ambitious project developed by the European Space Agency which aims to investigate our sun more closely. Its Energetic Particle Detector ICU runs its application software with RTEMS, which is proven to be reliable. However, we aim to potentially improve it by building a port in FreeRTOS, which is a more popular and scalable RTOS and testing this software in a modern hardware architecture called RISC-V which is lightweight and fast. To do this, we will build a prototype and test it in the RV32M1-VEGA board developed by OpenISA.Grado en Ingeniería Informátic
    corecore