

Universidad de Alcalá

Escuela Politécnica Superior

Degree in Computer Engineering

Final Degree Project

Prototype on FreeRTOS and RISC-V of the application software

of the EPD ICU onboard Solar Orbiter

Author: Manuel Urbano Rodríguez Schere

Tutor: Oscar Rodríguez Polo

2021

Court:

President: Pablo Parra Espada

1st vocal: Juan Ignacio García Tejedor

2nd vocal: Oscar Rodríguez Polo

Alternate: Antonio Da Silva Fariña

Table of Contents
List of figures ... 5
List of tables ... 5
Preface .. 6
Acknowledgments .. 6
Key words ... 7

Palabras clave ... 7
Summary (English) ... 7
Resumen (Español) ... 7
Extended summary ... 7
Chapter 1 - Introduction ... 9

1.1 Objectives ... 9
1.1.1 Toolchain and development environment setup ... 9
1.1.2 Requirements analysis .. 9

1.1.3 Implementation and validation of the port .. 9
1.1.4 Evaluation and results analysis ... 9

Chapter 2 - Theoretical description .. 10
2.1 Solar Orbiter .. 10
2.2 Solar Orbiter’s EPD ... 11

2.3 Solar Orbiter’s EPD ICU ... 13

2.4 FreeRTOS .. 15
2.5 RISC-V Architecture and the RI5CY core .. 16
2.6 The RV32M1 Vegaboard ... 17

Chapter 3 – Port development process ... 19
3.1 Installation and setup of the development environment 19

3.2 Detailed installation guide for Windows: ... 19
3.2.1 Optional requirements ... 20

3.2.2 Installation of Eclipse CDT. ... 20
3.2.3 Installation of the GNU MCU Windows Build Tools. 20

3.2.4 Installation of the RV32M1 GNU GCC Toolchain .. 20
3.2.5 Installation of OpenOCD .. 21
3.2.6 Installation the RV32M1 SDK and optional tools .. 23

3.2.7 Environment Variables configuration ... 23
3.2.8 Additional Eclipse configurations .. 23

3.3 Development of the UART Port ... 24
3.3.1 UART Port Testing ... 25

3.4 Development of the MCU ICU port ... 27
3.4.1 Project Structure ... 27
3.4.2 Plant Control System V0 .. 29
3.4.3 Plant Control System V1 .. 30

3.4.4 ICU ASW V0 .. 31
3.4.5 ICU ASW V1 .. 32
3.4.6 ICU ASW Lite .. 32

3.4.7 ICU ASW V2 .. 33
3.4.8 Relevant changes made to the EDROOM generated files 33
3.5 ICU ASW RISC-V (final version): Development and validation of the TM/TC

serial port .. 35
3.5.1 MASSIVA .. 35

3.5.2 Functional tests adaption .. 36
3.5.3 Transmission ... 36
3.5.4 Reception .. 38

3.5.5 Port Validation .. 40
Chapter 4 - User guide .. 41

Chapter 5 - Conclusions ... 44
Glossary .. 45
Bibliography ... 46

Annexes .. 48
Annex 1: heap.c main functions .. 48
Annex 2: RV32M1-VEGA I/O header pinout ... 50

List of figures
Fig. 2.1: Artistic representation of the Solar Orbiter mission [3]

Fig. 2.2: Solar Orbiter’s instruments suite and measurements demonstration [3]

Fig. 2.3: Representation of the physical location of the EPD sensors onboard Solar Orbiter [4]

Fig. 2.4: Photo of the EPD instrument suite [4]

Fig. 2.5: Schematic of the ICU CDPU [4]

Fig. 2.6: Architecture of FreeRTOS [7]

Fig. 2.7: Schematic of the RI5CY core [8]

Fig. 2.8: RV32M1 VEGAboard modules and interfaces [9]

Fig. 3.1: Global Build Tools Path Eclipse configuration

Fig. 3.2: Global RISC-V Toolchains Paths Eclipse configuration

Fig. 3.3: RISCV32GCC_DIR enviroment variable configuration

Fig. 3.4: Global OpenOCD Path Eclipse configuration

Fig. 3.5: Installing the WinUSB J-Link driver via the OpenOCD driver tool

Fig. 3.6: Installing the WinUSB J-Link driver via the Zadig driver tool

Fig. 3.7: MinGW installation options

Fig. 3.8: PATH envrioment variable configuration

Fig. 3.9: LPUART transmitter block diagram [9]

Fig. 3.10: LPUART receiver block diagram [9]

Fig. 3.11: Setting of the IRQ handlers

Fig. 3.12: State diagram of the UART test program

Fig. 3.13: Comparison between the initial Plant Control System project and final project’s folders

Fig. 3.14: Plant Control System UART output

Fig. 3.15: Program memory representation

Fig. 3.16: ICU ASW Lite UART output

Fig. 3.17: ICU ASW V2 UART output

Fig. 3.18: EDROOM library structure

Fig. 3.19: MASSIVA receiving packets via the LPUART0

Fig. 3.20: MASSIVA raw log

Fig. 3.21: Reception of the 17.1 protocol packet via the LPUART1

Fig. 3.22: p_0001_pus_tc_20_3_set_pid0_to_0xAA testing procedure

Fig. 4.1: Vegaboard connections

Fig. 4.2: Windows device manager

Fig. 4.3: Putty serial connection

Fig. 4.4: Debug configuration

List of tables
Table 1: RV32M1 VEGAboard specifications

Table 2 RV32M1 memory areas

Table 3: ICU ASW PUS Service 03 Temeletry Structure

Table 4: ICU ASW PUS Service 03 Temeletry Configuration Example

Preface
My final degree project has been a test of everything I have been working on during my

university degree. It has both made me go back to the basics of computer engineering and

also challenged me in many new ways I haven’t thought of before. It made me face a real-

life challenge such as the porting of a software which is similar to what you would find

in a job related to the field.

As a computer and high-tech freak, I have a great interest in world-changing technologies.

Space exploration is one of this fields that is in the mouth of everyone, especially now

during the advent of private space-related companies such as SpaceX and Blue Origin.

NASA and the ESA also continue achieving great milestones in the field and Solar Orbiter

is one of their jaw-dropping projects. I feel very fortunate on having the opportunity of

working on something related to this field and I aim to learn much more about it.

Since the beginning of my degree my interest in different information technologies fields

have been in a constant shift as new and exciting projects are born every day. My original

intent was to focus my career on embedded systems related to space and aerospace

technologies but the recent advancements in blockchain and distributed ledger

technologies made me change my personal taste towards that direction. Nevertheless,

these technologies unlock so many use cases and I’m sure space exploration will benefit

greatly from making use of this new and exciting tech.

Acknowledgments
I want to thank my tutor Oscar Rodríguez Polo for putting through my countless emails

and going out of the way to answer them and give constant feedback even during his

summer vacation. His expertise was crucial for the development of this project, and I

wouldn’t be able to get these results without him. I also want to thank most of my teachers

who gave me superb formation during my university degree and many of them shaped

my interests and future professional choices.

Key words
Solar Orbiter, FreeRTOS, embedded systems, real time systems, port, EPD ICU.

Palabras clave
Solar Orbiter, FreeRTOS, sistemas empotrados, sistemas en tiempo real, puerto, EPD

ICU.

Summary (English)
Solar Orbiter is an ambitious project developed by the European Space Agency which

aims to investigate our sun more closely. Its Energetic Particle Detector ICU runs its

application software with RTEMS, which is proven to be reliable. However, we aim to

potentially improve it by building a port in FreeRTOS, which is a more popular and

scalable RTOS and testing this software in a modern hardware architecture called RISC-

V which is lightweight and fast. To do this, we will build a prototype and test it in the
RV32M1-VEGA board developed by OpenISA.

Resumen (Español)
Solar Orbiter es un ambicioso proyecto desarrollado por la Agencia Espacial Europea que

tiene como objetivo investigar más cercanamente nuestro sol. La ICU de su instrumento

EPD corre su software de aplicación en RTEMS, el cual se ha demostrado que es

confiable. Sin embargo, podemos tratar de mejorarlo desarrollando un puerto en

FreeRTOS, el cual es más popular y puede proporcionar más escalabilidad. Este software

correrá en una novedosa arquitectura llamada RISC-V. Para lograr esto, construiremos

un prototipo y lo probaremos en la placa RV32M1-VEGA desarrollada por OpenISA.

Extended summary
Solar orbiter is a project developed by the European Space Agency (ESA) in conjunction

with the National Space Agency (NASA) that aims to investigate the surface of the sun

and gather information about its polar regions for the first time. Solar Orbiter contains a

sophisticated instrument called the EPD (Energetic Particle Detector). This instrument is

equipped with five sensors that can measure the various Solar Energetic Particles (SEP)

and can operate in ranges from 2 keV to 200 MeV. These sensors are all connected to a

Common Data Processing Unit (CDPU). SEP events are of great interest because of their

effects on Earth which can vary from Solar Cell Damage to satellites on Earth’s orbit to

airline passenger radiation poisoning.

The current software of the EPD runs on the Real-Time Executive for Multiprocessor

Systems (RTEMS) Real Time Operating System. It became available in 1993 and

supports open standard Application Program Interfaces (APIs). It is used extensively in

space flight, medical, networking and many other embedded systems. RTEMS is very

versatile, supporting 18 processor architectures and around 200 Board Support Packages

(BSPs).

The CDPU currently has a LEON2 based processor. It is a synthesizable VHDL model

compliant with the SPARC V8 architecture and can be used both for research and

commercial applications. SPARC stands for Scalable Processor Architecture and it’s a

big-endian RISC architecture designed by Sun Microsystems in 1985. It was the first open

RISC architecture and as so, its design specifications are public. The LEON family of

processors are designed to be radiation-tolerant and are developed by the European Space

Research and Technology Centre (ESTEC), part of the ESA.

The new architecture we will be using is RISC-V, an open-source architecture with a

reduced instruction set which makes it extremely fast and resource-efficient. Its

popularity has skyrocketed over the last few years and it is being adopted by the main

chip manufacturers.

We aim to port a reduced educational version of this software to the Free Real Time

Operating System (FreeRTOS) which came out in 2003. It was developed along a lot of

the main chip manufacturers and is distributed freely under the MIT open-source license.

It supports many architectures and it’s built to be reliable, feature rich, scalable and

simple. The core files comply with the MISRA coding standard guidelines. It builds with

many different compilers and provides ample support for testing.

The software will be tested on the OpenISA VEGAboard. The RV32M1-VEGA

development board is a small, low-power and cost-effective evaluation and development

board used for application prototyping. It offers an easy-to-use flash programmer, virtual

serial port and standard programming and run-control capabilities. It integrates Bluetooth

Low Energy (BLE), a radio transceiver, 2 ARM CPUs and 2 RISC-V CPUs. It also has

various sensors including a 3D accelerometer and magnetometer, 4 integrated push-

button switches and various status LEDs.

Chapter 1 - Introduction

1.1 Objectives

Our main objective, as stated above, is to port an educational version of the EPD’s ICU-

ASW from one RTOS and architecture to another. This is motivated by the current surge

in popularity of FreeRTOS and the increased scalability and support from chip

manufacturers that it offers. This will modernize the project and open it to future

upgrades. To achieve this, we will develop this port with a reduced and simplified version

of the software, and test it on the RV32M1-VEGA, which will offer us a clear vision of

how the system behaves and compare it to the original. We will need to follow a

methodical approach by applying the core concepts of computer engineering and a

rigorous testing process. To accomplish this, we must define different testing scenarios

to evaluate how the system operates in different conditions and levels of integration.

Performance must also be tested so that execution times of the different processes are

according to the specifications.

1.1.1 Toolchain and development environment setup

The first step in the development process is setting up the toolchain to have the cross-

compiler working correctly. Eclipse was chosen as the IDE as it easily integrates with the

toolchain and has official support by OpenISA. To complete this setup, we will follow

the official guide provided by OpenISA. Once configured, we will run some example

demo applications to check that they build and run correctly. We can check the program

output via the board’s UART via programs like Minicom or PuTTY.

1.1.2 Requirements analysis

ICU ASW has a series of components which create different tasks. These tasks should

only take resources in the order that their priority allows them to and should complete

their execution within their specified amount of time and use as little memory and

hardware resources as possible without sacrificing speed or functionality.

1.1.3 Implementation and validation of the port

Once the port is developed it should be tested thoroughly and validated via extensive

functional testing. Testing is an essential part of the development and validation of any

space-related system, as any minor error in the software or hardware could cause

catastrophic losses.

1.1.4 Evaluation and results analysis

The final version of the port should be evaluated to check if it fulfilled the objectives set

in terms of handling, resource consumption and ease of use. By doing this, conclusions

can be drawn to assess the final specifications of the port. The time requirements must be

respected in the final version.

Chapter 2 - Theoretical description
In this theoretical description the main concepts and components of the project will be

explained from a high-level view so that a clear picture is offered about the technologies

involved in the project.

2.1 Solar Orbiter

Fig. 2.1: Artistic representation of the Solar Orbiter mission [3]

Solar Orbiter has been specifically designed to make measurements of on-site of plasma

properties, electromagnetic fields and energetic particles of the inner heliosphere. It

differs from other similar projects in that it has instruments that will allow it to directly

correlate in-situ measurements and high-resolution imaging and spectrographic

observations of the sun from a close view. It will also provide images of the Solar Poles

for the first time in history. Solar orbiter is composed of the following instruments:

-Magnetometer (MAG)

-Radio and Plasma Wind Analyzer (SWA)

-Energetic Particle Detector (EPD)

-X-ray Spectrometer (STIX)

-Polarimetric and Helioseismic Imager (PHI)

-Extreme Ultraviolet Imager (EUI)

-Spectral Imaging of the Coronal Environment instrument (SPICE)

-Visible light and ultraviolet coronal imager (METIS)

-Heliospheric Imager (SoloHI)

-Radio and Plasma Waves (RPW)

Fig. 2.2: Solar Orbiter’s instruments suite and measurements demonstration [3]

To achieve the mission objectives, these instruments need to coordinate at extreme

conditions in order to obtain good quality results. Various groups back on Earth are tasked

with recompiling and analyzing the data gathered so conclusions can be drawn. The EPD

is one of the most important instruments, as it helps unveil the mysteries of solar energetic

particles, one of the main drivers behind solar activity.

2.2 Solar Orbiter’s EPD

The sun is the most powerful source of energetic particles in the Solar System. Solar

phenomena are capable of energizing electrons and ions that escape into space along with

magnetic field lines. The main sources of SEPs are solar flares and coronal mass ejections

(CMEs). These events are of great relevance for space weather because of the radiation

emissions they produce, which affect both crews in space, space electronics and even

humans on Earth.

SEPs are usually classified between impulsive and gradual, depending on their

acceleration mechanism. Gradual events are proton-rich and last longer. They are usually

produced in fast and large CMEs and can be accompanied by type II radio bursts.

Impulsive events are shorter, electron-rich and show higher charge states. They are

usually seen along type III radio bursts and can be produced in solar flares, narrow CMEs

and extreme-ultraviolet jets. Some SEP events have a hybrid composition in which both

CMEs and solar flares are involved.

The EPD will try to answer a central question:

How do solar eruptions produce energetic particle radiation that fills the heliosphere?

This main question can be broken into three sub-questions:

1. Injection: How and where are energetic particles injected at the sources and, in

particular, what are the seed populations for energetic particles?

2. Acceleration: How and where are energetic particles accelerated at the Sun and in the

interplanetary medium?

3. Transport: How are energetic particles released from their sources and distributed in

space and time?

EPD is equiped with a suite of sensors aimed to provide information about these particles

and events. Its main components are:

- SupraThermal Electrons and Protons (STEP): Designed to measure protons and

electrons at supra-thermal energies (low energy particles).

- Electron Proton Telescope (EPT): Two double-ended telescopes that separate and

measure electrons and protons in a medium energy range.

- Suprathermal Ion Spectrograph (SIS): Provides observations of He and Fe in energy

ranges just above solar wind.

- High Energy Telescope (HET): Measures electrons, protons and heavy ions in the high-

energy ranges of the EPD.

The Instrument Control Unit (ICU) works as the interface between the spacecraft and the

EPD sensors.

The EPT and HET units are bundled together and separated into 2 almost identical units

EPT-HET1 and EPT-HET2. All of these units have evolved from previous

implementations in similar missions and their designs have been updated to withstand the

extreme conditions of the Inner Solar Orbit. Each EPD sensor unit has a heater to keep it

in its functional temperature range.

Fig. 2.3: Representation of the physical location of the EPD sensors onboard Solar

Orbiter [4]

Fig. 2.4: Photo of the EPD instrument suite [4]

The nominal telemetry speed of the EPD is 3600 bps. This can be adjusted depending

on the proximity to the Sun by changing the telemetry rates. Data can be classified into

4 categories: housekeeping, nominal, burst-mode and low-latency data. Housekeeping

data has the highest priority and is received on Earth to monitor the instruments

functionality and status. Nominal science data has the EPD-related information and can

vary in resolution and size. To increase the resolution of the data, a burst mode can be

activated by the operators on Earth, by a smart trigger or by other Solar Orbiter

instruments.

The data latency depends on the distance of the satellite from Earth and on the state of

the memory buffer. Small samples of scientific data are sent to show samples of what is

being recorded and to plan accordingly. Low-latency data is automatically processed by

a pipeline and sent back to Earth with a lower priority.

2.3 Solar Orbiter’s EPD ICU

In this project, we will be working only with material related to the Instrument Control

Unit. It functions as the interface between the EPD sensors and the rest of the spacecraft

and provides the sensors with telecommand and telemetry communication capabilities,

time synchronization, processing and power. It is composed of the Central Data

Processing Unit (CDPU) and the low-voltage power supply (LVPS). Both of these units

have a nominal and a redundant unit in case of failure, which makes 4 electronic boards

in total. All the boards are packaged in a single case to simplify transport and connections.

Parts have been tested to withstand 100 Krads.

The LVPS provides power to both the CDPU and sensors. Its main purpose is to provide

a steady +28V power supply to all sensors. Latch-current limiters (LCLs) are used to turn

off sensors in case of over or under voltage. It won’t be addressed in more detail as it is

outside the realm of computer engineering.

In this project we will be specifically working with software running on the CDPU.

Fig. 2.5: Schematic of the ICU CDPU [4]

The CDPU currently runs in a board based on the LEON2 architecture, the Microsemi

RTAX200 FPGA. Sensors communicate with the ICU via Universal Asynchronous

Receiver Transmitter/Low Voltage Differential Signaling (UART/LVDS) interfaces

operating at 115200 bauds. Sensors also have an interface to receive a pulse-per-second

from the ICU, which is used to synchronize the data transmission, except for the SIS

which transmits every 3s. The ICU also shares information with MAG, RPW and SWA

to allow for burst-mode high-frequency data acquisition when the triggering conditions

are met. Other functions of the CDPU include:

- Reception, storage and processing of sensor telemetries. Generation of CCSDS

(Consultative Committee for Space Data Systems) science telemetries.

- Storage and managing of the sensor’s configuration tables. These tables contain

configuration message sequences that can be modified by ground commands or

autonomously by the EPD error recovery mechanism.

- Provision of Standard Packet Utilization Standard (PUS) services, such as telecommand

verification, housekeeping or event reporting.

- Management of the accepted telecommands received from the spacecraft which must

be either forwarded to the sensors or executed.

- Implementation of state logic required by the EPD.

- Fault detection, isolation and recovery mechanisms implementation. Examples of faults

include storage corruption, fatal software errors or off-limit parameters. Some examples

of recovery actions are activation of the safe mode, ICU reboot, ASW switching, sensor

power-off or changing a sensor’s configuration.

2.4 FreeRTOS

FreeRTOS is an open-source Real Time Operating System intended for both hobbyists

and professional developers working on commercial products. It is widely used for real-

time applications with both hard or soft time requirements (critical for the functioning of

the system or non-critical). Differently from a standard OS, an RTOS is designed to

provide a deterministic execution pattern for processes. This is of great relevance for a

system such us the EPD ICU, which requires tight execution planning for optimal

operation and processing of the different sensor’s data.

FreeRTOS is formed by the hardware layer, the device driver, the freeRTOS microkernel,

the device driver and the tasks to be performed. Other RTOS advantages over a standard

OS include increased maintainability, scalability, modularity, cleaner interfaces, easier

testing, code reusability, greater efficiency, and easier control over peripherals.

Fig. 2.6: Architecture of FreeRTOS [7]

In FreeRTOS, each thread is known as a task, and different priorities can be set to tasks

depending on their importance, so the processing deadlines are met, and task execution is

predictable. The scheduler used for the tasks can be configured to be the fixed prioritized

preemptive or cooperative scheduler. We will be using the first one, as priorities should

be absolute, and the highest priority task should always execute first.

It includes many useful tools and features to write time-critical applications such as

notifications, queues, binary and mutex semaphores, timers, hook functions, stack-

overflow checking and interrupt nesting, among others. Additionally, using the idle task

hook, it can decrease power consumption of the device dramatically.

FreeRTOS can be built with twenty different compilers and can run on more than thirty

different processor architectures. Each combination of a compiler and processor is

considered a FreeRTOS port. Each port includes both common files with other ports and

specific files. Each port includes a header file called FreeRTOSConfig.h. which adjusts

the settings for the specific application. There should be an individual configuration file

for each project.

In this project, we will be using a FreeRTOS port for the RV32M1 chip, which uses the

RISC-V C and C++ cross-compiler to build programs runnable in the PULP RI5CY core.

2.5 RISC-V Architecture and the RI5CY core

RISC-V is an open instruction set architecture that is freely available for both academia

and industry. It is an improvement of the well-known Reduced Instruction Set Computing

or RISC architecture. It is the fifth edition of the RISC ISA designed at UC Berkley,

California.

It is a load-store architecture: arithmetic instructions are register-only, load and store

instructions are the only ones that interact with memory and data must be loaded into a

register before it can be operated on. It supports both 32 and 64-bit processors, it has no

branch-delay slots (unlike LEON), and uses little-endian byte ordering. As the current

implementation uses LEON, this required changing the logic of telecommand processing,

so the different fields were sent or read in little-endian. RISC-V can be used in many

implementations as it has a base ISA and implementation-specific extensions. To provide

better support for embedded systems, RISC-V uses a code compression extension called

RVC. RVC substitutes the common 32-bit instructions with shorter 16-bit instruction

encodings.

In this project we will be using a specific implementation developed by PULP called

RI5CY. It is a 4-stage in-order 32-bit RISC-V processor core. It includes hardware loop

support, post-increment load/store instructions and additional ALU instructions that are

not present on the standard RISC-V ISA. These include simple bit manipulation/counting

and min/max/avg instructions. It also provides optional floating-point operations support,

ASIC/FPGA synthesis support and vectorial ALU operations.

Fig. 2.7: Schematic of the RI5CY core [8]

2.6 The RV32M1 Vegaboard

Fig. 2.8: RV32M1 Vegaboard modules and interfaces [9]

The OpenISA VEGAboard is a small, low-power and cheap development board aimed

for application prototyping using the RV32M1 chip. It is what is known as an SoC or

System on Chip. The single-chip device includes as its communications suite Bluetooth

BLE, a flash serial programmer and virtual serial port. It has two RISC-V and two ARM

CPUs, various peripherals, a 2.4 Ghz radio and programmable pins. Its RISC-V cores are

based on the PULP platform and are the RI5CY “main” core and the ZERO-RI5CY

secondary core, which is usually used as a coprocessor. They communicate via shared

memory and messaging peripherals.

Specifications:

1 MiB flash and 192 KiB SRAM (RI5CY core)

256 KiB flash and 128 KiB SRAM (ZERO-RISCY core)

Low power modes

DMA support

Watchdog, CRC, cryptographic acceleration, ADC, DAC, comparator, timers, PWM,

RTC, I2C, UART, SPI, external memory, I2S, smart card, USB full speed, uSDHC,

and 2.4 GHz multiprotocol radio peripherals

On-board sensors and peripherals:

32 Mbit SPI flash

6-axis accelerometer, magnetometer, and temperature sensor (FXOS8700)

Ambient light sensor

RGB LED

MicroSD card slot

Antenna interface

Additional features:

Form-factor compatible with Arduino Uno Rev 3 expansion connector layout

UART via USB using a separate OpenSDA chip

RISC-V flash and debug using external JTAG dongle (not included) via 2x5 5 mil pitch

connector

Table 1: RV32M1 VEGAboard specifications

The RISC-V cores use a slow internal reference clock (SIRC) to manage the system

timer and a fast internal reference clock (FIRC) to generate the 48MHz core clock.

The USB connector is linked to the OpenSDA chip which provides the serial USB

interface via the LPUART0, used for both console and logging. It should be noted

that on Linux systems LPUART0 is recognized as an ACM device while the rest are

recognized as TTL devices.

Flashing and debugging cannot be made via the USB interface, instead, a separate

hardware debug probe must be used. In our project, the J-Link EDU debug probe was

chosen as the debugger with a Cortex-M adapter. The J-Link EDU is the low-cost

version of the Segger J-Link, used for educational purposes. It offers the same

functionality as its base version. It supports a wide range of microcontrollers and

CPUs, unlimited breakpoints in flash memory and concurrent access to CPU by

multiple applications.

Chapter 3 – Port development process
In this section we will describe the main work methodology that was adopted and the

decisions that had to be made in order to carry on with the development of the project. It

will be divided into a series of subsections explaining each step of the development and

validation process.

3.1 Installation and setup of the development environment

The installation of the development environment was made following OpenISA’s official

guide. However, a series of problems arose, and some changes had to be made.

We can summarize the development environment setup in the following steps:

• Installing the Eclipse IDE for C/C++ Developers or Eclipse CDT.

• Installing the GNU MCU Windows Build Tools.

• Installing the RV32M1 GNU GCC Toolchain

• Installing OpenOCD

• Installing the RV32M1 SDK

• Configuring environment variables

• Configuring paths in Eclipse

A first attempt was made following the Windows guide, as it is the most complete and

the one that has the most online support. After following it thoroughly, the Eclipse IDE

and the toolchain were configured correctly, along with OpenOCD to connect to the Jlink

debugger with its appropriate driver. One key part of this setup was the installation of the

OpenOCD driver on the Jlink debugger. The standard Segger driver won’t work with

OpenOCD, so this separate driver must be installed in order for it to work accordingly.

This was done successfully at first, however, some months later Windows 10 updated and

the Jlink debugger was no longer detected by the OS. Attempts to install the OpenOCD

driver back were futile as an error window popped up every time.

Development was moved to an Ubuntu 18.04 virtual machine instead, running on top of

Arch Linux. Linux doesn’t require any specialized driver for the debugger. However, this

also proved to be problematic as the building process made by the toolchain was incorrect.

The .ELF executable files couldn’t be generated. To fix this, the toolchain had to be built

from the Github source, a process which took several hours to complete. After that,

projects began building correctly.

Days later, it was discovered that the debugger driver could be reinstalled in Windows

using a software called Zadig, which is a simple driver installer for USB devices. After

the successful installation of the driver, the debugger was detected by OpenOCD

correctly. Development was moved back to Windows for convenience as it is the OS

where FreeRTOS is developed and where most applications are tested.

3.2 Detailed installation guide for Windows:

The installation process is explained in more detail here, as it is crucial to do it in an

orderly fashion to avoid future errors. This guide is based on OpenISA’s official guide,

but with a few additions and modifications. Only a Windows guide was made, as it is the

most commonly used OS by users, and it has the most documentation from OpenISA.

3.2.1 Optional requirements

Some tools can be optionally installed if we wished to debug applications via the Telnet

Client along with OpenOCD. To install it simply type the following command on the

Windows console: pkgmgr /iu:"TelnetClient"

3.2.2 Installation of Eclipse CDT.

Simply head to

https://github.com/eclipse-embed-cdt/org.eclipse.epp.packages/releases and install the

Windows version, selecting the x32 or x64 depending on your OS version.

3.2.3 Installation of the GNU MCU Windows Build Tools.

This step can be avoided if the Eclipse external builder is not used. The installation of

these tools is necessary because the external builder uses commands such as make and

rm.

1. Head to https://github.com/eclipse-embed-cdt/org.eclipse.epp.packages/releases

and install the x32 or x64 version depending on your system.

2. Unzip the downloaded package in the Eclipse installation folder.

3. In Eclipse, go to Window → Preferences to set Global Build Tools Path to its

installation location:

Fig. 3.1: Global Build Tools Path Eclipse configuration

3.2.4 Installation of the RV32M1 GNU GCC Toolchain

OpenISA provides a pre-built GNU GCC toolchain for the RV32M1.

1. Download it from the official webpage: https://open-isa.org/downloads/

2. Unzip the file in the desired location.

3. Go to the Eclipse menu Windows → Preferences to set Global RISC-V

Toolchains Paths to its installed location.

https://github.com/eclipse-embed-cdt/org.eclipse.epp.packages/releases
https://github.com/eclipse-embed-cdt/org.eclipse.epp.packages/releases
https://open-isa.org/downloads/

Fig. 3.2: Global RISC-V Toolchains Paths Eclipse configuration

4. Create an environment variable called RISCV32GCC_DIR and set it to the GNU

GCC toolchain folder.

Fig. 3.3: RISCV32GCC_DIR enviroment variable configuration

5. Add the GNU GCC Toolchain executable files folder /riscv32-unknown-elf-

gcc/bin to the system PATH variable.

3.2.5 Installation of OpenOCD

OpenISA provides a pre-built OpenOCD binary file and the driver to support the J-link

adapter hardware.

1. Download OpenOCD and the J-Link driver from https://open-isa.org/downloads/

2. Unzip the package in the desired location.

3. Go to the Eclipse menu Windows → Preferences to set Global OpenOCD Path to

its installation location

https://open-isa.org/downloads/

Fig. 3.4: Global OpenOCD Path Eclipse configuration

4. Add the path of OpenOCD.exe to the environment variable PATH.

5. Plug in the J-Link hardware debugger to your PC.

6. Run \openocd\drivers\drivers\UsbDriverTool.exe

7. Right click the “J-link driver” and select “Install WinUSB” so OpenOCD can

recognize the device. The official segger driver will be uninstalled and can be

reinstalled by selecting “Restore default driver”.

Fig. 3.5: Installing the WinUSB J-Link driver via the OpenOCD driver tool

8. (Optional) If the above step launches an error, head to https://zadig.akeo.ie and

download the latest version of Zadig, a multipurpose driver installer.

9. (Optional) Run the executable as administrator and select “J-Link” from the drop-

down list. Click on the “Install Driver” button.

https://zadig.akeo.ie/

Fig. 3.6: Installing the WinUSB J-Link driver via the Zadig driver tool

3.2.6 Installation the RV32M1 SDK and optional tools

1. Head to https://open-isa.org/downloads/ and download the SDK.

2. Unzip the file in your desired location.

3. (Optional) If you wish to use the command line to build, debug and run

applications, install the following software:

a. Install CMake from https://cmake.org/download/ by downloading the 32x

or 64x version installer.

b. Install the MinGW development tools from

https://sourceforge.net/projects/mingw/files/Installer/

1. Ensure that the “mingw32-base” and “msys-base” are selected under Basic Setup.

Fig. 3.7: MinGW installation options

2. Click on Installation → Apply Changes and follow the remaining instructions to

complete the installation.

3. Add <install_dir>\bin to the PATH environment variable

3.2.7 Environment Variables configuration

If the above tutorial was followed correctly you should have the following variables in

your PATH:

Fig. 3.8: PATH envrioment variable configuration

3.2.8 Additional Eclipse configurations

Some additional eclipse configurations and extensions can be helpful to share and debug

the project.

Print Size:

To check the size of each of the program sections the Print Size tool is very useful and

should be enabled in most low-level projects. The tool can be accessed via the binary file

found in the Vega toolchain or via the eclipse GUI.

https://open-isa.org/downloads/
https://cmake.org/download/
https://sourceforge.net/projects/mingw/files/Installer/

To enable it in Eclipse go to Project → Properties → C/C++ Build → Settings →

Toolchains and check the “Print Size” checkbox. The Print Size tool will be invoked after

each build and the output will be displayed on console.

Subclipse

If the project is to be developed alongside someone else, or needs supervision, the

Subclipse extension is very useful for sharing and managing Subversion repositories. To

install it, go to Help → Eclipse Marketplace and search for “Subclipse” on the searchbox.

Press on “Install” and follow the on-screen steps.

Alternatively, a Github repository can be used to share the project. Both the console

version and the desktop application are valid options to achieve this.

3.3 Development of the UART Port

The RV32M1 has 4 built-in Low Power UART interfaces called LPUART. The only one

connected to the USB port is the LPUART0, which is used for logging, debugging and

can be used for sending or receiving data. The following block diagrams show its

structure:

Fig. 3.9: LPUART transmitter block diagram [9]

Fig. 3.10: LPUART receiver block diagram [9]

3.3.1 UART Port Testing

OpenISA’s freertos_lpuart_ri5cy demo project includes a source file which exemplifies

the handling and reception of data via LPUART0. This example was used as a base to

create a test in which characters are received via Putty’s serial interface and are then

checked and processed to check their validity so they can be sent again via the UART if

they form a correct data stream. Our testing program is formed by two tasks: recv_task

and send_task, and the interruption handler: LPUART0_DriverIRQHandler. The IRQ

vectors can be found at the RV32M1_ri5cy.h file and are defined as the default handlers

in the system_RV32M1_ri5cy.c file:

Fig. 3.11: Setting of the IRQ handlers

Our application requires installing a handler that manages the reception of data when the

UART’s RX signal activates. However the FreeRTOS port for the RV32M1 installs it’s

own handlers and it’s not easy to use a custom handler used by the basic UART read and

write character functions. Also, both the RX and TX signals use the same handler for

UART interruptions. The default handler only activates with the LPUART_RTOS_Send

and LPUART_RTOS_Receive functions, which sends a buffer instead of a single

character and are the FreeRTOS-specific functions.

The solution that was found was to manually trigger the handler by using the

LPUART_RTOS_Receive function with a buffer of only 1 character and, once inside the

handler, send or receive characters with the LPUART_ReadByte and

LPUART_WriteByte functions, which don’t trigger the handler.

In the handler, we need to check that we receive the appropriate 4 byte header, then 2

bytes with the application data length and finally, the application data itself. The first 6

bytes represent the synchronization part of the packet that other components use to

recognize it as an ASW packet. To check this, a simple state machine was used. After

we’ve checked that all of this data is correct the handler won’t process any new characters.

The recv_task will poll the handler via a stream_ok function and, if the stream is indeed

correct, it will suspend itself and wake up the send_task, which initially was in a

suspended state. This send_task will simply send the stream with the

LPUART_RTOS_Send function. The handler will be triggered again, but won’t do

anything because of it will be at a “RX complete” state.

Fig. 3.12: State diagram of the UART test program

After the successful initial test, this program was ported to C++ to test its compatibility

in this more complete language. Some errors in the FreeRTOS freescale header files made

the program hard to compile initially. These includes were moved to a new file which

included all the basic FreeRTOS include headers. This file was included in the edroom

glue header file, which was then included in our test program. This proved to solve the

problem. A minor change was also done to address a C++ struct declaration error, as it is

different from standard C. After that, the program worked flawlessly. The C++ test was

deemed successful.

The next upgrade to the test program, involved an improvement so it could accept streams

in an infinite loop by resetting the handler’s variables after each complete stream was

sent. The receiving and sending tasks were modified so they would suspend and resume

adequately. Freescale’s lpuart file also needed to be modified in order to have this new

functionality. A function to reset the handler was incorporated so it could reset its state

flags and buffers. The new program worked as expected.

Other testing programs were tried that worked without using the FreeRTOS operating

system. There is one for testing UART transmission and reception by the polling method

using the LPUART_WriteBlocking and LPUART_ReadBlocking functions, which don’t

use interruptions and another one which uses the LPUART_TransferSendNonBlocking

and LPUART_TransferReceiveNonBlocking, which uses interruptions and allows for

custom handler installation. These LPUART functions are provided by the distribution.

These programs were later used to test using 2 UARTs at the same time.

3.4 Development of the MCU ICU port

To start with the proper port of the MCU ICU, an old, outdated version of it was used

which already run on an obsolete FreeRTOS distribution. This initial project was

developed with EDROOM, a powerful tool used to build embedded system software with

an easy to use interface. It had to be adapted to match the current FreeRTOS version by

changing a lot of the functions and variables which had their syntax changed over the

years. The process consisted of building the project and checking the Eclipse “problems”

tab in order to identify and correct errors and warnings. At the beginning there were more

than 400 errors. Some of them simply required changing a variable’s deprecated type to

the new version, such as the task handles, tick types, and enable and disable interrupts

functions. Others involved changing a function’s arguments, such as the task creation

function’s. The project also required a restructuring to eliminate the old FreeRTOS files

which created conflicts with the new ones. Type conflicts also existed, especially because

of matching definitions of integer types such as uint32_t. The basic types of the project

were discarded in favor of universal GCC stdint types.

Project include paths and preprocessor variables had to be configured so all the files and

macros necessary for the correct compilation of the project were found. Some flags were

also added after the g++ command for C++ compilation to avoid a number of errors (-

fno-rtti -fno-exceptions -lstdc++). Functions such as __dso_handle, __cxa_pure_virtual,

new and delete had to be defined or redefined due to compilation errors.

3.4.1 Project Structure

The project structure is similar to the one in the original project, but additional folders

with the FreeRTOS files were added following a structure similar to the one in the official

examples. These new folders include board, debug, drivers, freertos, settings, source,

startup and utilities. Some of these folders are linked resources as they are part of the

SDK and their paths are preconfigured in the project settings. The hierarchy of files

shouldn’t be modified in order to avoid compilation errors. Folders belonging to the

original project are components, config, dataclasses, edroom_glue, protocols,

pswpackages, swinterfaces and swpackages.

Some of the main files of each folder will be enumerated:

Board:

board.c initializes the debug console in LPUART0 while board.h describes some

important core board functionalities with macros. clock_config.c and clock_config.h

allow tweaking the system clocks in order to over or underclock the board. pin_mux.c

and pin_mux.h handle how the pins are configured and multiplexed as each header pin

has multiple functions. More can be learnt in annex 2 and in the official OpenISA

documentation.

Components:

It includes the files that define the behavior of the different EDROOM components which

are initialized at the start of the program.

Config:

config.h has custom defined preprocessor macros that change the behavior of the

program.

Some important ones include CONFIG_EDROOMBP_DEPLOYMENT_NEED_TASK,

which changes if the system deployment is done via a task or not, BEBASYNC 6 which

defines that the synchronization part of a packet are the first 6 bytes and

USE_EDROOMBP_LPUART0_IRQ_HANDLER, which indicates that a custom

handler will be used for LPUART0 interruptions.

Dataclasses:

The files in this folder define custom types that are used by the EDROOM components

of the program. Some important ones include CDTMList, which is where sent telemetries

are managed, CDTCDescriptor, where received telecommands are processed and

Pr_time, the class that implements real-time functions.

Debug:

This folder holds the .o object files that form up the .ELF executable at the build process.

These files are temporary, and they are destroyed upon cleaning the project.

Drivers:

The main FreeRTOS driver files are here. fsl_port.h and fsl_common.h define some of

the core functionality such as status codes, events and interrupt logic. fsl_lpuart.c and

fsl_lpuart.h are very important in this particular project as they describe the UART logic,

which is critical for this port. These files were made by FreeScale semiconductor, which

was acquired by NXP in 2015.

Edroom_glue:

It has some important header files that link different parts of the project based on

EDROOM components. edroomdeployment.cpp and edroomdeployment.h describe the

system deployment object structure, including the memory required by EDROOM

components. An fsl_inclues.h file was added that holds the main port includes.

Freertos:

The files here describe the main data structures and components that FreeRTOS uses such

as semaphores, queues, routines, lists and tasks. A very relevant file in this project has

been heap.c, as it had to be redesigned to simplify the debug process after memory

problems arose.

Protocols:

This folder has the models that describe the main ICU ASW communication protocols.

They won’t be addressed in more detail as they are outside of this project’s aims and

objectives

Pswpackages:

The original basic_types.h file can be found here, which was modified so there wouldn’t

be type conflicts with the FreeRTOS files, which use the STD types.

Settings:

The RV32M1_ri5cy_flash.ld linker configuration file can be found here. This file

initializes and describes the program memory areas and it can be tweaked to change the

size and memory locations of structures such as the heap or the stack.

Source:

The file containing the main function, icuasw_mmesp_project.cpp, can be found in this

folder along with FreeRTOSConfig.h, the FreeRTOS project configuration file. In the

main function components are instantiated and connected with the systemDeployment

object.

Startup

It contains three files with the same name and different extension named

startup_RV32M1_ri5cy.S, .c and .h that are the boot files of the VEGAboard. The one

ended in .S has the exception handlers written in assembly code that manage fatal CPU

errors.

Swinterfaces:

Holds the main ASW ICU .h software interfaces which have the function declarations

that are given functionality in the swpackages .cpp files.

Swpackages:

Most of the ICU ASW program code files are in this folder. The most heavily modified

files in this project are in edroombp_slib_head, the abstraction layer of the RTOS,

emu_sc_channel_drv_slib_head, the manager of the spacecraft communications, and

icuasw_pus_services_slib_head, the implementation of the Packet Utilization Services

(PUS) used by the ESA. A service is a set of related telecommands and telemetries. The

ASW executes the received TCs and generates TMs which can either be autonomous or

in response to TCs.

Utilities:

Contains some useful system utilities such as the fsl_log and fsl_debug_console tools.

Fig 3.13: Comparison between the initial Plant Control System project and final

project’s folders

3.4.2 Plant Control System V0

The Plant Control System file is the main executable file that has been generated to

complete this example port. It initializes 6 components and then the system deployment

is configured and started. The components are CCControlPlant, CCLEDTask,

CCHTTPServerTask, CCKeyScanTask, CCRS232Task and CCMonitor. Each

component initializes several tasks, counting semaphores and mutex semaphores. This

program proved to be very challenging to run with the initial setup and several changes

had to be made. At first, a lot of errors were shown because of failure to initialize tasks,

semaphores and mutexes. The program was running out of memory as the heap only had

10KB available. The FreeRTOS configuration file was modified so the heap could hold

40 KB. This proved to be a great improvement, as all the components until component 5

were initialized correctly. After component 5 was initialized, the program broke again,

this time because of heap corruption. This error was very difficult to trace and debug, as

the heap became corrupt very early on the program execution and no clear reason to why

this happened was found.

Dynamic memory version with a new heap management algorithm
A new version of Plant Control System was tested, this time with components using

dynamically allocated memory. For simplification of the debug process, a custom heap

memory management program was made with custom malloc() and free() functions. This

program was based on the public Github Gist file provided by Masahiro Hiramori [14]

and adapted to comply with FreeRTOS heap format and functions. The new heap

algorithm simply initializes a pointer at the start of the heap array and updates it when a

function requests memory. An MCB or Memory Control Block manages each memory

segment and specifies its size and availability. If no free block is found, a new one is

created after the last valid memory address. If a memory element needs to be freed, it is

set to being available. The program keeps track of how many heap bytes are remaining at

every moment, this is very useful for debugging purposes. The amount of memory

requested must be greater than 0 and lesser than the free memory remaining. There are

three main pointers: one points at the heap start, other at the last valid address and another

at the end of the heap. These pointers can be used to always keep track of the memory

directions the heap is using and to check in Eclipse’s memory view what’s inside of the

of it or if there are any conflicts with other parts of the program. The implementation can

be seen in annex 1.

This new version proved to be successful, and all components initialized correctly,

however, the system deployment start failed. The main task it created was very large as

it requested 65.5KB and the system ran out of memory again. However, it was discovered

that it was caused by a misallocation of memory present in the original program. It was

abnormal that this task requested that much memory, so it was modified so it would only

request 1KB. The heap size was newly increased to 70KB, which proved to be enough to

create the task. This task also requested a very high priority of 7, which was more than

the default max priority of FreeRTOS which was 5. The max priority was increased to 8

for the task to work correctly. After this modification the program ran correctly.

Fig. 3.14: Plant Control System UART output

3.4.3 Plant Control System V1

A different version of Plant Control System was also tested using static components. The

differences with its dynamic counterpart are the same as the ones in ICU ASW V1, which

was developed first, and it’s addressed in 3.4.4. This version caused new problems as it

instantly crashed during the initialization of the first component, so it was deemed a

failure and abandoned as we already had a working version of Plant Control System and

using static memory provided no visible advantages.

3.4.4 ICU ASW V0

The next program to port was the ICU ASW educational prototype. It has a similar

structure to Plant Control System, but this time a new set of EDROOM components had

to be configured and started.

These instances of the component classes are:

• ICUASW: Its instance component contains all other components, and its main

functionality is to simulate the flow of time, and in these starting versions,

simulate the reception of TCs without having a real system sending them.

• CCEPDManager: It implements the high-priority component which receives the

TCs and either executes them or forwards them to other components according

to their priority.

• CCTM_ChannelCtrl: Implements the very-high-priority component which is in

charge of transmitting the TMs generated by the rest of the system components.

• CCHK_FDIRMng: Implements the medium-priority component which provides

the Housekeeping service, as well as the ones related to the Fault, Detection,

Isolation and Recovery (FDIR) system. The Housekeeping service (service 3 of

the PUS standard) periodically notifies about relevant system parameters such as

temperature, voltages or baudrates.

• CCBKGTCExec: Implements the low-priority component which executes the

TCs with the less priority.

After solving the usual problems of type conflicts and include errors, a new large problem

arose. The program was very large, occupying a large chunk of the m_data chunk of

memory and our large heap caused an overflow of this region. The main culprit was the

systemDeployment variable, responsible for deploying the tasks with a size of 148KB.

This constituted a major problem as the available SRAM of the RV32M1 VEGAboard is

192KB. If the heap was reduced, components rapidly ran out of allocatable memory and

tasks, semaphores etc. could not be correctly created. Increasing m_data’s size by

modifying the linker script was also unsuccessful, as writing in the new area was

considered an illegal instruction by the CPU.

Memory Area Origin Length

m_text 0x00000000 0x000FFF00

m_vector 0x000FFF00 0x00000100

m_data 0x20000000 0x0002E800

rpmsg_sh_mem 0x2002E800 0x00001800

m_usb_sram 0x48010000 0x00000800

Table 2 RV32M1 memory areas

The next solution that was tested was to declare the heap as a pointer in a custom memory

address. Several options were tested. It was first declared at the start of m_data

(0x2000000). This option offered mixed results as the components were created, but the

main task didn’t start correctly and instead it waited indefinitely as if it was blocked by

another task. The next option was to declare the heap at the end of m_data (0x2002E800

– HEAP_SIZE). This caused the heap’s pointers to be corrupted when the main task was

created, and it subsequently crashed.

Fig. 3.15: Program memory representation

After that, a more methodical approach was tried. It required going into the entrails of the

program and checking memory addresses to find available space. Eclipse’s memory tab

was used for this purpose. By checking the addresses pointed by the heap start and heap

end pointers we could get a clear view of the content of this space. After a thorough

analysis of the memory space, a valid address was found for the placement of the heap.

Plant Control system worked perfectly with this new configuration. ICU ASW worked

decently, as the kernel started successfully, but the tasks stalled soon after.

3.4.5 ICU ASW V1

A new version of the ICU ASW project was developed, this time completely prescinding

from the heap. To change the general behavior, a simple option in the FreeRTOS

configuration file had to be changed so dynamic memory wouldn’t be used in favor of

static memory. Functions like xTaskCreate were substituted by their static counterparts

like xTaskCreateStatic. All components declaration were changed so the “new” function

wouldn’t be used. The new functions required passing the component stack as an

argument. This stack could be initialized in the constructors of pr_task and pr_semaphore

defined in the edroombp interface. The program worked well until the kernel started and

failed as the LSU handler was triggered due to an illegal assembler instruction being run.

3.4.6 ICU ASW Lite

This third version of the ICU ASW was much lighter as it only used 3 components:

ICUASW CCEPDManager and CCTM_ChannelCtrl. The array used as the heap was

configured to be a static one like it originally was in the FreeRTOS heap management

implementation and it could be 70KB as the data portion of the program was much lighter

than in the full ICU ASW. After solving type and include errors, the program worked

flawlessly.

Fig. 3.16: ICU ASW Lite UART output

3.4.7 ICU ASW V2

The third version of ICU ASW incorporated the static heap array which proved to be

successful in the lite version and included a new important change: By changing the

maximum number of telemetry messages that can be on the mempool at any given time,

the amount of reserved memory used by the systemDeployment object could be reduced

dramatically. This number was changed from 16 to 4 and systemDeployment went from

being 148KB to just over 42KB. This allowed us to use the static heap array in this

version, which proved to work fine and avoided memory conflicts with other variables.

The size of the main task was also reduced like in previous versions, so an 80KB heap

proved to be enough to compile and run successfully.

Fig. 3.17: ICU ASW V2 UART output

3.4.8 Relevant changes made to the EDROOM generated files

The EDROOM library is divided into two layers:

• The bottom layer handles the basic functionality of the RTOS, that gives support

to tasks, timers, semaphores and events. In this project it is implemented by

endroombp.

• The top layer is independent of the platform and provides the interface for

planning, communication, temporization, memory management and interruption

management that EDROOM components use. In this project it is implemented

by endroomsl.

Fig. 3.18: EDROOM library structure

Some changes had to be made to the bottom layer for the EDROOM library to work with

this specific port. The most heavily modified file was edroombp_free_rtos.cpp. This file

was very outdated as it used old FreeRTOS methods and data types that are no longer

existent in the most recent version. One clear example is the change from the task handler

type from xTaskHandle to TaskHandle_t:

Arguments from the task creation method also changed in newer FreeRTOS versions so

this part in the Pr_Task constructor had to be modified as well:

There were some type mismatches between the edroombp_iface header file definitions

and the edroombp implementation which had to be corrected such as definitions using the

uint32_t STD type and implementations using the unsigned integer type:

Some other changes were made in edroombp_iface, such as changing the outdated

semaphore handle type xSemaphoreHandle to SemaphoreHandle_t:

Like in edroombp, there were also some mismatches between definition and

implementation which were changed to use the STD integer types:

Port-specific Edroombp
There is another edroombp file specific for this port in a separate folder named

vega_board. This file complements the other one by adding a function to install the IRQ

handler for the LPUART0. It should be noted that this function can install any handler

required for a specific use case. For example, a handler could also be installed for the I2C

or SPI protocols if the application were to use those ports for communication with another

device. Although some adaptions to the ASW program code should be made, in theory it

would be entirely possible.

The LPUART0 handler function can also be found in this file. It was named

LPUART0_DriverIRQHandler, the same name that the original one system has, so the

RV32M1 system file could remain unchanged. This handler was declared as an extern

“C” as it’s a C function located in a C++ file. To choose between the custom edroombp

handler and the system handler, a preprocessor macro was defined in the ASW

configuration file.

There are also functions to uninstall handlers, create new interruption masks and enable

or disable interruptions.

3.5 ICU ASW RISC-V (final version): Development and validation
of the TM/TC serial port

The final phase of the project was to achieve simultaneous transmission of TCs and

reception of TMs and passing a series of tests in the MASSIVA simulator, checking that

the temporal requirements were being fulfilled.

Some changes were made to ICU ASW for the final testing with MASSIVA. Firstly, the

SC Channel Driver was changed to accommodate to the RV32M1 Vega’s LPUART

functionality. A new function called Init_sc_channel() initializes the LPUART0 by

setting the interruption priority of the associated interrupt number (17 in this case) to 5,

setting the clock frequency, setting the configuration struct and initializing the port.

CDTM lists were also adapted to send the desired telecommands. The program was

changed so bitstreams would be sent instead of text and no telecommand reception would

be simulated by the program itself. The incoming packet’s processing logic was moved

to the CDTC descriptor file. The interrupt handler was moved to edroombp along with

the interruption installer method.

3.5.1 MASSIVA

For the development and validation of the TM/TC port, a simulator known as Monitoring

and Analysis System for Software Inspection, Verification/Validation and Assessment

(MASSIVA) was used for testing the correct functioning of the device. It is what is known

as Ground Support Equipment or GSE, which are tools used by land crews to test and

verify different parts of a system in development. This software was developed by the

Universidad de Alcalá de Henares (UAH) for the testing of systems onboard spacecraft

such as Solar Orbiter. The main objective of the tests is to receive a bitstream that our

device should correctly interpret and subsequently produce the correct response. To

achieve this, a virtual machine running Lubuntu was built and MASSIVA was installed

in it.

The initial intention was to handle UART communication via the LPUART0, just like

always until now, but it was initially believed that MASSIVA wasn’t compatible with the

ttyACM format so the program was reconfigured to work with LPUART1 which can be

accessed by the Arduino-style pins which are recognizable by the simulator.

3.5.2 Functional tests adaption

Some changes had to be made to existing functional tests so they would work correctly

with the VEGAboard. A small linux script was used to determine to what port the

RV32M1 was connected to, in this case it was ttyACM0. A new MASSIVA workspace

folder was created with the required configuration files so it would directly connect to the

desired port. It was then believed that MASSIVA didn’t support ttyACM type USB

connections, only ttyUSB. This suggested that the LPUART0 was unusable by the

simulator. An older version of MASSIVA, SRG GRS was tested on Windows to check if

the output would be received there, but it wasn’t the case.

A new approach was taken: to reroute the transmissions to LPUART1 and connect it via

a UART to USB adapter. The adapter we had available was the StarTech RSR232. This

required changing the pin multiplexing options so the pins D0 and D1 would work as the

LPUART1 RX and TX respectively. To do this, the pin_mux.c file, which handles the

pin configuration and multiplexing, was changed to reflect these changes.

3.5.3 Transmission

Some of the official testing programs were used to check on the correct functioning of

the UART. The characters became corrupted upon transmission and were illegible. It was

believed that it could be an endianness or baud rate issue, but after hours of testing it was

discovered that it was the adapter itself which was incompatible. A new adapter was used,

the PL2303. This adapter provided a clean transmission but only using the non-interrupt

transmission method via polling with the LPUART1. The interruption method didn’t

work as it did in the LPUART0.

It was later discovered that there was an error in the transmission of the length field of

the packet and was causing MASSIVA to not recognize packets. It was an endianness

issue and was fixed by changing the packet transmission from big to little endian by

parameterizing the bytes sent via a function. After that, MASSIVA correctly identified

the packets, but it wasn’t processing them correctly. This was caused by an issue in the

MASSIVA config files, not in the transmission itself. It was quickly identified and

corrected. With the transmission fixed, Massiva also recognized packets coming from the

LPAURT0, via the ttyACM0 port, which was previously believed to be incompatible with

the simulator. SRG GSS also detected packets in Windows. This was a great relief as the

VEGAboard’s USB port could be used again for communication and it supported UART

interrupt transfer and reception.

In the final ASW RISC-V project, Init_sc_channel() was changed to initialize both the

LPUART0 and LPUART1, so any of them could be used depending on the system to

which the Board is connected to and its physical port compatibility. The initialization

process was changed from the one typically used in FreeRTOS to a low-level one that

interacted directly with the board instead of using the OS. MASSIVA was configured to

connect to the LPUART0 via the ttyACM0 port. It correctly received the packets sent

with the LPUART_WriteBlocking function and processed them correctly, incrementing

the “packets received” counter along with the SID0 and SID1 counters. As you can see

in the figure, next to the SID0 counter, there is a field indicating that the packet period is

2.007s. This is very close to the 2s hard temporal requirement, so we can confirm that the

temporal restrictions are being fulfilled.

Fig. 3.19: MASSIVA receiving packets via the LPUART0

Fig. 3.20: MASSIVA raw log

Packet Structure:

Packets sent by the ASW ICU have a very specific structure that must be consistent at all

times in order for the receptor system to process them correctly.

The structure of the PUS Service 03 packets is the following:

header Tm

lengt

h

Tm

packI

D

Tm

seqC

trl

packHe

ader

length

PUS

Version

ACK

Tm

servi

ce

Tm

subser

vice

dum

my

re

st

0xBEBAB

EEF

0x00

13

0x0B

21

0xC0

00

0x000C 0x10 0x03 0x19 0x00 0x

0

Table 3: ICU ASW PUS Service 03 Telemetry Structure

• The first 4 bytes are the header 0xBEBABEEF which identifies an ASW ICU

packet.

• The next 2 bytes are the telemetry length 0x0013, 19 in decimal.

• The next 2 bytes are the telemetry packID which is always 0x0B21.

• The next 2 bytes are the telemetry seqCtrl which is always 0xC000.

• Los next 2 bytes are the packHeader length 0x000C, 12 in decimal.

• The next byte is PUS Version Ack 0x10.

• The next byte is the tm service 0x03.

• The next byte is the tm subservice 0x19.

• The last byte is a dummy with value 0x00.

• The next 9 bytes are all 0x0 for this specific telemetry.

The telemetry configuration can be modified in the PUS Service 3 file.

For the second telemetry, it has the following structure:

Enabled TM ID Period

(s)

Dummy 0 N

parameters

Parameters ID

true 0 2 0 1 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Table 4: ICU ASW PUS Service 03 Telemetry Configuration Example

3.5.4 Reception

Reception was trickier to achieve that transmission. A variety of methods were tried in

the final ASW RISC-V project until a successful one was found.

The first method tried was to use LPUART_TransferReceiveNonBlocking in the SendTM

function and installing a handler like it is done in the official examples. This method

wasn’t successful as transmission couldn’t complete in time and the resulting received

packet was incomplete. The interruption handler is only triggered when the receiver

buffer is full, so a 1-byte buffer had to be used, as we needed to process bytes one by one.

The next method involved using LPUART_ReadBlocking with no handler at all, but

again packets arrived incomplete and couldn’t be processed. These first methods couldn’t

determine beforehand the packet’s length so a bigger array had to be used for storage.

A new approach was taken to determine the packet’s length after receiving the header and

length fields which are always the first 6 bytes and, after that, processing and saving the

packet. The original freeRTOS interrupt handler for the LPUART0 was used for this

purpose. The problem was that it was hard to control the program flow by using this

method. It involved initializing the LPAURT0 via the FreeRTOS LPUART_RTOS_Init

function, which abstracted the program more. By combining this initialization process

with a conditional that only triggered if a non-null byte was received, we could correctly

trigger the handler and send back the received bytes without halting the transmission of

packets.

To simplify this process, the FreeRTOS initialization method was discarded, and the low-

level one was used again. A new custom handler was used, but this time going into the

RV32M1 system files and changing the original LPUART0 handler function declaration

to a new custom one. This allowed us to change this system handler to one we declared

ourselves in the SC Channel Driver file. In this handler we could send back the received

bytes without manually using a reception method and it would trigger automatically when

a RX interrupt is detected. We later renamed the handler to have the same name as the

system one, so the internal files wouldn’t have to be modified and we could switch

between the two via a macro in the ASW configuration file. The initialization process of

the UART0 was changed so interrupts would only be triggered upon reception and not

upon transmission. After dealing with some endiannes issues in the packet processing

method of the custom handler, packets were received, processed and sent back correctly.

Fig. 3.21: Reception of the 17.1 protocol packet via the LPUART1

3.5.5 Port Validation

To check that the port behaves correctly and that it could hypothetically integrate with

the other EPD components and sensors, a series of functional tests had to be successfully

completed. After achieving simultaneous transmission and reception, the groundwork for

the ICU ASW RISC-V project to support these tests was laid.

As we could see before, the temporal requirements were being respected so the port was

working according to specifications. The final step to determine the success of the port

was to launch and pass the tests. After launching all of them one after the other, they

completed successfully.

One example is illustrated here with the tp_0001_pus_tc_20_3_set_pid0_to_0xAA test,

which consists of modifying the value of the number 0 parameter of the ICU System Data

Pool, so it takes the value 0xAA using the 20.3 subservice.

Fig. 3.22: p_0001_pus_tc_20_3_set_pid0_to_0xAA testing procedure

Chapter 4 - User guide
This comprehensive guide will explain how to run or debug in Windows any of the

projects addressed in this work.

1. Follow the Detailed Windows installation guide, which you can find above in 3.2

2. Open Eclipse CDT and go to File → Open Projects from File System… Select the

import source and click on the Finish button.

3. A safe practice is to click on Project → Clean… after importing a project and

rebuilding the project after that. This will regenerate .o object files and the .ELF

executable.

4. Connect your Segger J-Link debugger probe to the OpenISA VEGAboard with a

9-Pin Cortex-M Adapter like how it is shown in the image. After that, connect

your micro-USB cable to the J55 connector of the VEGAboard and plug in both

the board and the debugger to your PC.

Fig. 4.1: VEGAboard connections

5. Go to the Windows Device Manager and click on the Ports tab to figure out to

which port is the Debugger connected. The correct port is shown as “mbed Serial

Port”.

Fig. 4.2: Windows device manager

6. Open your preferred serial monitor, in my case I’m using Putty, which can be

downloaded at https://www.putty.org/. Configure a new serial connection by

selecting the “serial” checkbox, setting a speed of 115200 bauds and selecting the

appropriate serial port. A new window will open if the connection was successful.

https://www.putty.org/

Fig. 4.3: Putty serial connection

7. Back in Eclipse, go to Run → Debug configurations and either run an existing

Debug Configuration or create a new one. Fill in the fields as required in

accordance with the project. Click on the “Apply” button after finishing your

configuration and then on the “Debug” button. It should look similar to this:

Fig. 4.4: Debug configuration

8. Once the debugging process starts, control the execution process freely by using

the Resume, Step Into, Step Over or Step Back buttons in Eclipse (the keyboard

shortcuts are F8, F5, F6, F7 respectively). You can also restart or terminate the

process. breakpoints can be set and viewed in the Breakpoints window.

Alternatively, if you only need to flash and run the program, go to Run → Run

Configurations and select and your desired configuration.

9. If the program requires input via the LPUART, you can send characters or

commands via the Putty serial monitor, and also check the program output.

(Optional) Using another UART for end-to-end communication:

1. If you wish to use another UART for transmission or reception, make sure that

the pin_mux.c file of the project has the pertinent changes, so the board is

configured with the appropriate pin logic.

2. Connect your PL2303 or similar serial-to-USB adapter to the VEGAboard by

connecting the white wire (RX) to the TX pin and the green (TX) wire to the RX

pin. Refer to annex 2 and to the OpenISA official Board User Guide for more

info.

(Optional) Using another protocol for end-to-end communication:

1. If you wish to use another UART or an entirely different communication protocol,

make the pertinent changes to the pin_mux.c file of the project so the board is

configured with the appropriate pin logic.

2. Program and install the correct interrupt handler in edroombp_free_rtos.c. Change

the SendTM and Init_sc_channel functions in emu_sc_channel_drv.c to initialize

the new port and transmit with it.

3. Refer to the official FreeRTOS and OpenISA to check on the available

communication protocols and their behaviour.

For info on how to use the SRG GSS or MASSIVA simulators, refer to their respective

official guides.

Chapter 5 - Conclusions
We can conclude that the project was a success as all of its main objectives were fulfilled.

We successfully developed a port of the ICU ASW on the RV32M1 VEGAboard that can

transmit and receive packets simultaneously and pass all the required functional tests as

well as the original version. The project paves the way for future extensions and

enhancements to the RISC-V port of the ICU ASW.

Porting software to new platforms can be a daunting task. Not only because of the

software changes which have to be made, but because of the physical differences and

limitations of the new hardware to which it is being ported. It also has the added difficulty

of working with software made by someone else that you may not know well. This is why

a good documentation is an essential part of any project. Although the RV32M1

VEGAboard is an excellent testing board, bigger programs like the ICU ASW are very

hard to run on it because of memory space limitations. Fortunately, with enough time and

effort, these problems can be solved by saving memory space in some non-critical areas.

Debugging the program after the kernel starts is also very difficult as no program-state

information is provided. The initial incompatibilities between MASSIVA and our

hardware and software also posed additional problems, but fortunately, they could be

solved, and it proved that the testing software can be adapted to other kinds of boards and

architectures.

This project provided a challenge in the area of computer engineering, as it required

working at a very low level by checking memory addresses, hardware configurations and

preprocessor macros. This field of computer science is challenging, but it is nevertheless

very interesting as it is what we can always find in the entrails of every computer and

mobile application.

Low-level applications, such as this one, require a clear understanding of how memory

allocation works, where each type of variable and component is stored in the memory,

knowledge of the different hardware resources available and how to manage them. As a

student of computer engineering, I never really experienced these kinds of challenges

before, as most subjects cover these areas very lightly and don’t face you with real

problems that you would find in the day-to-day work of computer engineering.

Space exploration is one of the big topics of our era. With private space-related companies

on the rise, having a clear understanding of what is around us is critical to carry on

successful space missions and truly elevating humankind to its next stage. Solar Orbiter

and the European Space Agency are precisely helping us clear the fog of uncertainty that

covers space.

Lastly, understanding the solar climate could provide more information about climate

change that is currently unavailable. We can’t be certain of how much solar flares and

coronal mass ejections affect the climate here on Earth and if they could be partly

responsible for the current rising temperatures in our planet.

All in all, the project has been a real challenge to me as a computer engineer and will

likely affect how I deal with new problems in the future, even in other fields of

information technologies.

Glossary
API: Application Program Interface

ASIC: Application Specific Integrated Circuit

ASW: Application Software

BLE: Bluetooth Low Energy

BSP: Board Support Packages

CCSDS: Consultative Committee for Space Data Systems

CDPU: Central Data Processing Unit

CME: Coronal Mass Ejection

EPD: Energetic Particle Detector

ESA: European Space Agency

ESTEC: European Space Research and Technology Centre

FDIR: Fault, Detection, Isolation and Recovery

FIRC: Fast Internal Reference Clock

FPGA: Field Programmable Gate Array

ICU: Instrument Control Unit

IDE: Integrated Development Environment

ISA: Instruction Set Architecture

LCL: Latch Current Limiter

LED: Light Emitting Diode

LVDS: Low Voltage Differential Signaling

LVPS: Low Voltage Power Supply

MASSIVA: Monitoring and Analysis System for Software Inspection, Verification /

Validation and Assessment

MCU: Memory Control Unit

NASA: National Space Agency

OCD: On Chip Debugger

OS: Operating System

PUS: Packet Utilization Standard

RISC: Reduced Instruction Set Computer

RTEMS: Real Time Executive for Multiprocessor Systems

RTOS: Real Time Operating System

SEP: Solar Energetic Particle

SIRC: Slow Internal Reference Clock

SoC: System on Chip

SPARC: Scalable Processor Architecture

STD: Standard

UART: Universal Asynchronous Receiver Transmitter

Bibliography
[1] [Online] Yihua Zheng and Rebekah M. Evans - Solar Energetic Particles (SEPs)

URL:

https://ccmc.gsfc.nasa.gov/RoR_WWW/SWREDI/2014/SEP_YZheng_20140602.pdf

(Accessed: June 2021)

[2] [Online] Stack Overflow Forum (Various answers)

URL: https://stackoverflow.com/

(Accessed: June 2021)

[3] [Online] European Space Agency

URL: https://www.esa.int

(Accessed: June 2021)

[4] [Online] (Various authors) - The Energetic Particle Detector, Energetic particle

instrument suite for the Solar Orbiter mission

URL: https://www.aanda.org/articles/aa/pdf/2020/10/aa35287-19.pdf

(Accessed: June 2021)

[5] [Online] (Various authors) - The Energetic Particle Detector Suite for Solar Orbiter

URL: https://www.iac.es/es/ciencia-y-tecnologia/publicaciones/energetic-particle-

detector-suite-solar-orbiter

(Accessed: June 2021)

[6] [Online] Pablo Parra Espada - The Instrument Control Unit (ICU)

URL: http://espada.uah.es/epd/ICU.php

(Accessed: June 2021)

[7] [Online] Mahmoud H. Qutqut, Aya Al-Sakran, Fadi Almasalha, Hossam S. Hassanein

– Comprehensive survey of the IoT open-source OSs

URL:

https://www.researchgate.net/publication/328031606_Comprehensive_Survey_of_the_I

oT_Open_Source_OSs

(Accessed: August 2021)

[8] [Online] Sam Leonard – A dive into RI5CY core internals

URL: https://www.embecosm.com/2019/08/13/a-dive-into-ri5cy-core-internals/

(Accessed: August 2021)

[9] [Online] OpenISA Official webpage and official documentation

URL: https://open-isa.org/

(Accessed: July 2021)

[10] [Online] RTEMS Official webpage

URL: https://www.rtems.org/

(Accessed: July 2021)

[11] [Online] FreeRTOS Official webpage

URL: https://www.freertos.org/

(Accessed: July 2021)

https://ccmc.gsfc.nasa.gov/RoR_WWW/SWREDI/2014/SEP_YZheng_20140602.pdf
https://stackoverflow.com/
https://www.esa.int/
https://www.aanda.org/articles/aa/pdf/2020/10/aa35287-19.pdf
https://www.iac.es/es/ciencia-y-tecnologia/publicaciones/energetic-particle-detector-suite-solar-orbiter
https://www.iac.es/es/ciencia-y-tecnologia/publicaciones/energetic-particle-detector-suite-solar-orbiter
http://espada.uah.es/epd/ICU.php
https://www.researchgate.net/publication/328031606_Comprehensive_Survey_of_the_IoT_Open_Source_OSs
https://www.researchgate.net/publication/328031606_Comprehensive_Survey_of_the_IoT_Open_Source_OSs
https://www.embecosm.com/2019/08/13/a-dive-into-ri5cy-core-internals/
https://open-isa.org/
https://www.rtems.org/
https://www.freertos.org/

[12] [Online] RISC-V Official webpage

URL: https://riscv.org/

(Accessed: July 2021)

[13] [Online] Pulp Platform Official webpage

URL: https://pulp-platform.org/

(Accessed: July 2021)

[14] [Online] Masahiro Hiramori – Simple malloc implementation

URL: https://gist.github.com/mshr-h/9636fa0adcf834103b1b

(Accessed: August 2021)

[15] [Online] Nthatisi Hlapisi - Understanding RISC-V Architecture and Why it could be

a Replacement for ARM

URL: https://circuitdigest.com/article/understanding-risc-v-architecture-and-why-it-

could-be-a-replacement-for-arm

(Accessed: July 2021)

[16] [Online] Zephyr Project Documentation – OpenISA VEGAboard

URL: https://docs.zephyrproject.org/latest/boards/riscv/rv32m1_vega/doc/index.html

(Accessed: July 2021)

https://riscv.org/
https://pulp-platform.org/
https://gist.github.com/mshr-h/9636fa0adcf834103b1b
https://circuitdigest.com/article/understanding-risc-v-architecture-and-why-it-could-be-a-replacement-for-arm
https://circuitdigest.com/article/understanding-risc-v-architecture-and-why-it-could-be-a-replacement-for-arm
https://docs.zephyrproject.org/latest/boards/riscv/rv32m1_vega/doc/index.html

Annexes

Annex 1: heap.c main functions

Annex 2: RV32M1-VEGA I/O header pinout

Universidad de Alcalá

Escuela Politécnica Superior

