1,357 research outputs found

    Technical debt-aware elasticity management in cloud computing environments

    Get PDF
    Elasticity is the characteristic of cloud computing that provides the underlying primitives to dynamically acquire and release shared computational resources on demand. Moreover, it unfolds the advantage of the economies of scale in the cloud, which refers to a drop in the average costs of these computing capacities as a result of the dynamic sharing capability. However, in practice, it is impossible to achieve elasticity adaptations that obtain perfect matches between resource supply and demand, which produces dynamic gaps at runtime. Moreover, elasticity is only a capability, and consequently it calls for a management process with far-sighted economics objectives to maximise the value of elasticity adaptations. Within this context, we advocate the use of an economics-driven approach to guide elasticity managerial decisions. We draw inspiration from the technical debt metaphor in software engineering and we explore it in a dynamic setting to present a debt-aware elasticity management. In particular, we introduce a managerial approach that assesses the value of elasticity decisions to adapt the resource provisioning. Additionally, the approach pursues strategic decisions that value the potential utility produced by the unavoidable gaps between the ideal and actual resource provisioning over time. As part of experimentation, we built a proof of concept and the results indicate that value-oriented adaptations in elasticity management lead to a better economics performance in terms of lower operating costs and higher quality of service over time. This thesis contributes (i) an economics-driven approach towards elasticity management; (ii) a technical debt-aware model to reason about elasticity adaptations; (iii) a debt-aware learning elasticity management approach; and (iv) a multi-agent elasticity management for multi-tenant applications hosted in the cloud

    A survey and taxonomy of self-aware and self-adaptive cloud autoscaling systems

    Get PDF
    Autoscaling system can reconfigure cloud-based services and applications, through various configurations of cloud sofware and provisions of hardware resources, to adapt to the changing environment at runtime. Such a behavior offers the foundation for achieving elasticity in modern cloud computing paradigm. Given the dynamic and uncertain nature of the shared cloud infrastructure, cloud autoscaling system has been engineered as one of the most complex, sophisticated and intelligent artifacts created by human, aiming to achieve self-aware, self-adaptive and dependable runtime scaling. Yet, existing Self-aware and Self-adaptive Cloud Autoscaling System (SSCAS) is not mature to a state that it can be reliably exploited in the cloud. In this article, we survey the state-of-the-art research studies on SSCAS and provide a comprehensive taxonomy for this feld. We present detailed analysis of the results and provide insights on open challenges, as well as the promising directions that are worth investigated in the future work of this area of research. Our survey and taxonomy contribute to the fundamentals of engineering more intelligent autoscaling systems in the cloud

    Model driven simulation of elastic OCCI cloud resources

    Get PDF
    International audienceDeploying a cloud configuration in a real cloud platform is mostly cost-and time-consuming, as large number of cloud resources have to be rent for the time needed to run the configuration. Thereafter, cloud simulation tools are used as a cheap alternative to test Cloud configuration. However, most of existing cloud simulation tools require extensive technical skills and does not support simulation of any kind of cloud resources. In this context, using a model-driven approach can be helpful as it allows developers to efficiently describe their needs at a high level of abstraction. To do, we propose, in this article, a Model-Driven Engineering (MDE) approach based on the OCCI (Open Cloud Computing Interface) standard metamodel and CloudSim toolkit. We firstly extend OCCI metamodel for supporting simulation of any kind of cloud resources. Afterward, to illustrate the extensibility of our approach, we enrich the proposed metamodel by new simulation capabilities. As proof of concept, we study the elasticity and pricing strategies of Amazon Web Services (AWS). This article benefits from OCCIware Studio to design an OCCI simulation extension and to provide a simulation designer for designing cloud configurations to be simulated. We detail the approach process from defining an OCCI simulation extension until the generation and the simulation of the OCCI cloud configurations. Finally, we validate the proposed approach by providing a realistic experimentation to study its usability, the resources coverage rate and the cost. The results is compared with the ones computed from AWS

    Technical debt-aware and evolutionary adaptation for service composition in SaaS clouds

    Get PDF
    The advantages of composing and delivering software applications in the Cloud-Based Software as a Service (SaaS) model are offering cost-effective solutions with minimal resource management. However, several functionally-equivalent web services with diverse Quality of Service (QoS) values have emerged in the SaaS cloud, and the tenant-specific requirements tend to lead the difficulties to select the suitable web services for composing the software application. Moreover, given the changing workload from the tenants, it is not uncommon for a service composition running in the multi-tenant SaaS cloud to encounter under-utilisation and over-utilisation on the component services that affects the service revenue and violates the service level agreement respectively. All those bring challenging decision-making tasks: (i) when to recompose the composite service? (ii) how to select new component services for the composition that maximise the service utility over time? at the same time, low operation cost of the service composition is desirable in the SaaS cloud. In this context, this thesis contributes an economic-driven service composition framework to address the above challenges. The framework takes advantage of the principal of technical debt- a well-known software engineering concept, evolutionary algorithm and time-series forecasting method to predictively handle the service provider constraints and SaaS dynamics for creating added values in the service composition. We emulate the SaaS environment setting for conducting several experiments using an e-commerce system, realistic datasets and workload trace. Further, we evaluate the framework by comparing it with other state-of-the-art approaches based on diverse quality metrics

    The Essence of Software Engineering

    Get PDF
    Software Engineering; Software Development; Software Processes; Software Architectures; Software Managemen
    corecore