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A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
April 2019



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 





Abstract

Elasticity is the characteristic of cloud computing that provides the underlying primitives

to dynamically acquire and release shared computational resources on demand. Moreover,

it unfolds the advantage of the economies of scale in the cloud, which refers to a drop

in the average costs of these computing capacities as a result of the dynamic sharing

capability. However, in practice, it is impossible to achieve elasticity adaptations that

obtain perfect matches between resource supply and demand, which produces dynamic

gaps at runtime. Moreover, elasticity is only a capability, and consequently it calls for

a management process with far-sighted economics objectives to maximise the value of

elasticity adaptations.

Within this context, we advocate the use of an economics-driven approach to guide

elasticity managerial decisions. We draw inspiration from the technical debt metaphor

in software engineering and we explore it in a dynamic setting to present a debt-aware

elasticity management. In particular, we introduce a managerial approach that assesses

the value of elasticity decisions to adapt the resource provisioning. Additionally, the

approach pursues strategic decisions that value the potential utility produced by the

unavoidable gaps between the ideal and actual resource provisioning over time. As part

of experimentation, we built a proof of concept and the results indicate that value-oriented

adaptations in elasticity management lead to a better economics performance in terms of

lower operating costs and higher quality of service over time.

This thesis contributes (i) an economics-driven approach towards elasticity manage-

ment; (ii) a technical debt-aware model to reason about elasticity adaptations; (iii) a

debt-aware learning elasticity management approach; and (iv) a multi-agent elasticity

management for multi-tenant applications hosted in the cloud.

Keywords: Cloud Computing, Elasticity Management, Technical Debt,

Economics-Driven
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CHAPTER 1

INTRODUCTION

1.1 Overview

Cloud computing is a model that enables an on-demand provision and release of virtual

computing resources [159], which makes these resources appear as infinite to cloud users.

It is also deemed as an economics-driven model because it is aimed at preventing businesses

from incurring upfront commitments in hardware and software licenses [90]. Moreover,

the utility of the model relies on sharing a pool of computing resources among multiple

tenants at runtime, which unfolds the advantages of the economies of scale in the cloud

context.

In economics, economies of scale [25] refers to the reduced average costs that arises

when the total output of a product rises. In particular, the very large cloud data centres

benefit from the economies of scale by dynamically sharing their pools of resources to

cloud users, which consequently increases the utilisation of the resources [15].

The characteristic of cloud computing that provides the underlying primitives to dy-

namically acquire and release shared computational resources on demand is called elas-

ticity. Specifically, elasticity is defined as the extent to which an application and their

execution systems are able to adapt their resource provisioning at runtime to satisfy a

dynamic resource demand, such that the match between resource supply and demand is

as perfect as possible at any point in time [99].
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Although elasticity enables the economies of scale in the cloud, it is a feature that

needs to be properly exploited to achieve adaptations aligned with business goals. Even

the metrics to evaluate elasticity implementations depend on the high-level approach that

drives elasticity adaptations rather than on the elasticity per se. Consequently, elasticity

calls for an autonomous elasticity management that analyses, organises and coordinates

adaptation decisions at runtime in accordance with far-sighted objectives. The challenge

lies in the impossibility of any elasticity management approach to achieve a perfect elas-

ticity i.e. exactly match resource supply with demand [209, 100, 108]. This is because,

as with any adaptive system, managerial elasticity decisions deal with continuous trade-

off between conflicting objectives (e.g. quality and cost) in the presence of uncertainties

coming from a dynamic environment.

Within this context, whilst the existing research on elasticity has proposed diverse

implementations, there exists little discussion on the underlying management approaches

and their perspectives towards the economics aspects of dynamic elasticity adaptations.

In this thesis, we explore an economics-driven perspective towards elasticity manage-

ment in cloud computing environments, and we map economics-inspired frameworks such

as technical debt [160] to implement elasticity management approaches for cloud-based

applications. Technical debt is a managerial metaphor used to rise the visibility of a

trade-off between conflicting objectives (e.g. accuracy and timeliness) and to support a

value-oriented perspective when the value of an actual decision making is compared with

the valuation of the ideal one [235]. The metaphor supports a value-oriented perspective

of suboptimal engineering decisions that may unfold a future benefit if potential changes

materialise; the metaphor can also reflect on the decisions that initially appeared to be

ideal but ceased to create value over time, and analysed in retrospective they ended up

as suboptimal as a consequence of the context evolution over time [131]. In general, the

metaphor can be used to convey the gap between two engineering decisions: one that

produces immediate benefits and another whose gains depends on a more far-sighted

perspective.
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1.2 Problem Statement

Elasticity management should make a strategic use of unavoidable gaps between resource

supply and demand so that elasticity adaptations can minimise the negative effects of

inaccurate, untimely or wrong decisions. The management should be optimised for gaps

minimisation but also should consider strategies for value creation and trading off imme-

diate against long-term benefits.

However, elasticity management implementations are mainly concerned with achiev-

ing an accurate resource provisioning and short-term decisions to achieve an immedi-

ate reward (e.g. cost minimisation, quality enforcement), which covers just partially

the economics-driven origins of cloud computing. In particular, the following aspects of

elasticity management require further investigation: (i) identifying existing management

approaches and their support for the underlying economics of elasticity; (ii) the limited

support for trade-off analysis and value creation in elasticity adaptations; (iii) the lack of

implementations of economics-inspired frameworks to support the economies of scale in

the cloud; and (iv) the economic imbalance between cloud consumers and cloud providers

in multi-tenant cloud environments.

We advocate that elasticity can benefit from explicit considerations of economics on

its management and underlying aspects. For example, elasticity adaptations under un-

certainty may benefit from an economics perspective to deem adaptation decisions as

investments under uncertainty to produce long-term rewards. Another example would

be the introduction of the analysis of economic scarcity [25] and choices for adaptation

decisions to fulfil the promise of managing limited resources but making them appear as

unlimited. Additionally, economics may enrich the elasticity management with an anal-

ysis of cost effectiveness and cost efficiency [195] of adaptation decisions to maximising

outcomes (e.g. utility, profit) besides a cost minimisation.

Any elasticity management produces an imperfect resource provisioning. Therefore,

elasticity calls for approaches that are able to raise the visibility of these imperfections

and use them in a strategic way. In this thesis, we explore elasticity management from an
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economics-driven perspective and implement an economics-inspired framework, technical

debt, to demonstrate the feasibility of our approach for supporting the economies of

scale in cloud environments. The technical debt metaphor makes visible the valuation of

alternatives in a trade-off between an ideal and an actual decision making [93]; in which

the debt is determined by the valuation of the gap between these two alternatives [138].

The metaphor has shown to be effective to identify, measure and monitor trade-offs over

time.

1.3 Research Methodology

The thesis adopts the research methodology of Peffers et al. [189] to develop the research.

Below, we describe the adopted process:

• Problem Identification and Motivation: The first step is to gain insights into

elasticity and its management in cloud computing environments. Therefore, we

conducted a survey partially guided by a systematic literature review (SLR) that

boosted our understanding of the field and allowed us to identify an outlook for open

challenges. Based on the findings, we narrowed our interests towards economics-

inspired frameworks to build elasticity management approaches guided by the po-

tential value of resource adaptation decisions.

• Define the Objectives for a Solution: The main objective of this thesis is

to devise an economics-driven elasticity management that supports value-oriented

adaptation decisions in the face of uncertainties and permanent trade-offs between

conflicting objectives at runtime. We aim to raise the visibility of the potential

value of each adaptation alternative before adjusting the resource provisioning; fur-

thermore, we intend to demonstrate the feasibility of a strategic use of the gaps in

resource provisioning to minimise their negative effects on the long-term utility of

cloud deployed applications.
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• Design and Development: We conduct a systematic literature survey for elastic-

ity management in cloud environments. The results of our survey show inadequacies

of research in strategic and value-based management of trade-offs between ideal and

actual adaptation decisions. In this context, we adapt the technical debt metaphor

which has shown to be effective to identify, measure and monitor trade-offs over

time. In particular, we develop the foundations for introducing the built-in decision

support of technical debt analysis into the large scale dynamic and adaptive context

of cloud elasticity management.

• Demonstration: We implement a simulation tool that mimics a cloud computing

environment using real workloads. In particular, we extended and integrated widely

used frameworks such as CloudSim [39], a framework for modelling and simulation of

cloud infrastructures and services, and Burlap [146], a framework for implementing

reinforcement learning solutions. Our tool support has provided a controlled envi-

ronment for evaluation and experimentation with diverse scenarios and various runs

that would be difficult to observe their impact in real settings. Our experimental

workloads are based on real traces from Internet servers, such as Wikipedia traces

[243], FIFA 1998 World Cup trace [6], ClarkNet trace [46], and IRCache service

traces [7]; and from other real data [105].

• Evaluation: We use an experimental quantitative evaluation to compare the perfor-

mance of our proposed debt-aware elasticity management against classical threshold-

based approaches. Specifically, we compare the performance of the approaches in

terms of their aggregate utility over time, their service level objectives violations

over time, and their resource provisioning over time.

1.4 Research Questions

This thesis addresses the following research questions (RQ):
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• RQ1: What kind of managerial approaches are being used to assess elasticity

adaptation decisions in the implementation of elasticity initiatives? How can an

economics-driven elasticity management support value creation and strategy-driven

adaptation decisions? Which are pending challenges for research into economics-

driven elasticity management?

Answering RQ1 can guide us to gain insights with regards to existing initiatives in

elasticity implementations, to provide data to underpin an economics-driven elas-

ticity management, and to identify areas that require further investigation.

• RQ2: How can we leverage technical debt metaphor to support value-driven analysis

in adaptive elasticity management? What are the technical debts that can be linked

to elasticity adaptation decisions?

• RQ3: Since debt is a moving target, how can runtime learning of technical debts in

elasticity support strategy-driven adaptation decisions for long-term value creation

in the face of uncertainty? How to measure the value of dynamic gaps between ideal

and actual resource provisioning?

• RQ4: How can a debt-aware elasticity management reconcile cloud customer and

cloud provider perspectives towards resource provisioning in multi-tenant cloud-

based applications?

These questions are addressed in the subsequent chapters.

1.5 Thesis Contributions

The research described in this thesis contributes to the general area of elasticity man-

agement in cloud computing environments. In particular, the thesis contributes to a

novel economics-driven perspective and approach to elasticity management; the approach

leverages metaphors in technical debt to implement value-driven trade-offs for adaptation

when managing elasticity. Specifically, the thesis makes the following contributions:
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1. An Economics-Driven Perspective Towards Elasticity Management: We

conducted a comprehensive survey of elasticity initiatives to propose a taxonomy of

elasticity management approaches. Additionally, we advocate an economics-driven

perspective for elasticity management to support value-creation in elasticity adap-

tation decisions. Based on the findings in the survey, we develop an outline with

directions for future research into economics-driven elasticity management.

2. A Debt-Aware Approach to Reason About Elasticity Adaptations: We

map the use of the technical debt metaphor from static to dynamic contexts. In

particular, we introduce a technical debt-aware elasticity management as an ap-

proach to reason about the value of runtime adaptation decisions. We provide an

elasticity conceptual model that links the accumulation of technical debt from adap-

tation decisions and the key drivers of elasticity management including sources of

uncertainty, negative consequences of adaptations, and elasticity constraints.

3. A Debt-Aware Learning Approach for Elasticity Management: We ac-

knowledge the impossibility of achieving a perfect match between resource supply

and demand at runtime. Therefore, we propose an elasticity management approach

that makes a strategic use of the unavoidable gaps between resource supply and

demand by proposing the combination of two strategy-driven frameworks: technical

debt and reinforcement learning. Specifically, the gaps are considered as technical

debts at runtime and the approach learns about their potential value to increase the

utility of cloud services with a long-term perspective.

4. A Multi-Agent Elasticity Management Based On Multi-Tenant Debt Ex-

changes: We develop a multi-agent elasticity management for multi-tenant Soft-

ware as a Service (SaaS) applications, in which debt-aware learning agents act on

behalf of tenants. In our approach, different from existing solutions, the tenants

(cloud consumers) are not forced to be clustered in one of the few categories (e.g.

premium, standard) with predefined Service Level Objectives (SLOs) to force an
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aggregate resource provisioning that favours application owners (cloud providers).

Instead, agents define runtime categories in the form of autonomous coalitions to

dynamically exchange resource capacity among peers based on their own technical

debt profile and attributes (i.e. amnesty and interest), which boosts the fairness

between cloud consumer and provider in elasticity management.

1.5.1 Publications Linked to this Thesis

The research compiled in this thesis is based on three full papers [160, 162, 163] published

in highly competitive conferences and a fourth paper [161] under review for publication

in a prestigious journal. This thesis is the definitive reference of ideas and contributions

introduced in these works.

Conferences

• Mera-Gómez, C., Bahsoon R., and Buyya R., (2016). Elasticity Debt: A Debt-Aware

Approach to Reason About Elasticity Decisions in the Cloud. The 9th IEEE/ACM

International Conference on Utility and Cloud Computing (UCC 2016) (Full paper

acceptance rate 18%), Shanghai, China.

• Mera-Gómez, C., Ramı́rez, F., Bahsoon R., and Buyya R., (2017). A Debt-Aware

Learning Approach for Resource Adaptations in Cloud Elasticity Management. The

15th International Conference on Service-Oriented Computing (ICSOC 2017) (Full

paper acceptance rate 18%), Malaga, Spain.

• Mera-Gómez, C., Ramı́rez, F., Bahsoon R., and Buyya R., (2018). A Multi-Agent

Elasticity Management Based On Multi-Tenant Debt Exchanges. The 12th IEEE In-

ternational Conference on Self-Adaptive and Self-Organizing Systems (SASO 2018)

(Full paper acceptance rate 26%), Malaga, Spain.
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Journals

• (Under review for publication) Mera-Gómez, Bahsoon R., and Buyya R., (2019).

Economics-Driven Elasticity Management in Cloud Computing Environments.

ACM Computing Surveys (CSUR).

1.6 Thesis Roadmap

This section presents the structure of the remainder of the thesis as outlined below.

Chapter 2 surveys existing elasticity implementations and based on the findings

introduces a taxonomy of elasticity management approaches in cloud computing environ-

ments. It provides an economics-driven exploration of elasticity management including

macro and micro economics perspectives to promote value-driven elasticity managerial

decisions. This chapter is derived from our work presented in [161].

Chapter 3 introduces the mapping of the technical debt metaphor in adaptive con-

texts. Specifically, we elaborate on the advantages of a technical debt perspective to make

visible the imperfections of elasticity adaptations decisions taken at runtime. Moreover,

we present an elasticity conceptual model that considers the elasticity determinants to

value potential debts introduced in adaptations. This chapter is derived from our work

presented in [160].

Chapter 4 proposes an elasticity management that combines the advantages of a com-

bination of two strategy-driven techniques, namely reinforcement learning and technical

debt metaphor, to value the potential utility produced by the gap of an imperfect elas-

ticity adaptation and trade off quality against cost when managing elasticity adaptations

under uncertainties. This chapter is derived from our work presented in [162].

Chapter 5 introduces a multi-agent elasticity management approach that preserves

the diversity of SLOs in cloud multi-tenant applications. The elasticity adaptations are

performed by debt-aware reinforcement learners that act on behalf of tenants and form

dynamic agent coalitions at runtime by means of a stable matching approach that analysis
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the attributes of incurred debts. This chapter is derived from our work presented in [163].

Chapter 6 performs a reflective evaluation of the thesis in relation to the degree at

which our work in previous chapters addressed the reported research questions. Addition-

ally, it describes architectural aspects of the simulation tool that we developed as part of

our research.

Chapter 7 concludes the thesis with a summary of the main contributions and

presents an outlook for future research in economics-driven elasticity management.
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CHAPTER 2

ECONOMICS-DRIVEN ELASTICITY
MANAGEMENT IN CLOUD COMPUTING

ENVIRONMENTS

2.1 Overview

Elasticity is an intrinsic characteristic of cloud computing that enables a deployed service

to adapt to a changing environment by acquiring and releasing shared computational

resources on demand [99]. This characteristic facilitates the advantages of economies of

scale in the cloud, which means that costs incurred by deployed services in handling

aggregate requests decreases as a result of the dynamic sharing capability [77].

The process of elasticity management is autonomous in nature [175, 111]; however,

there is no clear alignment between stages in the process and value creation. Moreover,

there is a fuzzy justification of how the activities in the process tend to make decisions

grounded on value-driven analysis [165, 225]. Therefore, though elasticity management is

essentially driven by economies of scale and with the intention of optimising the utilisa-

tion of the virtual/physical resources in a cloud computing environment, the majority of

elasticity realisation approaches [4, 57, 145] tend to have the economics as implicit, rather

than explicit.

We argue that explicit consideration of economics should be centric to the elasticity

management process and its decisions. We advocate taking strategic and value-based
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decisions; this is important to promote the long-term profitability of resource provisioning.

This chapter explores an economics-driven dimension to manage elasticity decisions

and its relevance to value and strategic considerations. The work presents elasticity fac-

tors that impact on the value of adaptation decisions at runtime. Additionally, since the

constructs described in the Monitor-Analyze-Plan-Execute-Knowledge (MAPE-K) feed-

back loop [50] tend to be inclusive and capture either partially or fully the operations of

elasticity, we use it as a guideline to discuss the autonomy of the elasticity management

process for economics-driven analysis. This chapter presents:

• A taxonomy of elasticity management approaches. The taxonomy provides a com-

prehensive classification for the managerial focus and the built-in awareness that

drives adaptation decisions.

• A perspective on elasticity management as an economics-driven process that moti-

vates a strategy and value-oriented analysis of elasticity managerial decisions. We

reformulate the MAPE-K loop for autonomous systems as an economics process to

examine value considerations at each phase.

• A set of recommendations concerning future research directions into economics-

driven elasticity management.

Although previous surveys in elasticity management exist [174, 175], to our knowledge,

only one of them [145] proposed a classification of elasticity management approaches,

which is based on their underlying technique to implement elasticity (e.g. time series,

reinforcement learning). Surveys in elasticity [4, 176, 81, 52, 194] proposed classification of

elasticity mechanisms based on their characteristics (e.g. architecture, scope, method) but

without distinguishing between elasticity and their management. In contrast, our work

performs a comprehensive survey that makes an explicit consideration of the approach

towards elasticity management to build a taxonomy of managerial approaches.

The underlying economics of elasticity in relation to services deployed in the cloud has

been discussed in prior research [223, 77], and the view of elasticity management as an
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autonomous process has been abstracted in previous works as a MAPE [145, 194, 174, 175]

or MAPE-K loop [77, 17]. However, to our understanding, our work is the first to enrich

the elasticity management process with an economics-driven perspective to support value-

oriented adaptation decisions.

The remainder of this chapter is structured as follows. Section 2.2 presents a classifi-

cation of elasticity management initiatives and Section 2.3 introduces the perspective of

an economics-driven approach. Next, in Section 2.4, we provide an overview of elasticity

factors from a macroeconomics perspective, while Section 2.5 presents the microeconomics

of autonomous elasticity management. Then, Section 2.6 provides a future outlook for

research into economics-driven elasticity management, followed by a gap analysis in Sec-

tion 2.7 and a review of related works in Section 2.8. Finally, Section 2.9 concludes the

chapter.

2.2 Elasticity Management

Elasticity is the autonomous capability of a cloud deployed service to provision and de-

provision virtual resources in response to a dynamic need of computing capacity, such

that the varying provisioning is intended to match the resource demand with time [100].

However, elasticity is only a capability, and consequently it needs management that or-

ganises and coordinates decisions in accordance with far-sighted economic objectives to

maximise the value of elasticity adaptations.

The purpose of elasticity in the cloud is to enable an autonomous resource provi-

sioning on demand [99, 159, 100]. However, some classifications of elasticity mechanisms

[4, 176, 81, 52] interpret the purpose of elasticity as the approach towards elasticity man-

agement. From our perspective, elasticity management, rather than an intrinsic and

underlying characteristic of elasticity, is a process whose high-level orientation defines the

assessment of dynamic trade-offs in elasticity adaptation decisions. In this context, we

studied existing elasticity initiatives to propose a classification of elasticity management
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perspectives.

The rest of the section describes the research methodology used to conduct our review

of existing elasticity solutions and then introduces a classification of elasticity management

approaches.

2.2.1 Research Methodology

The survey was partially guided by the Systematic Literature Review (SLR) research

method proposed by Kitchenham et al. [124]. Our aim was to increase the possibility

of producing an unbiased exploration of the current body of work on the field to select

representative articles that can reflect current perspectives towards cloud elasticity man-

agement. The details of the methodology that we adopted are described in the following

sub-subsections.

Review Protocol

The protocol comprises the following components: (i) background research to motivate the

survey; (ii) the identification of research to define research questions for the review; (iii)

the selection of citation indexing services and digital databases to search existing works;

and (iv) the definition of inclusion and exclusion criteria to refine compiled papers.

Identification of Research

To answer RQ1, we conducted a survey using the following query to retrieve papers

based on their title, abstract and keywords: (”cloud computing” AND (”auto-scaling”

OR ”autoscaling” OR ”elasticity” OR ”elasticity management” OR ”elastic scaling”)).

The term auto-scaling was included to avoid missing works that refer to elasticity in

that way. Additionally, a manual search was performed to check for papers that may

have been missed in the automated manner. This search was informed by experience,

cross referencing, and checking the citations of seminal papers. The insights gained in
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answering RQ1 set the basis to deal with the subsequent research questions.

Selected Data Sources

We surveyed research papers in the citation indexing services of Web of Science and

Scopus; besides the digital databases of ACM Digital Library and IEEE Xplore. Addi-

tionally, we searched in Google Scholar to avoid missing relevant works not indexed in

the mentioned data sources.

Study Selection

The retrieved entries were reviewed using inclusion and exclusion criteria. On one hand,

we included papers that (i) were published in high-impact journals and conferences; (ii)

were written in English; and (iii) were focused on elasticity management. On the other

hand, records were excluded if (i) they were duplicate entries; (ii) they provided insufficient

details about their approach to satisfy the research question (e.g. short-papers); (iii) they

mentioned elasticity but their targets were on related topics (e.g. placement, service level

management, admission control); or (iv) the access to their full text required a specific

payment. Initially, the search retrieved 4206 papers but, after applying the inclusion and

exclusion criteria, we studied 110 relevant papers.

2.2.2 Classification of Management Approaches

We defined the following attributes of an elasticity management to assess its approach:

(i) quality conformance; (ii) cost-awareness; (iii) energy-awareness; (iv) type of targeted

clouds; and (v) economics-awareness. Regarding quality conformance, in the surveyed

papers, we were looking at the Quality of Service (QoS) parameters (e.g. response time,

throughput, latency) or other indirect performance metric (e.g. utilisation level) used to

evaluate their approaches. For the cost-awareness, we examined their explicit considera-

tions (direct indicators rather than proxies) for the consumption prices of virtual resources
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and penalties caused by Service Level Objective (SLO) violations. In the case of energy-

awareness, we analysed their attention to energy consumption and carbon footprint. For

the type of targeted clouds, we identified if they aimed at a single cloud or an inter-

cloud solution (i.e. federated clouds or multi-cloud). Finally, in economics-awareness, we

studied the perspective towards economics concepts such as value creation, profitability,

strategic decisions [26] (e.g. proactive adaptations, long-term objectives), uncertainty

awareness (e.g. fuzzy logic, probability-based methods), and trade-offs considerations.

Table 2.1 summarises our findings in the examined elasticity initiatives. A tick (3) ap-

pears if the initiative under analysis conforms the criterion, otherwise an em dash (—) is

shown.

In the review, we identified five types of approaches to manage elasticity: quality-

driven, cost-aware, energy-aware, inter-cloud-oriented and economics-driven. Based on

these findings, we propose a classification of elasticity management approaches and discuss

each category in the forthcoming sub-subsections. Figure 2.1 illustrates the taxonomy and

Table 2.2 provides representative examples from surveyed papers in each category.

Quality-Driven Elasticity Management

Quality-Driven approaches take managerial decisions to adapt the resource provisioning

with the intention of meeting expected SLOs or minimising impairments in the quality

of service that lead to SLO violations. The decision-making process of these mechanisms

ignores cost related aspects such as resource pricing schemes and billing cycles. Their

decisions are also informed by performance parameters of virtual resources, such as CPU

utilization, memory usage, or disk bandwidth.

In this kind of approach, the most common SLOs used to evaluate their outcomes are

response time, followed by throughput and then latency. Some of these approaches also

define custom-metrics [23, 186] in terms of SLO attributes and performance parameters

for over- and under-provisioning states.
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Table 2.1: Summary of Reviewed Elasticity Management Initiatives

Initiative
Quality Conformance Cost-Awareness Energy-Awareness Targeted Cloud Economics-Awareness

Response Time Other Prices Penalties Consumption Single Federated Multi- Value Profit Strategy Uncertainty Trade-offs

[181] 3 — 3 — — 3 — — — — 3 3 3

[218] 3 — — — — — 3 3 — — — — 3

[30] — 3 — — — 3 — — — — 3 3 —

[196] — 3 — — — 3 — — — — 3 — 3

[16] 3 3 3 3 — 3 — — — — 3 3 3

[179] 3 — 3 3 — 3 — — — — 3 3 3

[23] 3 3 — — — 3 — — — — 3 3 3

[188] 3 3 3 — — 3 — — — — 3 — 3

[237] 3 3 3 — — — — 3 — — — — 3

[143] 3 — — — — 3 — — — — 3 — —

[55] 3 3 3 — 3 3 — — — — 3 — 3

[75] — 3 3 — — 3 — — — — 3 — 3

[58] — — — — 3 3 — 3 — — — — 3

[118] — 3 3 — — 3 — — — — 3 — 3

[201] — 3 3 — 3 3 — — — — 3 — 3

[157] — 3 3 3 — 3 — — — — 3 — 3

[180] — 3 — — — 3 — — — — 3 3 —

[86] 3 3 — — — 3 — — — — 3 — 3

[173] — 3 3 — — — 3 3 — — 3 — 3

[228] 3 — — — — 3 — — — — 3 — 3

[17] 3 3 3 3 — 3 — — — — 3 — 3

[3] 3 — 3 — — 3 — — — — — — 3

[247] 3 3 — — — 3 — — — — 3 — 3

[40] — — — — 3 3 — — — — — — 3

Continued on next page
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Table 2.1 Summary of Reviewed Elasticity Management Initiatives (Continued from previous page)

Initiative
Quality Conformance Cost-Awareness Energy-Awareness Targeted Cloud Economics-Awareness

Response Time Other Prices Penalties Consumption Single Federated Multi- Value Profit Strategy Uncertainty Trade-offs

[191] — 3 — — — 3 — — — — 3 3 —

[77] 3 — 3 3 — 3 — — 3 3 3 — 3

[78] 3 — 3 3 — 3 — — 3 3 3 — 3

[162] 3 — 3 3 — 3 — — 3 3 3 3 3

[163] 3 — 3 3 — 3 — — 3 3 3 3 3

[160] 3 — 3 3 — 3 — — — 3 3 — 3

[22] 3 — 3 3 — 3 — — — — 3 3 3

[185] 3 — 3 3 — 3 — — — 3 3 3 3

[44] 3 3 3 — — 3 — — — — — 3 3

[135] 3 3 3 — — — 3 3 — 3 3 — 3

[234] 3 3 3 3 3 3 — — — — — — 3

[202] — 3 3 — — 3 — — — — 3 — 3

[107] — 3 3 — — 3 — — — — — — 3

[211] 3 3 3 3 — 3 — — — — 3 — 3

[245] 3 3 — — 3 3 — — — — — — 3

[158] 3 3 3 — — 3 — — — — 3 — 3

[63] 3 3 3 — — 3 — — — — 3 — 3

[92] — 3 3 — 3 3 — — — — — 3 3

[60] — 3 3 — — 3 — — — — 3 3 3

[133] — 3 3 — — — — 3 3 — 3 — 3

[111] 3 3 3 — — 3 — — — — 3 3 3

[56] — 3 — — 3 3 — — — — 3 — 3

[193] 3 — 3 — — 3 — — — 3 3 3 3

[6] — 3 3 — — 3 — — — — 3 3 —

[74] 3 3 — — — 3 — — — — 3 — —

Continued on next page
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Table 2.1 Summary of Reviewed Elasticity Management Initiatives (Continued from previous page)

Initiative
Quality Conformance Cost-Awareness Energy-Awareness Targeted Cloud Economics-Awareness

Response Time Other Prices Penalties Consumption Single Federated Multi- Value Profit Strategy Uncertainty Trade-offs

[214] 3 3 — — 3 3 — — — — 3 — 3

[205] 3 3 — — — 3 — — — — 3 — —

[215] — 3 3 — — 3 — — — — — — 3

[168] — 3 — — — 3 — — — — 3 — —

[59] 3 3 — — — 3 — — — — 3 3 —

[251] — 3 — — 3 3 — — — — 3 — 3

[13] 3 3 3 — — 3 — — 3 — 3 3 3

[57] — 3 3 — — 3 — — — — — — 3

[149] 3 3 3 — — 3 — — — — 3 — 3

[72] 3 — — — — 3 — — — — 3 3 3

[45] — 3 — — — — — 3 — — 3 — —

[101] — 3 3 3 — — 3 — — — 3 — 3

[128] 3 3 3 3 — 3 — — — 3 3 3 3

[222] 3 3 — — — 3 — — — — 3 3 —

[166] 3 3 — — — 3 — — — — 3 — —

[94] — 3 — — 3 3 — — — — — — 3

[232] — 3 3 3 3 3 — — — — 3 — 3

[91] — 3 3 — — — — 3 — — — — 3

[132] 3 — — — — 3 — — — — — — —

[96] 3 3 3 3 — 3 — — — — — 3 3

[117] — 3 — — — 3 — — — — 3 — —

[53] — 3 — — — 3 — — — — 3 — —

[127] 3 3 3 3 — 3 — — 3 3 3 — 3

[110] 3 — — 3 — 3 — — — — 3 3 3

[216] 3 3 3 — — — — 3 — — — — 3

Continued on next page
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Table 2.1 Summary of Reviewed Elasticity Management Initiatives (Continued from previous page)

Initiative
Quality Conformance Cost-Awareness Energy-Awareness Targeted Cloud Economics-Awareness

Response Time Other Prices Penalties Consumption Single Federated Multi- Value Profit Strategy Uncertainty Trade-offs

[87] — 3 3 3 — 3 — — — — 3 — 3

[190] 3 — 3 3 — 3 — — 3 3 3 3 3

[115] 3 3 3 3 — 3 — — — — 3 3 3

[126] — 3 — — — — 3 — — — 3 — —

[104] — 3 3 3 — 3 — — — — 3 3 3

[51] — 3 3 3 — 3 — — — — — — 3

[113] — 3 3 3 — 3 — — — — 3 3 3

[5] — 3 3 — — 3 — — — — 3 — 3

[80] — 3 — — — 3 — — — — — — —

[85] 3 3 — — — 3 — — — — 3 3 —

[187] 3 3 — — — — — 3 — — — — —

[170] 3 3 — — — 3 — — — — 3 3 —

[167] 3 3 3 — — 3 — — — — — — 3

[246] 3 — 3 3 — 3 — — — 3 3 — 3

[153] — 3 3 — — 3 — — — — 3 — 3

[108] 3 3 3 3 — 3 — — — — — — 3

[172] — 3 — — 3 3 — — — 3 3 3 3

[212] 3 3 3 — — 3 — — — — 3 — 3

[203] 3 — 3 3 — 3 — — — — 3 3 3

[32] 3 3 3 — — 3 — — — — 3 — 3

[125] — 3 — — 3 3 — — — — — — 3

[156] — 3 3 — — 3 — — — — 3 — 3

[155] 3 3 3 — — 3 — — — — 3 — 3

[100] 3 3 — — — 3 — — — — — — —

[114] — 3 3 — — 3 — — 3 3 3 — 3

Continued on next page
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Table 2.1 Summary of Reviewed Elasticity Management Initiatives (Continued from previous page)

Initiative
Quality Conformance Cost-Awareness Energy-Awareness Targeted Cloud Economics-Awareness

Response Time Other Prices Penalties Consumption Single Federated Multi- Value Profit Strategy Uncertainty Trade-offs

[186] — 3 — — — 3 — — — — 3 3 3

[7] — 3 3 — — 3 — — — — 3 — 3

[43] — 3 3 3 — 3 — — 3 3 3 3 3

[177] — 3 — — — 3 — — — — 3 — 3

[119] 3 — 3 3 — 3 — — — — 3 3 3

[204] 3 3 3 — — 3 — — — — 3 3 3

[70] 3 3 — — — 3 — — — — 3 3 —

[71] 3 3 — — — 3 — — — — 3 3 —

[21] 3 — — — — 3 — — — — 3 — —

[144] 3 3 — — — 3 — — — — 3 3 3

[169] — 3 — — — 3 — — — — — — 321



Cost-Aware Elasticity Management

Cost-aware management perspectives explicitly consider the cost implications of elasticity

adaptation decisions, besides the minimisation of SLO violations. Different from quality-

driven perspectives, cost-aware initiatives go beyond a simple reduction of launched virtual

resources and acknowledge the cost-reduction as a multidimensional issue, in which there

is a non-linear relation between prices and computing resource granularity. The cost-

related aspects analysed by these approaches include budget constraints, pricing schemes

of virtual resources, billing cycles, penalties caused by non-adherence to expected SLOs

among others. Some of the studied initiatives monetise penalties or incorporate them in

the trade-off analysis of elasticity adaptations by means of utility functions.

These initiatives make runtime decisions that pursue immediate rewards and cost

minimisation at task scheduling or when increasing, maintaining or reducing the resource

provisioning. In particular, they make visible the trade-off between quality of service

and operating costs. This management approach is the most common in the surveyed

initiatives.

Energy-Aware Elasticity Management

Energy-aware management mechanisms aim to lower the power consumption of physical

nodes that allocate the running virtual machines (VMs). In particular, this managerial

perspective is built on the fact that energy consumption has a non-linear relationship with

cost and SLOs enforcement [38]. Therefore, although this kind of elasticity management

tries to minimise costs while enforcing SLO adherence, similar to cost-aware approaches,

its cost savings focus on reducing energy consumption. Additionally, this reduction may

produce further savings in terms of taxes related to carbon footprint [120].

Some of these elasticity management initiatives consider aspects such as VM live

migration, in which a VM migrates from one node to another either to search for additional

capacity or, alternatively, to consolidate VMs in a lower number of physical nodes. Other

initiatives reduce power dissipation through a dynamic scaling of CPU frequency and
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Figure 2.1: Taxonomy of Elasticity Management Approaches

voltage [148, 103] prior to switch nodes off.

Inter-Cloud-Oriented Elasticity Management

Inter-Cloud-Oriented management approaches are intended to facilitate elasticity adapta-

tions across different clouds, specifically an inter-cloud. An inter-cloud [90] refers to either

a federation, in which cloud providers interconnect their infrastructures to exchange re-

sources, or a multi-cloud, in which a cloud service assumes the responsibility to manage

its resource provisioning across an aggregation of multiple clouds.

Our findings indicate that some elasticity initiatives in this category overlap with other

approaches because, besides guaranteeing the operation among several clouds, they also

evaluate their performance in terms of quality of service [187], incured operating costs

[135] or even energy consumption [58].

Economics-Driven Elasticity Management

Economics-driven management mechanisms implement a rational decision-making based

on strategies for value creation under adaptation uncertainties. A decision is considered

to possess or create value if (i) it takes advantage of opportunities and/or counterbalances

threats in an environment; or (ii) it enables a decision-maker to boost the satisfaction of
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their needs; or (iii) it enables a decision-maker to devise strategies that enhance efficiency

and effectiveness [33]. Therefore, this kind of management defines a decision-making

process that considers the uncertainty in the cloud as an opportunity to create value if

certain conditions materialise, or trading off the immediate against the far-sighted benefits

of an elasticity adaptation. Additionally, since strategy and economics are intrinsically

intertwined [26], the underlying strategy of this kind of approaches articulates a consistent

behaviour that shapes decisions aligned with basic long-term objectives, efficient use of

scarce resources, and guidelines grounded on economics-driven frameworks.

Different from cost-aware approaches whose decisions are short-term and analysed in

terms of a trade-off between cost minimisation and quality conformance; an economics-

driven elasticity management performs a more holistic strategic analysis (e.g. cost effi-

ciency, cost effectiveness), in which an adaptation decision is deemed as an investment

that may even discard immediate rewards to pursue its far-sighted value. In particular,

our findings indicate that this kind of management approach adopts economics criteria

such as (i) economics-inspired frameworks as in [160, 78]; (ii) agent-based computational

economics [231] as in [163]; (iii) pricing techniques and yield management for profit max-

imisation as in [114, 172]; (iv) analysis of the cost efficiency and cost effectiveness of

decisions as in [193, 190]; and (v) adaptations deemed as investments with long-term re-

wards under uncertainty as in [162, 13]. Initiatives in this category conform at least four

out of five criteria for the economics-awareness assessment shown in Table 2.1.

2.3 The Economics of Elasticity Management

Economics attempts to reconcile the conflict between a virtually infinite demand of re-

sources from economic agents and the ability of the society to produce limited resources

and satisfy the demand under scarcity [25]. At any point of time, the agents make ra-

tional choices under uncertainty by comparing the benefits and the costs related to the

alternatives; such that an alternative is chosen only if its benefits exceed its costs.
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Table 2.2: Classification of Elasticity Management Approaches

Management Approach Representative Examples

Quality-Driven [23, 143, 180, 86, 228, 247, 191, 74, 205],
[168, 59, 72, 222, 166, 132, 117, 53, 80],
[85, 170, 100, 186, 177, 30, 196, 70, 71],
[21, 144, 169]

Cost-Aware [179, 188, 75, 118, 157, 17, 3, 44, 202],
[107, 211, 158, 63, 60, 111, 22, 6, 215],
[57, 149, 96, 110, 87, 115, 104, 51, 113],
[5, 167, 246, 153, 108, 212, 203, 32, 156],
[155, 7, 181, 16, 119, 204]

Energy-Aware [55, 58, 201, 40, 234, 245, 92, 56, 214],
[251, 94, 232, 172, 125]

Inter-Cloud-Oriented [237, 58, 173, 135, 133, 45, 101, 91, 216],
[126, 187, 218]

Economics-Driven [77, 78, 162, 163, 160, 185, 128, 193, 13],
[127, 190, 172, 114, 43]

We define elasticity management as an autonomous process that makes value-driven

runtime adaptation decisions to provision resources on-demand and schedule the execution

of tasks/requests on these resources; such that the provisioning is intended to satisfy a

changing resource demand, while trading off conflicting objectives under uncertainty, in

the most efficient manner.

According to the definition, Figure 2.2 depicts the main components of an elasticity

management architecture: the dynamic resource provisioning and resource scheduling.

The dynamic resource provisioning component is responsible for acquiring and releas-

ing virtual resources [45, 175]. This component analyses goals compliance (e.g. quality,

budget) and also analyses the usage of virtual resources to identify the imminent need of

future adaptations. Regarding the decision-making, this component adapts the resource

provisioning and select the right instances to fulfil resource needs.

The resource scheduling component allocates each job to acquired and running virtual

resources; the jobs can be tasks or requests. Requests are those jobs corresponding to

web applications whereas tasks correspond to jobs in scientific applications. The tasks

can be further classified as workflows, tasks with an execution dependency between them,
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or bag-of-tasks, tasks that are independent between them and can be processed in batch

[45, 38]. Regarding the analysis, the scheduling needs a runtime analysis of job constraints

(e.g. budget, deadline)[215] and queues of scheduled jobs.

The managed cloud target can be either a cloud application or a cloud service.

The external monitor component collects the relevant state of the managed cloud tar-

get. In particular, this component consists of cloud monitoring systems (e.g. cloudinit.d,

GMonE) or monitoring as a service tools (e.g. Amazon CloudWatch, RightScale) [241].

The external actuator component implements the adaptation decisions for the man-

aged cloud target through the invocation of APIs.

Finally, the knowledge component serves as a metadata repository to support analysis

and decision-making with data and decision recording, catalogues of virtual resource,

data centres, and depending on the approach even with learning models to support value

creation or deal with uncertainty.

Similar to rational decision-making in economics processes, uncertainty and value are

essential for elasticity managerial decisions. Regarding the uncertainty, two kinds are con-

sidered in autonomous management processes: aleatory and epistemic [178]. In elasticity

26



management, the aleatory uncertainty comes from the natural randomness in the cloud

ecosystem such as an unexpected varying workload demand. The epistemic uncertainty

refers to an imprecise knowledge of an elasticity factor, which is reflected in missing vari-

ables or incorrect modelling of the environment such as in a workload forecasting or a

resource contention [83]. In relation to the value-enhancing aspects, an elasticity manage-

ment decision aims to create value in terms of the flexibility of the decided configuration

to cope with the expected resource demand in an efficient way.

Economics consists of two interdependent branches: macroeconomics and microeco-

nomics [224]. The former discipline, macroeconomics, is concerned with global issues

that affect the entire ecosystem from a high level perspective, such as a monetary policy

or unemployment rates; whereas the latter field, microeconomics, focuses a low level per-

spective on aspects related to individual decision-making processes and their consequences

such as analysing an individual consumption behaviour or the relation between supply

and demand of a scarce resource in a specific market. In this context, we posit that an

economics-driven elasticity management benefits from a macro and microeconomics anal-

ysis of value. For instance, the spin-up time [34], which is the delay between the time a

new virtual machine (VM) is launched and the time this is effectively ready to be used, is

a macroeconomic determinant that affects every service deployed in the cloud ecosystem;

whereas an example of a microeconomics analysis occurs in the management process that

produces elasticity adaptations for the resource demand of a specific service. We will

explore both dimensions in the following sections.

2.4 The Macroeconomic Aspects of Elasticity

Macroeconomics analyses the determinants that affect the economy as a whole [150]. Ad-

ditionally, macroeconomics defines basic principles to formulate economic management

and meet changing scenarios; although it is unable to predict the future direction of spe-

cific economic events [150]. In line with this, a macroeconomic perspective of elasticity
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management needs to consider the implications on value of global elasticity determinants

[160]; which transversely influence cloud deployed services when attaining economics ben-

efits of elasticity. The determinants of elasticity management are: (i) elasticity policy,

(ii) elasticity method, (iii) elasticity level, (iv) spin-up time, (v) resource granularity, and

(vi) resource pricing scheme and billing cycle.

2.4.1 Elasticity Level

Elasticity level determines the layer in which elasticity adaptation decisions are adopted:

(i) application, (ii) infrastructure or (iii) platform level [81].

An example of the application elasticity level is [95]. This work manages elasticity at

the algorithm level, making the application aware of budget availability or time constraints

to produce different outcomes accordingly. However, this is only applicable in a limited

scope where consumers would accept approximate outputs (e.g. data mining, multimedia

applications). Another illustration is SYBL [51], which is a language based on extensible

programming directives that allows to specify elasticity requirements in an application or

even in components to control elasticity adaptations.

Infrastructure as a Service (IaaS) Amazon EC2 [10] is an example of the infrastructure

elasticity level. It provides both an API and a mechanism named Auto Scaling to define

threshold-based rules to launch or release a predefined set of virtual machines (VMs)

depending on conditions configured in terms of resource utilization metrics whose values

are delivered by a monitoring service called CloudWatch.

Finally, in the case of a platform elasticity level, the container or execution environment

from a Platform as a Service (PaaS) cloud supplies an embedded controller for applications

built and deployed on these platforms [82, 239].

Both infrastructure owner and service owner can benefit from elasticity decisions

adopted at the platform and infrastructure level. By contrast, only the service owner

can create value from elasticity decisions at the application layer.
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2.4.2 Elasticity Method

Elasticity method determines the deployment mechanisms to provision or remove virtual

resources; these mechanisms are categorized as replication, migration and resizing [81].

Firstly, replication or horizontal scaling is given by adding or releasing VMs, containers

or modules. As shown in [57], this is by far the most common method in commercial and

academic research initiatives.

Secondly, resizing or vertical scaling consists in adding individual capacities such as a

single CPU to a running VM. It is only available by a few commercial providers such as

CloudSigma [47] and ElasticHosts [67].

Thirdly, migration consists in reallocating a running VM from one physical machine

to another intended to consolidate or separate VMs; which makes this mechanism useful

to simulate resizing.

2.4.3 Elasticity Policy

Elasticity policy is defined by [81] as the interactions required to perform resource pro-

visioning; the policy can be classified as manual or automatic. In manual policy, the

customer is responsible for monitoring and carrying out resource adaptations through

an API. On the other hand, in automatic policy, monitoring and elastic adaptations are

carried out by the application itself or by the cloud platform according to a reactive,

proactive or hybrid approach.

A reactive approach consists of threshold-based rules which take adaptations relying

on performance metric values defined by a stakeholder (e.g. [88, 96, 10]). This is by far

the most popular policy due to its simplicity to define the rules. Nonetheless, the major

drawbacks of the approach are that (i) it requires some expertise to tune the correct

metrics and their corresponding decision thresholds in the conditions that trigger a grow

or shrink back in resources; and (ii) it lacks of anticipation capabilities that predict coming

events to better deal with uncertainty. Several techniques [145] have been employed to
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minimize the former disadvantage such as the one implemented by the cloud management

platform RightScale, in which a voting process [199] among the VMs is incorporated to

make the approach take consensual adaptations.

Different from the previous, a proactive approach aims to predict resource demand to

supply resources in advance (e.g. [7]) by means of forecasting techniques such as time

series analysis, reinforcement learning, queue theory and control theory. We will briefly

discuss each of them:

1. Time series analysis: Approaches that use time series analysis try to anticipate

future workload values or seek patterns in the incoming workload. Thus, elasticity

adjust resource provisioning according to this prediction such as the work of [98].

This is the most used technique to build proactive approaches. However, its main

shortcoming is that it relies on the selection of a suitable time series model (e.g.

moving average, exponential smoothing, ARIMA) for the workload type, and the

correct choice for the number of past observations an the forecasting interval [145].

2. Reinforcement learning: These approaches build on the premise that agents perform

actions aimed at maximizing a reward or utility function only from observations

without a priori information. For instance, [22] implemented an elasticity agent per

VM that endeavours to approximate an optimal elasticity policy over time depending

on the incoming workload and dynamic resource provisioning; each agent shares

its learning experience with other peers to shorten the convergence time towards

a stable elasticity policy that pursues a maximum aggregate utility. The major

drawback of this kind of policies is that they work well only for stable workloads

[110].

3. Queue theory: Policies that use this technique such as [238] determine forthcoming

resource provision based on an estimation of performance metrics as a result of a

modelling of VMs as a network of queues that take an incoming request rate and

the resource demand per request. The main shortcoming of these approaches is that

30



they depend on stable workloads to minimize recalculation of the VM models.

4. Control theory: These kind of approaches rely on the design of an elasticity controller

that adjusts input variables, such as the number of servers, to keep output variables

within desired values, such as a specific performance metric range. According to

[145], they can be classified as: (i) fixed gain controllers (e.g. [140]), (ii) adaptive

controllers (e.g. [183]), and (iii) model predictive controllers (e.g. [240]). The main

challenge of this control theoretical perspective is to build an appropriate system

performance model that maps input and output variables accordingly.

Finally, a hybrid approach is a way to blend a reactive with a proactive one. As for

example, the works in [6, 110]. The former shows nine different combinations between a

reactive and a proactive approach to build an hybrid elasticity policy. Its results reveal

that the most efficient of those combinations is a reactive policy to grow in resources with

a proactive one to shrink them back.

In any approach, an appropriate elasticity policy should cope with sudden instability

of resource demand to avoid resource thrashing [64, 57], which is the consequence of

unnecessary opposite resource adaptation on presence of quick fluctuations in the demand

leading to degrade elasticity in terms of cost and quality. From the alternatives available to

minimize this aftermath [57, 145], these are the most common: (i) define a cooldown period

during which new elastic adaptations are avoided; (ii) specify a number of successive

threshold violations of a monitored performance metric; (iii) keep a gap between the

threshold and the maximum/minimum capacity of the performance metric to make this

difference act as a buffer; and (iv) wait a number of seconds before adjusting the resource

provisioning (in addition to the cooldown period of the previous adaptation).

2.4.4 Computing Resource Granularity

Computing resource granularity determines how computing resource capacities (e.g. pro-

cessing, memory, storage, networking / data transfer) are supplied within an elasticity
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adaptation. Most of the public cloud providers such as Amazon EC2 and Microsoft

Azure [164] restrict the acquisition of individual needs and offer bundles of a fixed com-

bination of capacities. Although, some providers such as Google Compute Engine allows

to define custom machine types; these take longer the first time are launched [223]. This

resource purchase by bundles introduces a lack of flexibility that reduce transparency at

resource provisioning. A special case is CloudSigma, which makes transparent its bundles

prices by disaggregating individual computing capacity prices. Another issue to consider

is how bundles capacities and pricing are related, because their relation is not always

linear [212, 153]. Hence, overall cost incurred by a cloud customer is also determined by

the dynamic bundle selection at runtime with each adjust of resource provisioning.

2.4.5 Spin-Up Time

Spin-up time accounts for the delay between the time a customer requests a resource

until it is effectively ready to be used. Subsequently, the adjust of resource provisioning

is slower than ideally expected. For some providers, experimental evidence shows that

spin-up time might take up to 10 minutes [34, 136] and it depends on several factors such

as cloud layer (IaaS or PaaS), type of operating system, number of requested VMs, VM

size and resource availability in the data center location [82, 154]. Besides the spin-up

time, a dynamic resource provisioning can be affected by the quota imposed by cloud

providers to limit the number of resource instances that can be acquired by a customer

in a single request [82], which might be insufficient during a sustained fast growth or for

high performance applications.

2.4.6 Resource Pricing Schemes and Billing Cycles

Resource pricing schemes are classified by [114] as: pay-as-you-go, subscription and spot

market. Firstly, pay-as-you-go consists in a fixed price per billing cycle. For example,

Google Compute Engine [89], a minute-based billing but with a minimum charge of 10
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minutes at launching new VMs; Amazon EC2 offers a second-based billing with a mini-

mum of 60 seconds; or CloudSigma [47], a 5 minute-based billing cycle. The length of the

billing cycle may lead to a partial usage waste [114], which is the extra time paid for a

released resource due to the billing cycle granularity. Hence, a customer needs to analyse

an appropriate pricing scheme depending on workload pattern, volume and type of job

[223]. On the other hand, a provider considers maintenance costs such as those at starting

or shutting down a VM and additional overheads related to a fine-grained pricing [114].

Secondly, subscription tends to be deterministic as far as price is concerned. In case the

choice is informed by a deterministic projection for the demand, the model can render a

cheaper option. However, subscription is not elastic because customers subscribe before-

hand for resources for a definite period of time and the model might not be optimal if the

level of demand fluctuates, which is often the case on open and multi-tenant environments

such as cloud. Nonetheless, it may be combined with a pay-as-you-go scheme to handle

the minimum expected amount of jobs and reduce overall costs. Thirdly, spot market can

be the cheapest alternative in some scenarios, where users can bid for resources and get

available resources when their offers are higher than the spot price. However, this scheme

is only suitable for flexible jobs that are not time critical and can cope with interruptions

because these spot or preemptible instances [10, 89] are terminated when the spot price

exceeds the offer.

2.4.7 Workload

Workload determines the arrival rate of incoming jobs for the cloud service. The most

important elements to consider in a workload refers to the workload type [88] (e.g. batch,

transactional, analytical, high-performance) and workload intensity behaviour [98], which

is given by the pattern (e.g. periodical, unpredictable) and volume of requests arrival rates

over time. Some works [7, 98] have proposed a dynamic workload classification to choose

at runtime the most convenient elasticity implementation depending on the attributes of

the workload.
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2.5 The Microeconomic Aspects of Elasticity Man-

agement

Microeconomics is concerned with the supply and demand of scarce resources using an

exchange mechanism (e.g. market) to allocate these resources to agents. In particular,

microeconomics studies how self-interested agents manage their rational decision-making

processes to produce economic scenarios that maximise their own individual utility [217].

The management coordinates the interrelation between the activities in the process to

make an effective use of resources that pursue the economic objectives defined by the

agent. Consequently, an agent incorporates a value-oriented perspective in the man-

agement process to face trade-offs and deal with the uncertainty in the economy [151].

Similarly, in the cloud, the economic benefits of elasticity are far from inherent to a

classical management approach; therefore, the elasticity managerial process calls for a

value-oriented perspective.

An autonomous elasticity management is considered to follow a MAPE-K feedback

loop [194, 17, 174, 78, 175, 145], which we are using as a blueprint of the process that

produces the elasticity decisions. Thereby, we view elasticity management as the control

and coordination of the activities in the elasticity decision-making process to trade-off

between performance and economics when producing resource adaptation decisions under

uncertainty. In particular, the management process is composed of the following phases:

(i) monitoring, (ii) analysis, (iii) planning, (iv) execution, and (v) knowledge. In the

following subsections, we describe each activity and introduce a value-oriented perspective

across the process.

2.5.1 Monitoring Phase

The monitoring stage underpins the mechanisms to gather, combine, refine and inform

about the metrics used by the elasticity manager. In the industry, the metrics available

are basically performance metrics for hardware, operating system, load balancer, web
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server, application server, database and message queue [88, 11] such as CPU utilisation,

network utilisation, disk performance, and memory utilisation. In the academia, some

initiatives have also included cost and business metrics such as total cost, average cost

[51], incurred penalties [162], and budget constraints [95].

IaaS providers, such as Windows Azure and Amazon EC2, offer APIs to make the

gathered metrics available to the client for later analysis of elasticity adaptations. Besides

the APIs, there also cloud monitoring frameworks to inform about the metrics such as

Amazon CloudWatch, Windows AzureWatch, Aneka, Nagios, among others [1].

Among the set of properties of a cloud monitoring [1], the value of a metric relies on its

(i) timeliness; (ii) accuracy; and (iii) resilience, reliability and availability. The potential

of each to create value depends on the prioritisation required by the context. For instance,

the timeliness of the metric prevails over its accuracy in transactional workloads such as

those in cloud web applications. On the contrary, the timeliness is less critical than

accuracy in batch workloads, such as those in video transcoders, which are composed of

long and resource-intensive jobs [88].

The strategy to report the metrics has several alternatives [57]: (i) wait for a number of

successive readings exceeding a threshold; (ii) wait until the end of the cool-down period;

(iii) as soon as a first reading outrun a threshold. The value of the strategy lies on the

potential economic consequences that its selection may cause. For instance, the duration

of the cool-down may lead to a resource trashing, or a false positive if it is inappropriately

short but also may lead to a delayed response if it is too long.

The monitoring stage creates value when detects resource failures, reports performance

bottlenecks, or refines and combines metrics before making them available for analysis.

Additionally, the monitoring phase can detect the real performance achieved by launched

VM instances. For instance, VM instances sharing the same specification and launched

simultaneously in the same region may produce up to 29% difference in throughput [241]

due to issues such as resource contention or the resource over-subscription models applied

by IaaS providers. Therefore, as the simple virtual resource specification is insufficient
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to obtain a precise estimation that anticipates the throughput of launched resources, the

report of their real throughput delivers value for the analysis phase of the process.

2.5.2 Analysis Phase

The analysis stage implements the mechanisms to correlate the data collected in the

monitoring phase and model the current situation for analysis. In particular, virtual

resource usage (e.g. CPU utilisation) and the business goals compliance (e.g. SLOs)

are analysed to alert the need for adapting the resource provisioning; whereas the job

constraints compliance (e.g. deadlines) and pending jobs in the scheduling queues are

considered for scheduling the computing capacity.

The value at this phase relies on a timely data correlation and the accuracy of the

modelling. In proactive elasticity policies, the current situation is modelled or learnt with

the underlying forecasting technique. On the other hand, in reactive policies, the analysis

has some restrictions due to its nature; however, some reactive initiatives [77, 160] have

explored the use of flexible thresholds that float within certain boundaries to extend the

analysis time and to anticipate or delay the raise of adaptation alerts.

In this phase, the interaction with the knowledge stage enables a continuous learning

or modelling of the environment to refine cool-down periods, estimate spin-up times,

identify patterns in the demand workload, among others. Moreover, when the analysis

phase detects a resource thrashing or a partial usage waste, it can access the records of

previous adaptations to find a connection with the detected issues and adjust the model

accordingly. In general, the interaction between these two phases enhances the prediction

of imminent changes and raises the accuracy and timeliness of the alerts to the planning

phase of the process.
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2.5.3 Planning Phase

The planning stage supplies the mechanisms to reason and make the elasticity adaptation

decisions required to satisfy defined elasticity management goals; the reasoning supports

a rational decision-making in the presence of conflicting objectives under uncertainties at

runtime. In particular, the selection of virtual resources to launch, the resource adaptation

decisions (i.e. maintain, launch or stop resources), and the allocation of jobs to the

acquired virtual resources are performed in this phase.

When there is a need of computing capacity, the resource provisioning performs the

selection of virtual resources based on an estimation of the demand of resources, but

limited to the maximum number of instances allowed by the IaaS provider in a single

adaptation [223]. The decision involves estimating the computing capacity to acquire or

release, deciding the most convenient elasticity method to use (e.g. vertical, horizontal),

and then choosing the appropriate combination of instances. For instance, in case of

resource acquisition using a horizontal scaling, the elasticity manager needs to decide

the number of instances requested simultaneously, the combination of instance types,

and their resource pricing schemes. Additionally, from the economics perspective, the

manager needs to consider the end of the billing cycles of running VMs to avoid stopping

resources that will be charged whether these are running or ended because they are during

a minimum billing period or longer than a cool-down period from the next billing cycle

during two consecutive adaptations.

The value at this stage comes from the reduction of resource thrashing and the strategic

use of the gaps between resource supply and demand to deal with uncertainty; gaps that

are unavoidable during a dynamic resource provisioning in any elasticity management

[209, 100, 108].

This phase also interacts with the knowledge base to predict the impact of potential

decisions based on previous outcomes.
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2.5.4 Execution Phase

The execution phase implements the mechanisms that perform and control the execution

of a decided plan. The plan is executed through the invocation of APIs that adapt the

computing capacity such as the number of VMs, the bandwidth of the network, and the

available storage.

The value on this stage of the process relies on an accurate estimation of the acquisition

times of computing capacity. For instance, the VM startup time may vary depending

the VM instance size, VM operating system, data center location, and the number of

new instances requested simultaneously, among others [154]. Moreover, the estimation is

challenged by incomplete and inaccurate information about adaptation timing delivered

by cloud providers [84]. The inaccuracy comes because cloud systems notify changes when

they allocate physical resources to VMs, but these still take time before starting serving;

the incompleteness relies on the fact that cloud services are unaware of the components

within a VM and consequently cannot predict the time when a VM is effectively ready to

serve.

2.5.5 Knowledge Base

The knowledge base is an implementation of knowledge artefacts [50], such as resource

catalogues, registries of monitoring data, specifications of elasticity management goals,

representations of analysis and planning models, and learning structures. These artefacts

are built to support the creation, representation, transfer and application of knowledge

through the process [66].

The value of the knowledge base lies on the support that it offers to analyse the

whole process either in retrospective or at runtime with a reactive or proactive approach.

Specifically, the historical records may serve to refine configurations, identify the need of

new metrics, reveal false positives, or adjust the expected impact of adaptation decisions

among others. Therefore, the process manages knowledge to turn data into value and
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produce informed adaptation decisions.

2.6 Future Outlook for Research

In this section, we provide an outlook for cloud elasticity management research, suggesting

future directions with an economics-driven perspective, as we discuss next.

2.6.1 Opportunity Cost Analysis into Runtime Adaptation De-
cisions

The planning phase of the elasticity management process deals with a continuous decision-

making to choose between three alternatives: to maintain, grow or shrink in resources.

Each time a decision is made, the elasticity manager compares the advantages and disad-

vantages of each alternative in terms of performance and economics. A decision implies

spending time and resources on its implementation, but they could have been spent on

implementing another alternative [25]. Consequently by deciding an adaptation decision,

an alternative decision is being sacrificed. The value of the best alternative sacrificed is

known as the opportunity cost of the made decision [217].

Currently, economics-driven approaches estimate the value of elasticity adaptations

through utility functions [77, 185, 163], either with a reactive or proactive perspective.

Although utility functions promote a rational decision-making [116], they tend to capture

just partially the uncertainty from the environment [73]. The challenge here is to incorpo-

rate a retrospective valuation for adaptation decisions; as these may appear inappropriate

in the long-term not because they were wrong at the time of the analysis but because the

context evolved to a different scenario [131]. We argue that an opportunity cost analysis

of adaptation decisions can support reflections in retrospective, so that future adaptations

can benefit from previous knowledge and increase the accuracy of elasticity in resource

provisioning.
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2.6.2 Incentive Structures for Strategy-Driven Adaptations

The dynamic resource provisioning in the cloud is an economics-driven ecosystem in which

cloud customers and providers behave as self-interested and rational agents [175]; there-

fore, elasticity management approaches can benefit from an autonomous multi-agent sys-

tem in which agents act on behalf of the providers and customers [230]. In this sense, ex-

isting research has already proposed economics-driven elasticity management approaches

for multi-tenant [163] and inter-cloud environments [236]. However, in reality, the be-

haviour of economic agents is not only defined by rationality but also by incentives and

emotions (also known as intrinsic incentives) [151]. Agents can hold primitives for encod-

ing intrinsic incentives, which act as drivers to alter their rational perception and override

strategies and rules in norm-governed multi-agent systems, as in [37].

Although existing works have proposed elasticity management approaches with incen-

tives to lower prices [77] or disincentives to minimise SLO violations [22]; the challenge

here is to raise the visibility of trade-offs between conflicting objectives such as between

immediate and far-sighted rewards in elasticity adaptations, or between individual and

global benefits. We advocate that the technical debt metaphor [160] can support an elas-

ticity management with incentive structures for inter-cloud and multi-tenant cloud-based

applications. The aim is to promote a multi-agent ecosystem, in which the self-interested

behaviour of economic agents to gain immediate rewards turns into a strategy-driven

behaviour to preserve the global welfare of a multi-agent elasticity management. Addi-

tionally, the incorporation of emotions in autonomous agents can be used to support a

self-adaptation in reinforcement learning and threshold-based elasticity management ap-

proaches. For example, extending the work of Kurka et al. [37], collective disobedience

from incentivised agents can be used as a mechanism to incorporate changes that dis-

obey existing threshold-based rules but appear to improve the overall economics of the

elasticity management.
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2.6.3 Knowledge Representation of Value Adaptation Decisions

In the management of economic processes, knowledge is an asset in permanent change that

supports value creation in the long-run [20, 192]. Elasticity management generates and

accumulates knowledge with the continuous monitoring, analysis, planning and execution

of elasticity adaptations over time. Therefore, this knowledge can be used to create value,

for instance, through the assessment of inappropriate decisions in retrospective, or by the

reduction of learning periods. The challenge here is to model the complexity of knowledge

from previous elasticity decisions to value potential adaptations but producing timely

decisions. We advocate the use of models@run.time [31] to model dynamic knowledge

varying at runtime in an agile format.

In autonomous environments, the models@run.time approach supports a runtime rea-

soning about appropriate forms of adaptation in self-adaptive and self-managing environ-

ments by capturing abstractions of runtime contexts [18, 227]. In particular, a runtime

model for elasticity management can abstract relevant knowledge to enforce an optimal

decision-making that balances time of reasoning, besides the performance and economics

of adaptations. Additionally, models at runtime can support the analysis in retrospective

of wrong alerts in the analysis stage, or inaccurate outcome predictions in the planning

stage.

2.6.4 Considering Energy and Carbon Footprint at Runtime

Sustainability is defined as the capability of the environment to endure its exploitation for

economic purposes. Therefore, economy is also concerned with an optimal utilisation of

the environment [217]. In regard to the cloud, the carbon footprint of cloud data centres

is the 2% of the global CO2 emissions, equivalent to aviation industry, [120] and what is

more, the energy consumption of data centres is raising alongside the increasing service

demand [121]. Under these circumstances, elasticity management calls for energy-aware

approaches that include in their decision-making the impact in energy consumption of
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physical machines when provision or de-provision virtual resources.

Existing initiatives that incorporate energy considerations to elasticity management,

and the subsequent carbon footprint reduction, include VM placement, migration, and

prediction-based scheduling algorithms [121]. However, beyond the reduction of energy

consumption, the challenge here is to value the waste of energy hidden in an elasticity

adaptation by making visible the trade-off between energy savings and the latency in

adaptation decisions using an energy-aware approach. Latency that can be the result of

the selection of VM types for migration, a low data transfer rate when multiple VMs are

migrated, or the selection of destination of VM marked for migration among others [120].

2.6.5 Sensitivity Analysis to Deal with Uncertainty in Elasticity
Adaptations

Elasticity managerial decisions at runtime are prone to uncertainty because either some

variables are difficult to predict such a workload deviation or they are unpredictable

such as a change in a SLO [111]. However, existing elasticity management proposals are

usually evaluated under specific conditions and rarely with considerations of uncertainties

in their elasticity models [186]. In this context, the challenge for elasticity management is

to incorporate uncertainty in the decision-making at the planning stage to minimise the

effects of uncertainties in dynamic resource provisioning.

Sensitivity analysis [207] is a financial tool to support investment decisions that relates

the uncertainty in the output of a model to sources of uncertainty in the input variables

of that model. This kind of analysis has already been used in adaptive decision-making

at runtime [76]; hence, we advocate the use of sensitivity analysis in proactive elasticity

management approaches (e.g. [171]) to apportion the uncertainty in the output among

the inputs of the elasticity model.
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2.7 Gap Analysis

In this section, we describe selected limitations to be addressed in this thesis:

• The lack of a conceptual model of elasticity to support value-oriented con-

siderations: Elasticity management depends on several factors; therefore, insights

on how these factors interrelate and impact on the value of adaptation decisions can

support long-term utility. The results of our survey indicate that although there

are elasticity initiatives that consider the economics of elasticity management; there

is little research focusing on economics-inspired frameworks to make explicit value

creation considerations when reasoning about elasticity adaptations. Within this

context, we advocate the development of a conceptual model of elasticity with tech-

nical debt considerations to support value-oriented adaptation decisions at runtime.

This limitation is addressed in Chapter 3.

• Elasticity management overlooking the potential utility of the unavoid-

able gaps in resource provisioning: There is no elasticity management capable

to produce a perfect match between resource demand and supply at runtime; there

always exist dynamic differences over time. The findings of our survey revealed

that a learning of the potential utility of gaps for imminent adaptations has been

neglected in existing research. To address this limitation, we argue that elasticity

management can benefit from a strategic learning of the potential value of dynamic

gaps in resource provisioning. If properly learnt over time, these gaps can be used

to mitigate the effects of uncertainty and conflicting trade-offs at runtime. In par-

ticular, we integrate technical debt and reinforcement learning, which are strategy-

driven techniques that trade off immediate rewards against long-term benefits. This

issue is tackled in Chapter 4.

• Reconciling conflicting perspectives in elasticity management for multi-

tenant SaaS applications: A multi-tenant SaaS application is a highly config-

urable software that allows its owner to serve multiple tenants, each with their own
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workflows, workloads and SLOs. Tenants are usually organizations that serve several

users and the application appears to be a different one for each tenant. However, in

practice, multi-tenant SaaS applications limit the diversity of tenants by clustering

them in a few categories (e.g. premium, standard) with predefined SLOs [27]. This

coarse-grained clustering favours application owners through an aggregate resource

provisioning [129] but forces tenants to adjust their initial SLOs. In this context, we

propose a multi-agent elasticity management in which each tenant performs elas-

ticity adaptations based on its technical debt profile to form autonomous coalitions

with others. The dynamic coalitions enable a dynamic sharing of virtual resources

and preserve the diversity of tenants’ SLOs without hurting the overall utility of the

application owner. This challenge is faced in Chapter 5.

2.8 Related Work

In this section, we discuss closely related research and how our work goes beyond the

coverage of existing surveys on the topic.

Regarding an economics-driven perspective for elasticity management, Suleiman et al.

[223] was the first to link the efficient use and management of resources in elasticity with

underlying economics aspects. It discussed elasticity elements that need to be considered

to achieve economics benefits from cloud deployed services, such as available resource

bundles, offered pricing models and geographic distribution of cloud data centres. Next,

Najjar et al. [175] was the first survey about elasticity management and described it as a

cost- and goal-aware process concerned with resource provisioning, which, in some cases,

is accompanied by scheduling considerations. Although this work highlights the existence

of permanent trade-offs between different cloud stakeholders (i.e. cloud service provider

and customer) in elasticity management; it is unclear about the conflicting objectives that

need to be balanced from the perspective of a single stakeholder. Then, Fokaefs et al.

[77, 78] introduced an economics-driven management that analyses the value of scaling

44



up or down resources to decide adaptations. Additionally, the approach incorporated a

controlled profitability aimed at lowering prices charged per handled request to preserve

economic sustainability. The authors also suggest that elasticity management follows the

MAPE-K loop for autonomous systems but without a link to the economics aspects of

elasticity. However, they are focused on proposing an approach implementation rather

than a management perspective. To the best of our knowledge, in contrast to previous

efforts, our work is the first to position an economics-driven management process as a new

perspective to guide the implementation of elasticity solutions with value and strategy

considerations.

In regard to classifications related to cloud elasticity, Galante et al. [81] provided

the first classification of elasticity mechanisms based on the following characteristics:

scope, policy, purpose and method. Although the classification served as a starting point,

elasticity continued evolving and new characteristics and subcategories have appeared

since then. Coutinho et al. [52] also proposed a classification of elasticity solutions;

however, this is limited only to two categories: policy and method. Next, Lorido-Botran et

al. [145] classified elasticity initiatives in terms of the underlying technique on which they

were built (i.e. threshold-based rules, time series analysis, reinforcement learning, queue

theory, control theory). Additionally, the authors matched each kind of management

initiative in their classification to corresponding phases of the MAPE loop but ignoring

the knowledge base. Then, Al-Dhuraibi et al. [4] proposed a classification of autonomous

elasticity mechanisms based on seven characteristics: configuration, scope, purpose, mode,

method, provider and architecture. The authors expanded their classification by including

algorithms and techniques as subcategories. Up to our knowledge, different from previous

efforts, our article is the first that classifies the orientation of the elasticity management

by their high-level orientation rather than by the underlying technique, or the elasticity

characteristic exploited.
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2.9 Summary

We surveyed cloud elasticity initiatives and provide a taxonomy based on their approach

towards elasticity management. In particular, our findings indicate that exist five man-

agerial approaches: (i) quality-driven; (ii) cost-aware; (iii) energy-aware; (iv) inter-cloud-

oriented; and (v) economics-driven. The results of the survey indicate that economics-

driven management approaches adopt economics criteria such as (i) economics-inspired

frameworks; (ii) agent-based computational economics; (iii) pricing techniques and yield

management for profit maximisation; (iv) analysis of the cost efficiency and cost effec-

tiveness of decisions; and (v) adaptations deemed as investments with long-term rewards

under uncertainty.

We argued that elasticity is a capability designed to support the economies of scale

in the cloud. Therefore, it calls for an economics-driven management process that raises

the visibility of permanent trade-offs between conflicting objectives at runtime in the

face of uncertainties. In this sense, we provided a definition of elasticity management,

and then we devised macro and micro economics perspectives to support value creation

considerations in elasticity management. Additionally, we described the building blocks

of an elasticity management architecture: (i) dynamic resource provisioning; and (ii)

resource scheduling.

From the survey, we gained insights on existing economics-driven approaches and,

based on those, we suggest future research directions into economics-driven elasticity man-

agement as follows: (i) incorporate the economics concept of opportunity cost in runtime

adaptation decisions; (ii) develop incentive structures to motivate strategy-driven adapta-

tions; (iii) devise knowledge representations to capture the creation of value in potential

adaptations; (iv) incorporate energy and carbon footprint aspects in the economics-driven

analysis; and (v) consider the usefulness of the economics concept of sensitivity analysis

to deal with uncertainty in dynamic adaptations.

46



CHAPTER 3

ELASTICITY DEBT: A DEBT-AWARE
APPROACH TO REASON ABOUT ELASTICITY

DECISIONS IN THE CLOUD

3.1 Overview

Elasticity management constantly takes adaptation decisions to adjust the resource pro-

visioning constrained by economics objectives (e.g. complying with an expected quality

of service, minimising operating costs, adhering to budget boundaries). However, elas-

ticity initiatives tend to consider specific conditions to evaluate their proposals [186] but

ignoring other drivers that have implication for value in dynamic resource provisioning.

Part of the problem stems from the lack of an economics-driven model to reason about

the factors that contribute to value creation when managing elasticity. In this chapter we

present:

• A conceptual model for elasticity. The elasticity conceptual model interconnects

elasticity macroeconomics determinants (e.g. pricing scheme, billing cycle, resource

bundles granularity, spin-up time), sources of uncertainty, conflicting elasticity con-

straints and stakeholders to facilitate a value-oriented analysis of elastic adaptation

decisions and their consequences.

• An economics-driven approach to reason about elasticity decisions. The economics-
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driven approach uses technical debt analysis to support elasticity management. In

its original context, technical debt [54] was introduced as a way to express a trade-off

between short-term benefits in taking immature, poor and quick engineering deci-

sions, that are suboptimal for long-term value creation, at the cost of compromising

long-term objectives [210, 131]. Correspondingly, any additional effort incurred in

future developments as a consequence of these decisions accounts as an interest

on the debt. Similarly, we argue that each resource adaptation in cloud elasticity

management may lead to debt (e.g. in the form of an under- or over-provisioning

state) as a result of short-term decisions, an inadequate trade-off for an adaptation

decision under uncertainty, or due to a changing external condition which makes

the adaptation inappropriate in retrospect, and we will refer to it as an elasticity

technical debt.

Although the original technical debt metaphor has been expanded to other economics-

driven topics such as software architecture, cloud service selection, software testing, sus-

tainability design and software requirements [137]; to the best of our knowledge, we are

the first to revisit the technical debt metaphor and scope it for runtime settings with a

focus on elasticity and its management in cloud.

The remainder of this chapter is structured as follows. Section 3.2 describes the

metaphor of technical debt and its classic application in static contexts. Section 3.3

introduces our mapping of the metaphor into the dynamics of elasticity management.

Section 3.4 presents a conceptual model of elasticity and its managerial aspects from

a debt-aware perspective. Next, Section 3.5 illustrates the instantiation of our model

through a working example, followed by an appraisal of the model in Section 3.6. Then,

we review related works in Section 3.7 to, finally, present a summary of the chapter in

Section 3.8.
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3.2 Technical Debt Metaphor

Technical debt makes an analogy between releasing suboptimal software and going into a

financial debt [93]. This metaphor is used to describe trade-offs from expedient short-term

solutions that could deliver immediate gains but compromising long-term benefits, which

can relate to software maintenance and evolution [131]. Similar to a debt in finance,

a technical debt can unfold opportunities if taken strategically, in which case is called

intentional [35]. On the other hand, an unintentional technical debt is a consequence of

inappropriate engineering decisions. In any case, if a decision is not appropriately valued

to deal with uncertainty, its results may overcome their benefits. Hence, this requires a

reasoned decision-making that identifies the debt and its sources, measure and manage

it for value creation [8, 210] in an attempt to avoid accumulating unnecessary technical

debt.

Technical debt management in iterative development processes aims to achieve cost-

effective, timely and quality software [69], where each iteration gives the chance to opti-

mize for technical debt by either creating value (e.g. adaptation decisions for imminent

scenarios) or confining unwanted effects of previous decisions (e.g. adaptation decisions for

attenuating undesired consequences) [131]. The strategy for either type of debt essentially

depends not only on adopted strategy and correctness of decisions under uncertainty but

also on environmental changes such as appearance of better technologies, new regulations,

change of critical business rules or rapid growth in the market, which make these decisions

appear as suboptimal retrospectively [131, 35] and unsuitable for required adaptation and

evolution.

Given the metaphor effectiveness to communicate trade-offs by means of an economic

valuation of decisions, it has been widely applied in other software engineering disciplines

[137, 28, 139, 8] such as software architecture, sustainability design, software requirements,

cloud service selection, software documentation and testing.
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3.3 Elasticity Debt

Unlike traditional approaches for managing technical debt in software engineering, we

look at technical debt from a runtime perspective. In particular, we view an elasticity

adaptation decision as a runtime engineering decision that can carry debt. Similar to

financial decisions, dynamic adaptation decisions (i) trade off short-term against long-

term benefits; (ii) involve risks due to the uncertainty; and (iii) trade off exploration

against exploitation of well-known scenarios.

We argue that elasticity technical debt (or shortly elasticity debt) originates from sub-

optimal self-adaptive and managerial decisions of elasticity. We attribute the debt to

ill-adaptations under a dynamic and uncertain context that might affect the utility of the

system. It can be also influenced by the way we handle trade-offs, conflicting perspec-

tives and constraints. Additionally, as cloud computing is highly motivated by economies

of scale and elasticity is the enabler for this property, we advocate that resource adap-

tation decisions should be valued from an economics-driven approach that considers the

trade-offs of compromising long-term benefits for short-term gains when adapting resource

provisioning. In line with this, we posit that technical debt should not be undermined

when managing elasticity as it can uncover hidden liabilities hurting the utility of the

system that if well managed it can be transformed into value. The use of the metaphor

can be effective in managing cloud elasticity and valuing its adaptation decisions under

uncertainty by means of preventing debt or making debts visible.

We define elasticity debt as the valuation gap between the ideal and actual resource

provisioning in elasticity adaptations. Like a debt in finance, an elasticity debt can be ei-

ther strategic or unintentional. The former refers to adaptations that intend to anticipate

changing conditions (e.g. workload variations) or mitigate undesired effects (e.g. spin-up

time, partial usage waste); whereas the latter refers to delayed or wrong choice of adapta-

tions (e.g. resource thrashing) as a consequence of poor considerations for uncertainty or

elasticity determinants.

Different from traditional approaches, that mostly consider avoiding over- and under-
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Figure 3.1: Elasticity Debts

provisioning states, we argue that an elasticity debt-aware approach recognizes the fact

that it is practically impossible to achieve a perfect elasticity; and makes use of this fact

to explicitly reveal the potential of using this imperfection in the trade-off between costs

and quality to adjust strategically the resource provisioning and preserve the utility of the

stakeholder [160]. For example, we may intentionally delay an over-provisioning state if

the next billing cycle of the resources to be released is not immediate; or if we consider that

the spin-up time of launching new resources may affect the SLO performance compliance

during a imminent growth in the load.

Figure 3.1 illustrates three cases of debts using a graph that represents a resource

demand and supply over time. The first gap is caused by the spin-up time when new

virtual machines are launched; the second gap is a consequence of the available resource

granularity that makes impossible to launch one and a half machines; and the third less

evident gap is the result of a partial usage waste after one machine is released but still

charged until the end of the billing cycle. In any case, the debt is not the gap itself. We

highlight that a debt corresponds to the valuation in terms of the potential utility produced

by the gap, in which the debt originates.

Incurring elasticity debts may also obey to a strategy. For example, an elastic adap-

51



Figure 3.2: A Conceptual Model of Elasticity with Debt Considerations

tation decision can take an intentional debt, remaining slightly under-provisioned for a

short period of time, to avoid a number of undesired adaptations; and thus to escape

from thrashing and partial usage waste; even though this decision affects the quality of

service but does not exceed the overall threshold specified for the SLO. Another exam-

ple can be a scenario in which an intentional debt is taken to only partially reduce an

over-provisioning produced by the previous adaptation because it is expected a potential

increase in resource demand.

In general, the valuation of an elasticity debt can be susceptible to various interpre-

tations, as shown in Chapters 4 and 5, as long as these identify a potential utility from

the dynamic gaps between an ideal and an actual adaptation decision.
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3.4 Conceptual Model of Elasticity with Debt Con-

siderations

This section introduces a conceptual model for capturing elasticity debts and relating the

building blocks of elasticity and its managerial adaptation decisions.

A conceptual model is a tool to offer an insight into a real target domain by describing a

set of abstractions and their interconnections, such that the model, although independent

of the solution design, is sufficient to guide implementations that address a problem in

real settings [79, 200]. In this direction, we posit that a mapping of the interrelationship

between the factors that influence elasticity management is a prerequisite for dynamically

identifying, tracking, valuing and consequently managing debts in elasticity decisions;

factors such as elasticity determinants, constraints, the perspectives of stakeholders and

sources of uncertainties. Using UML (Unified Modelling Language), Figure 3.2 depicts

our elasticity debt conceptual model, whose main concepts are described below.

• Elasticity Determinants: As discussed in the previous chapter, macroeconomic

aspects of elasticity determine the capabilities of elasticity. In this direction, the

model refers to the them as elasticity determinants ; namely elasticity policy, elastic-

ity method, elasticity level, resource pricing scheme and billing cycle, spin-up time,

resource granularity and the incoming workload.

• Elasticity Constraints: Elasticity management aims to match resource supply

with demand at any time avoiding under- and over-provisioning states. The former

can degrade the quality of service with the corresponding penalties, and the latter

can incur unnecessary costs. Consequently, we view elasticity as a cloud feature

driven by its determinants but constrained by a trade-off between conforming an

expected quality of service and minimizing operating costs. The operating costs

can be reduced, for instance, through mechanisms to minimise energy consumption,

techniques to optimise the resource sharing, or switching between alternative ap-

proaches to meet budget constraints. In general, if this trade-off between elasticity
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constraints is not properly valued, it can accumulate a waste of resources over the

service lifetime threatening the sustainability of the solution.

• Stakeholders: The trade-off between cost and quality of service can be judged

from different perspectives depending on its stakeholders. From one side, a cloud

customer, such as a Software as a Service (SaaS) provider, aims to achieve an ex-

pected quality of service while minimizing operating costs for their deployed services

or applications, for example, by means of a fine-grained pricing scheme [114]. On

the other side, a cloud provider intends to reduce their costs, for instance, by an

efficient resource sharing and minimizing energy consumption [57] of their infras-

tructure. These opposite perspectives tend to contradict each other; for instance,

the quality of service required by the customer can be affected by resource con-

tention [136, 83] as a consequence of an interference between services from different

customers sharing the same resource.

• Elasticity Adaptation Decision: An elasticity adaptation decides to launch,

maintain or terminate virtual resources; decision that in either case may incur

debts and consequently compromise the elasticity constraints. Although under un-

certainty, each decision has a dynamic value in terms of the utility it produces to

its stakeholder.

• Uncertainty in the Environment: Elasticity adaptation decisions are expected

to deal with uncertainty coming from multiple sources such as workload variations

that deviate from expected patterns; or unexpected resource failures, whether they

are physical or virtual. The conflict between elasticity constraints may also con-

tribute to a degree of uncertainty in the environment by triggering sudden adapta-

tions to adjust resource provisioning in the cloud. For example, a cloud provider,

such as an IaaS provider, may cause resource contention at making services dy-

namically share resources as an attempt to minimize his operating costs; or a cloud

customer may also introduce uncertainty by adjusting quality of service parameters
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(e.g. security, availability, performance) at runtime.

• Consequences: Elasticity adaptations incur elasticity debts which lead to scenarios

with consequences for the value of the decision such as resource contention, partial

usage waste, under- or over-provisioning states.

• Value: We argue that valuing the utility of adaptation decisions can assist in

predicting the debt they imply on the system and its management through either

reactive, proactive or retrospective reasoning to avoid a dynamic accumulation of

debt. The observed values for debt may be learnt over time to turn these observa-

tions into knowledge and guide future adaptation decisions, as we demonstrate in

the subsequent chapters. An adaptation decision can look at the debt reactively if

it aims at an immediate relief of current conditions, whereas a decision intended to

anticipate forthcoming conditions takes a proactive perspective on value. In either

case, value can be analysed in retrospective to refine the decision-making process

for future adaptation decisions.

3.5 Instantiating the Conceptual Model

In this section, we aim to show the potential of the conceptual model through its in-

stantiation. The model can be instantiated and used in different forms. As an example,

cloud administrators and engineers can take advantage of the model to design monitoring

systems for identifying the root causes of uncertainty that can lead to debt. Equally,

architects can use it to guide adjustments to elasticity determinants or to identify the

major consequences of incurred debts. In general, we posit that the instantiation of our

model can assist in the design of algorithms to better cope with the dynamics of elasticity

and its management. In this direction, the model has informed Chapters 4 and 5, leading

to non-trivial contributions that relate to a strategic learning of the potential value of

elasticity debts to raise the overall utility of cloud-deployed applications.
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3.5.1 Template to Record an Elasticity Adaptation Context

Table 3.1 provides a template based on our conceptual model to record the context of

an elasticity adaptation. The template details both the elements required to decide an

elasticity adaptation and the elements to review the outcome of the adaptation after the

cool down period has passed. As most of these elements correspond to the conceptual

model, we only describe those that may require a further description. The element Deci-

sion Context refers to the variables that define the current situation caused by previous

adaptations such as the degree of SLOs conformance achieved, the current cool down

period, and the indicators of resource utilisation among others. Other key element is

the Analysis of Alternative Adaptation Decisions which requires an estimation of value,

potential debt, and parameters for each alternative decision under consideration. In case

of a decision to terminate virtual resources, the parameters would be the identifiers of

targeted resources; or a sequence of virtual resource types and number of instances per

type if the decision is to launch resources.

3.5.2 Illustrating the Instantiation Through a Working Example

Our working example values elasticity debts introduced by each adaptation decision. The

valuation keeps a control on the accumulated debts over time and their influence on the

aggregate utility. We adopt an aggregate utility function [185] in which the overall utility

achieved by a SaaS provider when executes a workload w, composed of incoming requests,

in an IaaS provider infrastructure is determined by Equation 3.1 as follows:

U(w) = R(x) ∗ xs − P (x) ∗ xf −
N∑
i=1

C(vmi)

∫ L

0

mi(t)dt, (3.1)

where R(x) and P(x) functions return the revenues and penalties per request, respec-

tively; xs and xf represent the number of successful and failed requests, respectively, from

workload w with respect to agreed SLOs; and C(vmi) function returns the cost of each

of the N virtual machine types vmi; and mi represents the number of instances of type
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Table 3.1: Template to Record an Elasticity Adaptation Context

Decision Made Decisioni

Time The time when the decision is made

Stakeholder The perspective of the stakeholder that makes the decision

Decision Context SLOs conformance status, cool down, resource utilisation indicators, etc.

Constraints
Quality The set of expected SLOs

Cost The costs goals (e.g. budget limits)

Determinants

Elasticity Policy The settings when the decision is made

Elasticity Method The settings when the decision is made

Elasticity Level The settings when the decision is made

Spin-up time The settings when the decision is made

Resource Granularity The settings when the decision is made

Billing Cycle The settings when the decision is made

Workload Its characteristics when the decision is made

Consequences

Under-Provisioning Status after the cool down has passed

Over-Provisioning Status after the cool down has passed

Thrashing Status after the cool down has passed

Partial Usage Waste Status after the cool down has passed

Uncertainties

SLO Change Probability of occurrence

Workload Deviation Probability of occurrence

Resource Contention Probability of occurrence

Resource Failure Probability of occurrence

Analysis of Alternative Adaptation Decisions

Alternative Parameters Estimated Value Estimated Debt

Decision1 Targeted Resources1 V alue1 Debt1

Decision2 Targeted Resources2 V alue2 Debt2

... ... ... ...

Decisionn Targeted Resourcesn V aluen Debtn
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Algorithm 1 Working Example Algorithm

Input: upperDebtLimit , upperRelaxedLimit , // Upper debt-aware limits
lowerRelaxedLimit , lowerDebtLimit , // Lower debt-aware limits
currentDemand // Resource demand

Output: adaptationDecision, // Decision whether scale or not
elasticityDebt // New debt incurred

1: Initialise: A ← {scaleIn, scaleOut , noScale}, // set of possible decisions
2: elasticityDebt ← 0,
3: cpuUtilisation ← monitorCPU () // current CPU utilization metric
4: if (cpuUtilisation > upperDebtLimit) then
5: adaptationDecision ← scaleOut
6: else if (cpuUtilisation < lowerDebtLimit) then
7: adaptationDecision ← scaleIn
8: else if (lowerRelaxedLimit ≤ cpuUtilisation ≤ upperRelaxedLimit) then
9: adaptationDecision ← noScale

10: else if (upperRelaxedLimit < cpuUtilisation ≤ upperDebtLimit OR
lowerDebtLimit ≤ cpuUtilisation < lowerRelaxedLimit) then

11: expectedDemand ← estimateImminentDemand()
12: adaptationDecision ← arg max

x∈A
Value(x , expectedDemand) // Equation 3.1

13: if (adaptationDecision 6= noScale) then
14: adaptationValue ← Value(adaptationDecision, currentDemand)
15: stayValue ← Value(noScale, currentDemand)
16: elasticityDebt ← max (stayValue − adaptationValue, 0 )
17: end if
18: end if

vmi launched over the execution time L. Based on this, each elasticity decision is valued

in terms of its support to a utility maximization over time by minimizing penalties, i.e.

meeting quality expectations, and reducing operating costs, i.e. provisioning a resource

configuration that match expected demand as close as possible.

Algorithm 1 details our working example. It follows the approach to divide the spec-

trum of a monitored resource utilisation indicator in zones [97, 77]. As Figure 3.3 depicts,

we have divided the decision space of a utilisation metric in three kind of areas: (i) an

upper and lower reactive areas, where a quick decision is taken with a reactive approach

to avoid incurring in SLO violations or waste of resources, respectively; (ii) an upper

and lower debt-aware areas, where a proactive adaptation is evaluated by reasoning with

a value-oriented perspective with debt considerations; and (iii) a third zone, where no

resource adaptation is necessary.
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Figure 3.3: Debt-Aware Areas for Elasticity Decisions

When the utilisation metric enters into a debt-aware area at time ti, the algorithm esti-

mates the imminent resource demand for the next monitoring period; this demand is used

to value each potential adaptation decision (i.e. launch, maintain, or terminate VMs)

by means of Equation 3.1. In case an adaptation to the current resource provisioning

is expected to produce a higher utility if changes materialise, the respective adaptation

decision (i.e. launch or terminate) is taken accordingly to anticipate the imminent re-

source demand. However, this decision may appear as sub-optimal if analysed under the

instant demand and therefore incur a potential elasticity debt. We estimate this debt

by comparing the present value of the current decision and the new one to be adopted,

i.e. the utility of their corresponding resource provisioning to handle the current resource

demand. There is a debt if the value of the new adaptation decision is lower than the

current one; otherwise, the decision is already considered optimal.

Running the Working Example

To run our working example, we look at a globally accessed multi-tenant SaaS survey

application, where tenants after subscribing to the service can design a survey, publish

it and collect its results for analysis. Simultaneously, multiple surveys from different

tenants run; depending on the number of participants attracted, the service workload

59



can experience a sudden sharp of resource demand that should be handled by the service

infrastructure accordingly. The service owner is a SaaS provider who processes incoming

HTTP requests, from tenants and participants, on the IaaS provider infrastructure where

the service is deployed.

Figure 3.4 depicts a partial instantiation of our conceptual model with a scenario

that represents a snapshot of a decision-making to adapt a resource provisioning. In

particular, the diagram depicts a configuration instance of elasticity determinants and

elasticity constraints as specified by the SaaS provider. The scenario only looks at one

quality attribute: performance in terms of response time per request with a penalty of

100% of its price in case of SLO violation. In line with this, the CPU utilization is the

metric based on which limits for relaxed, debt-aware and reactive limits are defined. In the

instantiation, we illustrate a proactive adaptation triggered by a workload deviation when

the monitored metric value is in a debt-aware area. This adaptation decides to launch

new VMs incurring debt; the value of this decision is positive if proactively observed;

whereas is negative if observed reactively.

Running Setup

We developed a simulation tool by extending CloudSim [39], a cloud simulation framework

for cloud services and infrastructures, and its set of extensions available in CloudSimEx

project [48]. In addition to the core functionality, we implemented a load balancing

mechanism and horizontal scaling depending on automatic elasticity policies. Specifically,

we implemented two elasticity mechanisms: (i) the proposed hybrid elasticity approach

with three decision areas and a debt-aware decision valuation; and (ii) an entirely reactive

elasticity approach. Our objective is to compare the aggregate utility each approach

achieves.

For experimentation purposes, our SaaS survey application will handle a workload that

represents the arrival rate of requests over time, as shown in Figure 3.5. This workload

corresponds to the 1998 World Cup website trace [14] but scaled to last 72 minutes and
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Figure 3.4: An Instantiation of the Conceptual Model
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Figure 3.5: Request Arrival Trace

to demand a controllable amount of resources. We transformed the original workload file

into the Standard Workload Format to make it compatible with CloudSim. The simula-

tion is simplified by assuming that a resource demand of a request is handled entirely by

instances of application servers, i.e. we are adapting the resource provisioning by launch-

ing or releasing instances of application servers depending on their available processing

capacity in terms of millions of instructions per second (MIPS). Using CloudSimEx, we

are calculating the infrastructure costs simulating the pricing scheme of an n1-standard-1

machine type available from Google Compute Engine in the US. For simplicity, we used

extrapolation with the least squares method for workload prediction in the debt-aware

area.

We ran a simulation with the reactive approach. Then, we compared its results with

those obtained by the hybrid approach using the simulation parameters specified in Table

3.2. The upper and lower thresholds in the reactive mechanism are justified in the selection

of representative and sensible values of a high and low CPU load, respectively. To ensure

fairness, the same values are used as upper and lower debt limits in the debt-aware hybrid

mechanism; whereas the relaxed limits are selected to be equidistant from these upper

and lower debt limits, accordingly. The quality constraint represents a reasonable high

expectation; the penalties are linked to the price per request, which is set in relation to

the VM cost per hour; the size of a request is selected to enable a VM to handle several

62



Table 3.2: Simulation Parameters

Parameter Debt-Aware Hybrid Reactive

Upper debt limit 80% –
Upper relaxed limit 70% –
Lower relaxed limit 50% –
Lower debt limit 40% –
Upper threshold – 80%
Lower threshold – 40%
Quality constraint 90% of requests handled under 2.5s
Request size 11 millions of instructions
Price per request 0.0015 USD
Penalty per request 200% of its price
n1-standard-1 VM capacity 100 MIPS
VM cost per hour 0.115 USD

requests simultaneously.

We carried out the experiments on a laptop running Windows 10x64 operating system

with 16GB RAM and Intel Core i7-4500U CPU at 1.8GHz. The simulation for the reactive

and hybrid approaches took approximately 2 and 8 minutes, respectively.

Running Results

Figure 3.6 depicts the accumulated utility over time for the reactive experiment when we

processed the workload. We observed that accumulated utility faced three inflections at

points where elastic adaptations were affecting the utility. At the end of the execution,

this experiment achieved an aggregate utility of $70.4 with a SLO violation of 9.5% of all

Figure 3.6: Aggregate Utility Over Time of the Reactive Simulation
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handled requests. On the other hand, Figure 3.7 illustrates the accumulated utility over

time for the debt-aware hybrid approach when we processed the workload. It improved

the aggregate utility by a 3% and reduced the number of SLO violations of the previous

experiment by a 7%. The approach yielded an aggregate utility of $72.4 with an 8.8% of

SLO violations on handled requests.

3.6 Appraisal of the Conceptual Model

Although there is no agreement on the properties to asses the quality of a conceptual

model [62], in this section, we review our model using the quality assessment approach

proposed by Lindland et al. [142, 130], in which a conceptual model is examined using

three dimensions: (i) semantic quality, which is the extent to which the model corresponds

to the problem domain; (ii) pragmatic quality, which is defined as how well a model can

be interpreted in relation to its intended purpose; and (iii) syntactic quality, which is the

degree to which a model adheres to the formal syntax of the used language.

• Semantic Quality: The goal of this quality dimension is to reflect on validity and

completeness of the model. Validity indicates that all the elements contained in the

conceptual model are correct and relevant to capture the problem domain. On the

other hand, the model is considered to be complete when it has attained a state

in which additional modelling produces no more benefits to the understanding of

the domain [142]. Within this context, in regards to validity, we argue that the

key elements included in the model correspond to elasticity concepts that were part

of our findings in the survey presented in the Chapter 2. Regarding completeness,

although the benefits of further modelling may be debatable and, like any conceptual

model, this can be subject to further refinements and elaboration, to the best of

our knowledge, the current state of the model can serve as a blueprint to guide the

consolidation of technical and value-oriented aspects of elasticity in the design of

extended algorithms that could be enriched with a higher degree of detail.
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• Pragmatic Quality: The goal of this dimension is to reflect on the comprehension

of the model. In this direction, we decided to present our conceptual model using

UML notation, such that the use of standard diagrams and notations makes easier to

understand the interconnections between the key elements depicted in the diagram.

• Syntactic Quality: The objective of this dimension is to reflect on the proper

adoption of a formal syntax to communicate the conceptual model. In this regard,

we have adhered to the UML notations for class and object diagrams.

3.7 Related Work

In this section, we discuss closely related research and how our work goes beyond the

coverage of previous research.

Regarding modelling elasticity and its factors, Dustdar et al. [65] presented a model

to introduce a multidimensional view of elasticity (i.e. resources, cost and quality) con-

nected to physical and economic properties. However, the model was kept at a high

level without detailing its conceptual elements and their interconnections. Suleiman et

al. [223], Galante et al. [82] and Jin et al. [114] discussed the importance of economics

considerations to guide elasticity adaptations but without proposing a conceptual model.

Different from previous works, we are the first to consolidate technical and value-oriented

factors in a conceptual model of elasticity and its management. We draw inspiration from

Figure 3.7: Aggregate Utility Over Time of Debt-Aware Hybrid Simulation

65



Li et al. [138] in the use of technical debt to guide value-oriented decision in architectural

processes.

In regard to technical debt usages, the research community has adapted the metaphor

to value software engineering decisions under uncertainty in different static contexts such

as software architecture [139], cloud service selection [9], software maintenance and evolu-

tion [131] among others [137]. For example, Alzaghoul et al. [8, 9] used the metaphor to

reveal and quantify debts introduced by a potential service substitution, which may affect

the utility of a service composition in a cloud context. However, different from previous

works, we are the first to introduce this metaphor to support decision-making in a highly

dynamic environment such a cloud elasticity and to measure debts in runtime adaptive

settings.

3.8 Summary

Elasticity motivates the adoption of the cloud computing model because it enables the

benefits from economies of scale in the cloud. However, even though it is impossible to

achieve a perfect match between resource demand and supply, current resource provision-

ing mechanisms are usually unaware of the value of their decisions when they perform a

resource adaptation to satisfy a resource demand. Therefore, in this chapter, we intro-

duced the concept of elasticity debt as a new approach to reason about elastic adaptations

and value their decisions in terms of operating costs, quality and potentially incurred

technical debt. This debt accounts for the valuation gap between an elastic adaptation

decision and the optimal one.

We presented an elasticity conceptual model based on a technical debt approach that

interconnects elasticity concepts to show that resource adaptation decisions may intro-

duce a dynamic technical debt, which over time affects the overall utility. Moreover, we

instantiated our conceptual through a working example that promotes a value-oriented

perspective for elastic adaptation decisions.
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CHAPTER 4

A DEBT-AWARE LEARNING APPROACH FOR
ELASTICITY MANAGEMENT

4.1 Overview

Although elasticity management techniques continuously perform dynamic resource adap-

tations; in practical terms, it is impossible to achieve a perfect match between resource

provisioning and demand between consecutive adaptations [209, 100]. Therefore, this gap

between the ideal and actual resource provisioning calls for a dynamic valuation that

incorporates a strategic trade-off between performance and economics. On one hand,

this valuation should consider that effects of elasticity adaptations on performance, for

example, are not instantaneous due to the spin-up time [136]. On the other hand, the

same valuation should consider that the economics of these adaptations depends on billing

cycles, pricing schemes and resource bundles granularity [223]; as in the case of a partial

usage waste [114], which results from the additional time charged for a resource between

its release and the end of the billing cycle. In this chapter we propose:

• An elasticity management approach that autonomously learns the value of elasticity

debts and dynamically trades off performance against economics in adaptation deci-

sions. The adaptation pursues to take decisions that maximise the long-term utility

of the elastic system by incurring strategic debts. The approach contributes to the

fundamentals of technical debt management, where our work is the first to transit
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the debt analysis from a static to a dynamic perspective through a reinforcement

learning approach to make strategic adaptation decisions. Elasticity adaptation can

incur an elasticity debt that renders short-term benefits but compromises perfor-

mance, economics or both. The debt can accumulate if not properly valued. These

debts can be retrospectively analysed in a threshold-based reactive management

for elasticity or dynamically learnt with a proactive perspective in a reinforcement

learning based elasticity management. Reinforcement learning [226] is an approach

that seeks optimality in decision-making through a continuous learning that forgoes

short-term rewards to achieve higher long-term gains.

To our knowledge, our work is the first to value, as a debt, the potential utility

produced by the gap of an imperfect elasticity adaptation. We shared this self-adaptive

perspective for technical debt in the Dagstuhl Seminar 16162 [19]; the suggestion was

well received by the technical debt community. Moreover, the contribution is the first to

introduce an online learning approach for technical debt; the approach identifies, tracks,

and monitors the debt and payback strategies of adaptation decisions in the context

of cloud elasticity. We evaluate the approach through a simulation tool that extends

CloudSim [39] and Burlap [146]. The results indicate that a reinforcement learning of

technical debts achieves a higher aggregate utility for a service provider.

The rest of the chapter is organized as follows. Section 4.2 presents the problem

statement and motivates the need for an online learning of elasticity debts, while Section

4.3 provides a detailed overview of our debt-aware learning approach and explains its

components. We report the evaluation of our approach in Section 4.4, followed by a

discussion of related works in Section 4.5. Finally, section 4.6 summarizes the chapter.

4.2 Problem Statement

In practice, it is impossible to achieve a perfect elasticity i.e. exactly match resource

supply with demand [209, 100] due to several reasons such as the difficulty to predict re-
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source demand, coarse computing resource granularities, spin-up times, restrictions on the

number of computing resource that can be acquired at once, pricing schemes granularity

and billing cycles among others [111, 223]. Hence, elasticity management decisions should

optimize for a dynamic resource provision not only in terms of performance metrics but

also from an economics perspective that can maximise the utility of the Software as a

Service (SaaS) provider (cloud customer) in the long run.

Currently, elasticity is analysed from a performance [100], cost-aware [212, 96] or

economics-driven perspective [77, 185]. However, none of these approaches incorporate

a strategic valuation of imperfect elastic adaptations to make explicit trade-offs in the

decision-making when adjusting a resource provisioning. Consequently, these myopic

adaptations lead to a provision of resources that obtains short-term gains when matching

the resource demand but can be suboptimal in the long-term with hidden consequences

that waste resources or degrade quality of service attributes (e.g. performance, security,

reliability), which diminishes the aggregate utility of the cloud customer over time.

The technical debt metaphor supports a reasoned decision-making about quick engi-

neering decisions taken to obtain short-term benefits at the cost of introducing liabilities

that compromise long-term system objectives. In dynamic environments, the utility of

these decisions can be systematically learnt through a reinforcement learning approach

[226]. Reinforcement learning is a technique where a farsighted agent learns from contin-

uous interactions with an environment how to maximize a long-term reward without any

a priori knowledge. We combine this online learning with the technical debt metaphor

in the context of cloud elasticity to evaluate dynamic trade-offs carried out by elastic

adaptation decisions. The consideration of debt motivates a value-oriented perspective

to adaptation that systematically links the consequences of these decisions with environ-

mental uncertainty, such as unexpected workload variations, dynamic changes in quality

of service or resource failures.

We advocate that elasticity can benefit from a debt-aware learning perspective by mak-

ing the elasticity debts visible, revealing the performance and economics consequences of
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adaptation decisions (e.g. over- or under-provisioning states) that are prone to uncer-

tainty and therefore improving the utility achieved by a cloud stakeholder (e.g. SaaS

provider) in terms of reducing penalties that relate to Service Level Agreement (SLA)

violations and operating costs minimization.

4.3 Proposed Approach

4.3.1 Reinforcement Learning

Reinforcement learning [226] is a framework that pursues an optimal decision-making

based on the maximization of a cumulative reward in the long-term. The decision-maker

or agent learns through consecutive interactions with an environment, where each action

modifies the environmental state and produces a reward, which is the utility that the agent

receives from the action. Both, the set of variables that characterizes the new state and

the reward are perceived by the agent. This learning technique has already been applied to

cloud elasticity management [145, 22], where an agent takes resource adaptation decisions

based on the current state, which is usually identified by performance thresholds, and

achieves a reward, which is given by the new performance monitored after the adaptation

takes place.

We follow a model-free reinforcement learning strategy rather a model-based because

our learning environment lacks a predefined transition model that describes the effect

of each action a in a given state s by determining the probability of reaching a specific

subsequent state st+1. A model-free strategy uses an action-utility function, known as

Q(s, a), to estimate the value of performing an action a over a state s. From the available

algorithms in this kind of learning strategy, we have adopted Q-learning [226] because

it is more flexible to explore changes in the environment, making it more convenient for

highly dynamic contexts. Furthermore, it is the most common extended algorithm with

respect to elasticity management [145].
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The Q-learning algorithm learns an optimal decision-making by repeatedly updating

the utility of an action a given a state s according to the following update rule:

Q(s, a)← (1− α) ∗Q(s, a) + α ∗ [r + γ ∗maxat+1Q(st+1, at+1)], (4.1)

where α is the learning rate (a value that usually starts at 1 and decreases over time),

r is the reward of the action, γ is the discount factor (a value between 0 and 1 that adjusts

a learner from myopic to far-sighted respectively), and st+1 is the resulting state, and at+1

is the best possible action to take thereafter.

Interactions with the environment are classified as exploration or exploitation. The

former aims to perform random actions to experience environmental changes to preclude

from focus on immediate gains; whereas the latter aims to only make use of what the

agent already knows. This trade-off between exploration and exploitation depends on an

ε-greedy policy, which means that a learner exploits the best action with probability (1-ε)

and explores a random action with probability ε.

4.3.2 Learning Elasticity Debts

We propose an elasticity management based on a reinforcement learning of technical debts

incurred by elasticity adaptations. Our debt-aware learning approach explores and learns

elasticity debts over time and then uses this knowledge from previous experiences to incur

in strategic adaptations intended to achieve a higher aggregate utility. We adopt a utility

function [185] in which the aggregate utility achieved by a SaaS provider when processes a

workload w, composed of jobs or incoming requests denoted by x, is calculated in terms of

revenue, penalty and operating costs incurred during the monitored period (i.e. between

consecutive elasticity adaptations) by means of Equation 4.2:

U(w) = R(x) ∗ xs − P (x) ∗ xf −
N∑
i=1

C(vmi)

∫ L

0

mi(t)dt, (4.2)

where R(x) and P(x) functions return the revenues and penalties per request, respec-
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Figure 4.1: Reference System Model of our Debt-Aware Approach

tively; xs and xf represent the number of successful and failed requests, respectively, from

workload w with respect to defined in the SLA; and C(vmi) function returns the cost of

each of the N virtual machine (VM) types corresponding to their mi launched instances

over the execution time L.

Equation 4.3 calculates the debt of each adaptation as the utility difference between

the actual and the ideal resource provisioning:

ElasticityDebt← Uactual − Uideal, (4.3)

where U represents the utility obtained by a SaaS provider as cloud customer during

a monitoring period. In the best scenario, the elasticity debt would be zero when the

actual resource provisioning matched the ideal one required in the period. Otherwise, it
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will be a negative number.

The approach calculates the debt of an adaptation action (i.e. launch, release or

maintain) taken at time ti when the next one is adopted at tj, where tj > ti. For each

action, we recreate the circumstances under which this adopted action was serving (from

ti to tj) and simulate the other two discarded elasticity actions at time ti to retrospectively

determine the ideal action that would have produced the highest utility among the three.

Then, once we have this ideal utility, we proceed to calculate the incurred debt of the

actual adaptation action taken at time ti by means of Equation 4.3.

A reference system model of our approach is shown in Figure 4.1, where several tenants

subscribe to a multi-tenant SaaS service with a SLA tailored to each individual need. We

envision an agent-oriented architecture with hierarchy where agents tend to realise the

requirements of multi-tenant users in a decentralised fashion, which promotes a scalable

solution and facilitates the collaboration between different agents promising optimization

for inter-agents knowledge exchange.

In the model, we grouped running virtual resources in clusters and each of them is

managed by a debt-aware learning agent, which corresponds to a single tenant. Each

debt-aware learning agent is responsible for launching, releasing, and monitoring VMs; it

also performs a load balancing and dispatches the incoming requests to be executed in

one of the VM in the cluster. Some VMs can be managed simultaneously by more than

one learning agent to optimise resource utilization during under-provisioned states.

The incoming requests are received by the debt-aware coordinator, which is responsible

for creating and destroying learning agents, forwarding incoming service requests from a

tenant to the corresponding learning agent, and sending coordination messages such as

changes in expected SLAs or refinements in the reinforcement learning process.

The approach can be instantiated with either a single debt-aware learning agent or

a multi-agent version. For the latter, we advocate the use of a parallel reinforcement

learning mechanism [152]; where multiple agents can learn simultaneously elasticity debts

and share their learning to speed-up the convergence time.
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Table 4.1: Reinforcement Learning Elements

Element Definition

Environment Cloud elasticity
Agent Debt-aware learning agent, debt-aware coordinator
Actions Launch, release or maintain VMs

State
Variables

1. Proportion of VMs with queued requests (i.e. High, Medium
and Low)

2. Proportion of VMs close to a next billing cycle and without
queued requests (i.e. High, Medium and Low)

3. The last action taken by the agent (i.e. Launch, Release or
Maintain)

Reward Elasticity Debt

Table 4.1 defines the elements of our reinforcement learning approach. A debt-aware

learning agent takes one of the possible elasticity management actions (i.e. launch, release

or maintain), and receives a reward, determined by the elasticity debt that corresponds to

the adopted action. Additionally, the learning agent considers the following variables to

define a state: (i) a proportion of running VMs with queued request; where the proportion

is equally categorized into high, medium or low; (ii) a proportion of running VMs close

to a next billing cycle and without queued request; where the proportion is equally cate-

gorized into high, medium or low; and (iii) the last action taken by the agent. We avoid

unnecessary exploration by including preconditions for two actions: launch and release.

For instance, only launch action is available if there is a high number of VMs with queued

jobs; or only release action is permitted when a high proportion of VMs are close to a

next billing cycle and without queued request.
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4.4 Evaluation

Our experiment intends to compare the aggregate utility that a SaaS provider achieves

when adopts a debt-aware reinforcement learning elasticity management against a com-

mon threshold-based rule elasticity mechanism and investigate the implication of debt-

awareness over time. We are also interested in analysing the results in terms of both

performance, through request failure rates, and economics, through deployed VMs and

total costs. We instantiated two scenarios from the reference system model in Figure

4.1: (i) one with a single debt-aware learning agent; and (ii) another with two agents to

illustrate the parallel learning with a minimum inter-agent coordination overhead.

The common threshold-based elasticity management implements the voting process

offered by Right Scale [199]. In this voting mechanism, resource adaptations are taken

based on the outcome of a voting process, where each virtual machine votes according to

a performance metric (e.g. CPU utilization) decision threshold.

Figure 4.2: Arrival Rates from French Wikipedia Trace

4.4.1 Experiment Setup

We extended CloudSim [39], a framework for modelling and simulation of cloud infras-

tructures and services, to support experiments with both the debt-aware learning and
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the threshold-based approach. For the debt-aware learning, we extended Burlap [146],

a framework for implementing reinforcement learning solutions, and integrated this ex-

tension with CloudSim. We have made available our implementation for validation and

replication in a Git repository 1. Besides the core functionality, we implemented load

balancing and horizontal scaling using a single type of virtual machines, where we consid-

ered processing capacity expressed in terms of millions of instructions per second (MIPS).

As spin-up times in real infrastructures are variable [154], we make the simulation more

realistic with spin-up times that conform to a Gaussian distribution. For the experiments,

we extracted 15 days (from day 24 to 38 inclusive) of the French Wikipedia trace avail-

able in the Wikipedia page view statistics [243] but scaled to last 27 hours to demand a

controllable amount of resources, as seen in Figure 4.2. We parsed the original workload

file into the Standard Workload Format to ensure compatibility with CloudSim.

We assume that the multi-tenant SaaS service is hosted by an Infrastructure as a

Service (IaaS) provider such as CloudSigma [47] with its pay-as-you-go pricing scheme and

five minute-based billing cycle, a resource granularity in terms of VMs, and a horizontal

elasticity method. General simulation parameters are specified in Table 4.2. The cool

down period is selected to deal with the expected distribution of spin-up times; the SLA

constraint represents a reasonable high expectation; the penalties are linked to the price

per request, which is set in relation to the VM cost per billing cycle; the size of a request

is selected to enable a VM to handle several requests simultaneously. Additional specific

parameters for the threshold-based and the debt-aware approach, required by Equation

4.1, are shown in Tables 4.3 and 4.4, respectively. The upper and lower thresholds in

the threshold-based approach are justified in the selection of representative and sensible

values of a high and low CPU load, respectively. The learning rate starts with a high

value to favour convergence and decreases up to a minimum to preserve learning; the

discount factor is a high value to guarantee a far-sighted behaviour; and the probability

ε is a low value aimed at preserving a minimum exploration of random actions over time.

1Link to the repository: https://bitbucket.org/cxm523/kdebtrepo
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Table 4.2: Simulation Parameters

Parameter Value

Spin-up time a mean of 59.8s with a standard deviation of 0.03s
Cool down period 60s

Billing cycle Every 5 minutes
SLA constraint 90% of jobs handled up to 2s

Price per request $ 0.0012344
Request’s size 4 millions of instructions

Penalty per failed request $ 0.002
VM processing capacity 14 MIPS

VM cost $ 0.07 per cycle

Table 4.3: Threshold-Based Approach Simulation Parameters

Parameter Value

Lower CPU threshold 30%
Upper CPU threshold 95%

Voting agreement threshold Relative majority among actions

We performed the experiments on a laptop that runs Windows 10x64 operating sys-

tem with 16 GB RAM and Intel Core i7-4500U CPU at 1.8 GHz. We ran the simulation

tool 100 times per approach, where average execution times for the threshold-based ap-

proach, the single debt-aware learning and the parallel one are 278, 267 and 222 seconds,

respectively.

4.4.2 Experiment Results

We integrated JFreeChart [112], a chart library, with CloudSim to draw box-and-whisker

plots that show the mean, median and quartiles related to failure rates, deployed VMs,

total costs and aggregate utilities for the experiments with each approach. Additionally,

we draw line charts to depict average failure rates over time and average aggregate utility

over time. We start analysing the performance, followed by the economics to end with

the overall utility achieved by each mechanism.

Regarding the performance, we compare box-and-whisker plots of failure rates ob-
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Table 4.4: Debt-Aware Approach Simulation Parameters

Parameter Value

Learning rate α per state-action pair Starts at 1, then decays at 0.05 per adap-
tation up to a minimum of 0.1

Discount factor γ 0.99
ε probability 0.05
Proportion of VMs with queued requests Low (<33%) , Medium, High (>66%)
Proportion of VMs close to a next billing
cycle and without queued requests

Low (<33%) , Medium, High (>66%)

Number of agents for parallel reinforce-
ment learning

2

tained from the management approaches. Figure 4.3(a) depicts that debt-aware learning

experiments achieved a lower number of SLA violations. The average of failures for the

threshold-based approach is 7.2%, whereas the single debt-aware approach has a mean

of 2.8%. Moreover, the parallel debt-aware approach yields a similar performance with

a 2.9% of failed requests. Figure 4.3(b) illustrates the average failure rates over time for

each approach. We observed that both debt-aware learning experiments had a higher fail-

ure rate than the threshold-based approach at the beginning of the workload execution.

However, after this initial learning period, debt-aware learning experiments drastically

improved their performance and the single surpassed the threshold-based management

after 22,000 seconds, whereas the parallel after 35,000 seconds, approximately.

Considering the economics, Figure 4.4(a) presents a box-and-whisker plot with the

number of VMs provisioned per approach. The experiment results indicate that debt-

aware approaches make a more efficient use of resources. The single and the parallel

debt-ware approaches reached an average of 26 and 58 virtual machines, respectively. On

the other hand, the threshold-based approach launched more VMs with an average of

133 virtual machines. Consequently, there is a reduction of the total costs incurred by

debt-aware elasticity management mechanisms. Figure 4.4(b) shows a box-and-whisker

plot with total costs per approach. Average overall costs for the threshold-based approach

are $9.40, whereas for the single and parallel debt-aware approaches are $1.80 and $4.08,
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(a) Failure Rates per Approach (b) Average Failure Rates Over Time per Approach

Figure 4.3: Performance of the Experiments

respectively.

Concerning the utility, Figure 4.5(a) depicts a box-and-whisker plot with the util-

ity achieved by each mechanism. Both debt-aware mechanisms yielded a higher util-

ity than the threshold-based approach. The single and the parallel debt-aware mech-

anisms achieved an average aggregate utility of $3,265 and $3,248. On the other side,

the threshold-based approach yielded an average aggregate utility of $2,851, as a con-

sequence that this mechanism is more negatively affected by incurred penalties and the

deployment of VMs. Figure 4.5(b) shows the average aggregate utility over time per

approach. Debt-aware learning experiments started achieving a higher aggregate utility

when approximately a third of the total workload length has been executed.

4.4.3 Threats to Validity

We carried out the evaluation of our approach through a simulation that resembles a

cloud environment. We built our simulation tool on CloudSim and Burlap, which are the

most widely extended frameworks for simulating cloud environments and implementing

reinforcement learning experiments, respectively. A potential threat to validity is that we
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(a) Deployed VMs per Approach (b) Total Costs per Approach

Figure 4.4: Economics of the Experiments

executed the experiments on a controlled environment. However, this is justifiable: the

controlled environment can facilitate a faster experimentation with diverse scenarios and

different IaaS providers. To further mitigate the threat, we performed the experiments

using a real workload trace.

For the sake of simplicity, we considered a SLA with only one quality of service at-

tribute: response time. But, the model is extensible to multiple attributes (e.g. availabil-

ity, reliability) and multiple SLAs.

4.5 Related Work

In this section, we discuss closely related research and how our work goes beyond the

coverage of previous initiatives.

Technical debt community has applied the metaphor in a wide range of decision-

making process under uncertainty such as software maintenance and evolution [131], ar-

chitectural design [138], cloud service selection [9], software testing, sustainability design
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(a) Aggregate Utilities per Approach (b) Average Utility Over Time per Approach

Figure 4.5: Utility of the Experiments

among others [137]. It has been used as a way to identify, measure and monitor a decision

that trades off a quality compliance concern against an economics concern. Furthermore,

the metaphor has shown to be effective to raise the visibility of the impact on utility of

a suboptimal decision if a change materialises. For example, Li et al. [138] evaluated

architectural decisions from a value-oriented perspective and used the debt to monetise

the gap between an optimal and suboptimal architecture when a change scenario occurs.

Also, Alzaghoul et al. [9] extended the metaphor into cloud service selection to adopt

a service substitution that is aware of the potential debt introduced in the composition

by each candidate service and makes a decision based on the potential of the selected

service to clear the debt when the change scenario materialise. However, none of these

works addresses the problem of automating the learning of technical debts. To the best

of our knowledge, we are the first to propose an autonomous management of technical

debts based on learning and, different from previous works, we are revisiting the metaphor

to support run-time management of debts and value creation in self-adaptive and self-

management contexts such as cloud elasticity.

Reinforcement learning has already been used as an underlying technique for elasticity
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management [145]. For instance, Barret et al. [22] designed a parallel Q-learning approach

to build an elasticity manager based on a multi-agent system, where each virtual resource

is an agent that makes its decisions depending on the load of incoming requests, expe-

rienced penalties and deploying costs. However, state variables are purely performance

metrics and the reward is based on a minimization of costs and penalties; consequently, the

learning ignores the strategic valuation and potential utility of continuous gaps between

resource supply and demand as a result of imperfect elasticity adaptations. Jamshidi

et al. [111] built a fuzzy control based reinforcement learning approach for autonomous

elasticity management that modifies fuzzy elasticity rules for resource provisioning at

run-time. However, this work is focused on tuning and improving fuzzy rules to reduce

user-dependency in elasticity management. In contrast to prior works, we designed a rein-

forcement learning approach that considers state variables related to both economics and

performance aspects of cloud elasticity and a reward linked to elasticity debts, in order to

achieve a management that proactively uses this autonomous learning of technical debts

in resource adaptations to estimate the conditions where these debts will potentially pay

off.

4.6 Summary

We proposed an autonomous elasticity management approach intended to make adapta-

tions that are aware of the unavoidable imperfections of elasticity adaptations in the cloud.

Our approach implements a reinforcement learning solution that values the potential util-

ity produced by the dynamic gaps between the ideal and actual resource provisioning over

time. We are the first to propose an elasticity decision-making analysis that integrates

the strategic decision-making achieved through reinforcement learning techniques, and the

value oriented perspective promoted by the technical debt metaphor in changing environ-

ments. Simulation results indicate that a reinforcement learning of dynamic technical

debts in resource provisioning achieves a higher aggregate utility for the SaaS provider.

82



Moreover, the underlying foundations of our dynamic technical debt approach are generic

enough to be applied in other self-adaptive and self-management contexts, where decisions

with a trade-off analysis can be strategically taken and aimed at long-term rewards.
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CHAPTER 5

A MULTI-AGENT ELASTICITY MANAGEMENT
BASED ON MULTI-TENANT DEBT EXCHANGES

5.1 Overview

A multi-tenant Software as a Service (SaaS) application is a highly configurable software

that allows each tenant (client), usually an organization that serves a number of users, to

customize its appearance and application workflows according to their needs; which makes

it appear different for each tenant but indeed all of them are sharing a single application

[29]. The application owner (provider) can negotiate individual SLAs with each tenant

that subscribes to the service [141]. Typical applications that benefit from multi-tenancy

are Enterprise Resource Planning (ERP) such as SAP [208], and Customer Relationship

Management (CRM) like Salesforce [242].

In practice, multi-tenant application owners categorise their tenants in a few types

of tenancy (e.g. premium and standard tenants) [27], which promotes the economies

of scale in the cloud [15] but limits the diversity in terms of Service Level Objectives

(SLOs). Moreover, this coarse-grain categorization built on a threshold-based elasticity

management gets an aggregated resource provisioning [129] that ignores the advantages of

an autonomous tenant profiling to form dynamic tenants coalitions and pursue an efficient

resource provisioning, while conserving the benefits of a tenant diversification from both

application owner and client perspectives. This chapter introduces:
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• A multi-agent elasticity management that promotes dynamic agent coalitions for

resource sharing in multi-tenant cloud environments. Each agent is a debt-aware

reinforcement learner that performs resource provisioning on behalf of a tenant and

dynamically exchanges resource capacity with their peers using a stable matching

approach [109]. The agent maps the original concepts of good and bad financial

debts [233] to perform elasticity adaptations; the former is a debt intended to create

future value for the debtor, whereas the latter is a debt unlikely to pay off in the

future. Additionally, the agent uses technical debt attributes (i.e. amnesty and

interest) [235] as preferences for the matching algorithm that forms agents coalitions

at runtime, which are intended to make a more efficient use of virtual resources.

A technical debt, if managed, can still speed the desired outcome, which can conse-

quently ease the process of paying back the debt. This is particularly true, when the

returns of taking the debt outweigh its cost. In contrast to earlier efforts, this chapter

leverages the concept of debt restructuring [248] in finance to inform elasticity adaptation

in terms of a trade-off between good and bad debts. Moreover, to the best of our knowl-

edge, we are the first to use technical debt attributes and debt restructuring to promote

dynamic value-driven coalitions in adaptive environments using stable matching.

The rest of the chapter is organized as follows. Section 5.2 presents the problem

statement, while Section 5.3 provides a detailed explanation of our reinforcement learning

agents and describes their coalition mechanism. We report the evaluation of our approach

in Section 5.4, followed by a discussion of related works in Section 5.5. Finally, section

5.6 summarises the chapter.

5.2 Problem Statement

Elasticity is the key characteristic of cloud computing that enables a system to au-

tonomously acquire and release resources on demand [99]. Ideally, the resource demand

and supply should perfectly match at any point in time. But, in practice, any elasticity
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management approach (e.g. threshold-based, reinforcement learning, queueing theory)

produces over- and under-provisioning states that affect the utility of the cloud customer

[100, 209]. We posit that a multi-tenant SaaS application should exploit its tenants’ diver-

sity, in terms of workload patterns and SLOs, to minimise the impact of the unavoidable

gaps between resource demand and supply in resource provisioning.

However, multi-tenant SaaS applications limit their diversity when they force their

tenants to fit in one of the few predefined categories (e.g. standard, premium) [27, 129];

which subsequently, reduces the flexibility to define SLOs in a cloud deployed application

[141]. Furthermore, they miss the advantage over single-tenant applications to dynami-

cally learn the behaviour of their multiple tenants and use this diversity to minimize the

impact of imperfect elasticity management decisions that incur technical debt over time

[162].

We propose a multi-agent approach to perform elasticity adaptations in a multi-tenant

SaaS application. Each agent is a debt-aware reinforcement learner, acting on behalf of

a tenant, that trades off good debts against bad debts in elasticity adaptation decisions.

These agents may strategically collaborate among each other during adaptation periods

using a debt-based negotiation to complement and rectify their mismatch between resource

supply and demand in the seek of a local (i.e. tenant) and global (i.e. owner) utility.

5.3 Proposed Approach

5.3.1 Good and Bad Elasticity Debts

In finance, a debt can be either good or bad [233]. A good debt is an investment where

a borrowed money is intended to generate future value or unfold future opportunities

(e.g. a student loan, a mortgage). On the contrary, a bad debt is an operation where a

borrowed money provides no real prospect to pay for itself in the future or quickly loses

its value (e.g. a luxury holiday loan, a credit card cash advance). We argue that these
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concepts can be mapped into the elasticity debt metaphor to perform a more accurate

resource allocation, preserve SLO diversity of tenants, and minimise the impact of over-

and under-provisioning states on multi-tenant SaaS application utility.

We model a multi-tenant SaaS application as a multi-agent environment, where each

agent performs elasticity adaptation actions, on behalf of a tenant, with the correspond-

ing mismatches between resource supply and demand. These agents negotiate dynamic

coalitions with others over time, intended to minimise risks of an inappropriate elasticity

adaptation decision. In this context, we devise agents that incorporate the ability to ne-

gotiate and exchange debts among tenants within the coalition. As Table 5.1 summarises,

we view an over-provisioning state as a good debt that embeds real options; if these op-

tions are exercised can unlock benefits and enhance the utility of the collaborative elastic

ecosystem. These benefits can be materialized in scenarios, where the underutilized re-

sources can serve other tenants boosting compliance for SLOs and improve the provision

for the coalition. In contrary, we view an under-provisioning state as a bad debt that is

attributed to the ill or suboptimal allocation decision of an agent that deemed inflexible

in handling additional load leading to SLO violations. The debt exchange operates on

the assumption that if the agents form coalitions, the inherent and unavoidable debts

(whether good or bad) can be managed in a dynamic and adaptive way. Additionally,

the debt exchange can reduce the negative impact of elasticity adaptations that supply

an inaccurate resource provisioning, either an excess or a lack of resources in different

agents. The exchange trades off local benefits (tenant) against global gains (application

owner). Equation 5.1 calculates the elasticity debt that an agent incurs for the duration

of an adaptation action:

ElasticityDebt← −wi ·GoodDebt− wj ·BadDebt, (5.1)

where GoodDebt is determined by the costs incurred in unused virtual resources during

the adaptation period; BadDebt is the result of the penalties incurred as a consequence of

SLO violations; wi, wj ∈ [0,1], wi +wj = 1, and represent the preferences in the weighted
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Table 5.1: Good and Bad Debt in a Multi-Agent Context

Type Meaning

Good debt An agent that is part of a coalition and enters an over-
provisioning state may create a future benefit, from a
global perspective, if shares this capacity acquired in ex-
cess with under-provisioned agents within the coalition.

Bad debt An agent that is within a coalition and enters an under-
provisioning state will need to minimise the consequences
of its current adaptation decision by borrowing available
capacity from over-provisioned agents in the coalition and
achieve a local benefit.

sum. The weights can be adjusted to reflect on the relative importance of the debts (and

the extent to which leaning towards the good or the bad). Furthermore, learning can be

employed to continuously adjust the weights based on the debt performance prospect.

5.3.2 Learning Elasticity Debts

The debt-aware reinforcement learning agents are guided by the approach presented in

the previous chapter. This means that the environment is the cloud elasticity; the agent

is the elasticity management decision-maker; the set of available adaptation actions is

composed of launch, stop and maintain a Virtual Machine (VM). Additionally, the reward

is determined by the incurred elasticity debt but according to the interpretation given in

Equation 5.1; and the variables that determine the state of the environment are: (i) the

proportion of VMs with queued requests (i.e. High, Medium, Low), (ii) the proportion of

VMs close to a next billing cycle but without queued requests (i.e. High, Medium, Low),

and (iii) the last adaptation action taken.

The proposed approach also implements the Q-learning algorithm, in which the utility

of an action a given a state s is repeatedly updated according to the following update

rule:

Q(s, a)← (1− α) ·Q(s, a) + α · [r + γ ·max
at+1

Q(st+1, at+1)], (5.2)
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where α is known as the learning rate (a value that generally starts at 1 and decreases

with time); r represents the reward of the action; γ is the discount factor (a value between

0 and 1 that adjusts a learner from myopic to far-sighted respectively); st+1 is the resulting

state; and at+1 is the best possible action to take thereafter.

5.3.3 Multi-Agent Coalitions based on Debt Attributes

In financial terms, the original amount of borrowed money constitutes the principal, and

the interest is an additional fee charged for the use of the principal, that needs to be

paid back before the date of repayment [12]. Sometimes, all or part of accrued debts are

waived or forgiven; situation known as amnesty. Both concepts, amnesty and interest

are also considered as technical debt attributes [235]. We argue that, in cloud elasticity

management, the elasticity debt amnesty refers to the situation in which the negative

consequences of an imperfect elasticity management decision are mitigated due to the

agent participation in a coalition (e.g. sharing the excess or reducing the lack of resources).

The latter, the elasticity debt interest, refers to the additional elasticity management

decisions that need to be taken as a consequence of the agent involvement in the coalition

(e.g. a need of previously shared resources).

We posit that in a debt-aware multi-agent based elasticity management, agents may

form coalitions to negotiate and exchange debts using debt attributes. The coalition may

share resources between their members to diminish their over- and under-provisioning

states.

In case of a good technical debt, we interpret two attributes: (i) amnesty and (ii)

interest. The former appears when an agent, in an over-provisioning state, shares some of

its available resources with another member of the coalition and afterwards, during the

sharing, the lender finds no need to use these shared resources; this amnesty is measured

in terms of the costs of the lent resources and considered as positive because it offers

available capacity to share. The latter, the interest, materialises when an agent shares

available resources with the coalition but later, throughout the sharing, these resources
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Table 5.2: Debt Attributes Meaning in a Good Debt

Attribute Meaning

Amnesty An agent lends available resources to the coalition and
afterwards, within the sharing period, the agent has no
need to use those resources.

Interest An agent lends available resources to the coalition and af-
terwards, within the sharing period, the agent needs those
lent resources; which leads to a bad debt.

Table 5.3: Debt Attributes Meaning in a Bad Debt

Attribute Meaning

Amnesty An agent experiences a shortage of resources, within the
coalition period, then afterwards finds and borrows avail-
able resources from the coalition.

Interest An agent needs extra resources, within the coalition pe-
riod, but the agent fails to find available resources to bor-
row and incurs SLO violations.

are needed by the agent; this situation leads to a bad debt and its quantification would

depend on whether available resources were found or not in the coalition.

As far as bad technical debt is concerned, we also consider the same attributes. The

amnesty appears when an under-provisioned agent requests resources by borrowing avail-

able resource capacity from the coalition; this amnesty is quantified as the costs of bor-

rowed resources but considered as negative because it consumes shared capacity. The

interest emerges when an under-provisioned agent fails to find the needed capacity avail-

able in the coalition; this interest is calculated in terms of the penalties that the agent

incurs as a consequence of the SLO violations. Table 5.2 and Table 5.3 summarise the

meaning of the chosen technical debt attributes in our elasticity management approach.

5.3.4 Dynamic Coalition Formation Based on Stable Matching

The debt exchange principle operates on the fundamental assumption that agents dynam-

ically enter into new coalitions after elasticity adaptation decisions are made; coalitions
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that are expected to last at least during a cool down period [57], which is the time where

new adaptations are prohibited until the last one takes effect. In our approach, each agent

makes the debt attributes produced in previous coalitions publicly available to others; en-

abling them to use their own preferences on debt amnesty and interest to achieve a stable

matching with other agents. In a stable matching approach [122] (2012 Nobel Prize in

Economics), there are two sets X and Y , where each agent x ∈ X defines an ordered

preference list to match agents in set Y . Similar procedure is made by each y ∈ Y to

match elements in X. Then, the algorithm achieves a matching between agents of differ-

ent sets based on their own preference lists; where a matched pair (xi, yi) is stable if xi

prefers to be matched with yi over being matched with any other agent in Y and yi also

prefers matching xi over being matched with any other agent in X. In other words, there

is no pair of matched agents that contains members with an incentive to seek a different

coalition. Additionally, the algorithm has been extended to make possible coalitions with

a larger number of matched agents [109]. In this extension, an agent defines a quota n

representing the maximum number of agents that is willing to match.

We dynamically create the two sets X and Y by clustering the learning agents with

k-means [134], which is a simple machine learning algorithm to group instances based

on their features. In our case, we are using the accumulated good and bad debts as

clustering features with the aim of promoting coalitions between agents motivated by

a different debt perspective. In particular, we intend to preserve tenants’ diversity but

incorporating the global perspective of the application owner by forming coalitions that

potentially minimise the unused capacity in over-provisioned agents while reduce SLO

violations in under-provisioned agents.

For our approach, the cluster of agents more likely to incur good debts corresponds to

the set X. These agents prefer to participate in coalitions with agents that experienced

a shortage of resources in previous coalitions; therefore, they generate their ordered pref-

erence lists of agents in terms of the higher aggregate debt interest that their potential

partners had incurred in previous coalitions. The other cluster of agents corresponds the
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set Y . These agents prefer to take part in coalitions where some resources may be avail-

able to be borrowed; consequently, they generate lists that express their preference to

match agents ordered in terms of the higher debt amnesty that these potential partners

had achieved in previous coalitions. Algorithm 2 provides a pseudo-code with a high level

description of an agent’s behaviour.

Algorithm 2 Debt-Aware Agent Algorithm

Input: cooldown // a period to prevent new adaptations
Output: totalSLOviolations // overall SLO violations

totalCosts // overall operating costs
1: Initialise arbitrarily Q // a table of elasticity debts indexed by

state s and action a
2: goodDebt ← 0 // initialises good debt
3: badDebt ← 0 // initialises bad debt
4: s ← monitorStateVariables() // initial state for learning
5: loop
6: Choose a from s using ε-greedy policy derived from Q
7: performAdaptation(a) // launch, stop or maintain
8: elapsedTime ← 0
9: adaptationTime ← clock()

10: myCluster ← joinACluster(goodDebt , badDebt)
11: otherCluster ← getOtherCluster(myCluster)
12: publishMyLastDebtAttributes(otherCluster)
13: preferenceList ← preparePreferenceList(otherCluster)
14: coalition ← matchAgents(preferenceList)
15: while elapsedT ime < cooldown do
16: executeJobs(coalition) // using own or shared resources
17: elapsedTime ← clock()− adaptationTime
18: end while
19: s′ ← monitorStateVariables()
20: goodDebt ← calculateGoodDebt()
21: badDebt ← calculateBadDebt()
22: debt ← computeDebt(goodDebt , badDebt) // Equation 5.1
23: Update Q(s, a) with observed s′ and debt // Equation 5.2
24: totalSLOviolations+ ← getIncurredSLOviolations()
25: totalCosts+ ← getIncurredCosts()
26: s← s′ // update the state
27: end loop
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(a) French Wikipedia Trace

(b) ClarkNet Trace

(c) FIFA 1998 World Cup Trace

Figure 5.1: Arrival Rates of Some of the Workload Traces
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5.4 Evaluation

We devised an experiment with 16 tenants subscribed to a multi-tenant SaaS application,

in which tenants create surveys, publish them and gather their results [27]; each tenant

has their own workload and SLO, which is a given percentage of successfully handled

jobs within an expected response time. The experiment aims to compare the cumulative

SLO violations and aggregate costs when the multi-tenant application operates under

three different scenarios: (i) the common threshold-based elasticity management with

tenant categorisation, (ii) our multi-agent elasticity management but without coalition

formation, and (iii) our multi-agent elasticity management with coalition formation to

exchange debts. Henceforth, for the sake of agility in the discussion, we will also refer to

them as category-based, non-collaborative, and coalition-based approach, respectively.

5.4.1 Experiment Setup

We extended CloudSim [39], a discrete event simulation framework for cloud environ-

ments, and its latest set of extensions available in CloudSimEx project. Moreover, we

built on Burlap [146], a framework for implementing reinforcement learning solutions,

and integrated this extension with CloudSim to evaluate our approach. Regarding the

k-means algorithm, we chose the implementation available in Weka [244], a collection of

machine learning algorithms for data mining tasks. The implementation of our evalua-

tion is available for validation and replication in a Git repository 1. In addition to the

main functionality, our simulation tool implements load balancing and a horizontal scal-

ing that launches a single type of virtual machine, whose processing capacity is measured

in millions of instructions per second (MIPS). We also implemented virtual machines

with a variable spin-up time [154] that complies a Gaussian distribution to make a more

accurate representation of real cloud infrastructures. For the category-based approach,

we implemented the voting process provided by Right Scale [199]; in which, the running

1Link to the repository: https://bitbucket.org/cxm523/mankillorepo
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virtual machines take part in a voting process to decide elasticity adaptations depend-

ing on a collective decision threshold about individual performance metrics such as CPU

utilization.

We generated 16 experimental workload traces, each scaled to represent the consump-

tion of a controllable amount of resources during 80 hours and also available in our Git

repository. To make our experiments more realistic, some of these experimental workloads

are based on real traces from Internet servers, such as Wikipedia traces [243], FIFA 1998

World Cup trace [6], ClarkNet trace [46], and IRCache service traces [7]; and from other

real data [105]. For the remaining workloads, we made use of Faban [221], a SPEC [219]

accepted facility that provides a stochastic model to simulate users in benchmarks, part

of the benchmark suite for cloud services, CloudSuite [49]. Additionally, we modelled

these workloads using Limbo [123], which is another SPEC accepted tool that extracts

and models load intensity variations over time, to reduce noise in the workloads. Figure

5.1, Figure 5.2 and Figure 5.9 show some of these workload traces.

All tenants subscribe to the multi-tenant application at the beginning of the experi-

ment and remain subscribed during the whole workload trace execution. The simulation

assumes that the application is deployed on CloudSigma [47], an Infrastructure as a Ser-

vice (IaaS) provider, whose billing cycle looks at resource usage every 5 minutes. Table

5.4 indicates simulation parameters used for the experiment. The cool down period is

selected to deal with the expected distribution of spin-up times; the VM cost is selected

to represent a small amount; the size of a request is selected to enable a VM to handle

several requests simultaneously; the expected response time represents a reasonable high

expectation; to avoid biases, the weights for the debts and the proportions that segment

the variables defining a state are equally distributed. Additionally, Table 5.5 presents

further simulation parameters used to represent the CPU utilization thresholds across

different tenant categories for the common threshold-based elasticity management. The

upper and lower thresholds in the three categories are justified in the selection of repre-

sentative and sensible values of a high and low CPU load; such that a lower category (e.g.
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(a) IRCache Trace from Service Running at San Diego, California

(b) IRCache Trace from Service Running at Urbana-Champaign, Illinois

(c) Sales Trace

Figure 5.2: More Arrival Rates of Some of the Workload Traces
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Table 5.4: Simulation Parameters

Parameter Value

Spin-up time A mean of 60.0s with a
standard deviation of 0.03s

Cool down period 120s
Billing cycle Every 5 minutes
Request’s size 1 million of instructions
VM processing capacity 14 MIPS
VM cost $ 0.30 per cycle
Learning rate α
per state-action pair

Starts at 1, then decays at 0.01 per
adaptation up to a minimum of 0.1

Discount factor γ 0.7
ε probability 0.05
Expected response time Jobs handled up to 2s
Proportion of VMs with
queued requests

Low (<33%) , Medium,
High (>66%)

Proportion of VMs close to
a next billing cycle and
without queued requests

Low (<33%) , Medium,
High (>66%)

wi 0.5
wj 0.5
Coalition size 2

Table 5.5: Simulation Parameters for Multi-Tenant Categorisation

Category Lower CPU Threshold Upper CPU Threshold

Standard 55% 99%
Premium 40% 90%

Super Premium 40% 80%

standard) is more cautious to launch new machines than a higher category (e.g. premium

and super premium); whereas a higher category is more cautious to terminate machines

than a lower category. We put 5 workloads in the standard category, 5 in the premium,

and 6 workloads in the super premium category of the common threshold-based elasticity

management with tenant categorisation.

We performed the experiment using a single core of a, Linux-based, batch processing

High Performance Computing (HPC) cluster composed of nodes with cores E5-2690 v3

Haswell sockets running at 2.6 GHz and 128 GB RAM. The simulation ran 30 times
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Figure 5.3: Average SLO Violations per Approach

per scenario with approximate execution times of 1.5 minutes for the category-based

elasticity management, 2 minutes for the non-collaborative approach, and 2.5 minutes for

the coalition-based elasticity management.

5.4.2 Experiment Results

We draw box-and-whisker plots to depict the mean, median and quartiles of SLO vio-

lations rates, billed VMs, and aggregate operating costs on each approach. Besides, we

draw a line chart to illustrate a comparison of the average SLO violations over time that

each approach produces. We also present a line chart with the average SLO violations

per agent in the coalition-based approach.

Figure 5.3 shows a box-and-whisker plot with the average SLO violations incurred by

the agents on each approach. The coalition-based elasticity management achieved the

lowest number of SLO violations through the simulations with a mean of 0.89%, whereas

the non-collaborative approach doubled it with a mean of 1.81%; their difference is a direct

benefit of the debt exchange within the coalitions. We appreciate that both debt-aware

approaches overcame the category-based elasticity management, which reached a 8.18%.
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Figure 5.4: Average SLO Violations Overtime per Approach

We also analyse the varying performance of the approaches over time to provide a

more dynamic perspective. In this sense, Figure 5.4 illustrates a line chart that presents

the average SLO violations over time per approach. We observe that the curves corre-

sponding to both debt-aware approaches follow a descendant pattern that reduces SLO

violations with time. On the other hand, the curve of the common threshold-based elas-

ticity management keeps a constant SLO violations rate over time. Although debt-aware

approaches produce more SLO violations during the initial learning period, thereafter the

resource provisioning stabilises and surpasses the category-based approach. These results

also indicate that the use of the debt attributes to build the coalitions shorten the learning

period of the coalition-based approach.

Regarding the aggregate operating costs related to virtual machines, Figure 5.5 depicts

a box-and-whisker plot with the average billed VMs per agent on each approach. The

economies of scale enables the resource provisioning of the category-based approach to be

billed for the lowest number of VMs, an average of 2288.81 VMs. Then, the coalition-

based was billed for 3393.04 VMs, followed by the non-collaborative approach with a mean
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Figure 5.5: Average Billed VMs per Approach

of 3752.27 VMs. These results are monetised in Figure 5.6, which illustrates the average

aggregate costs per approach and shows that the category-based approach spent $331.27

less than the coalition-based one. Although the category-based approach incurred the

lowest operating costs on VMs, these savings are negligible when compared to the savings

on avoided penalties yielded by the coalition-based approach due to the SLO violations

reduction.

5.4.3 Simulation Tool Architecture

Figure 5.7 depicts a multi-layered architecture of the core components of our simulation

tool, in which we extend the layered architecture of CloudSim [39]. In the simulation

specification layer, we implemented entities that automate the instantiation of workloads

in either Standard Workload Format (SWF) [229, 42] or Descartes Load Intensity Model

(DLIM) format [220, 123]. Additionally, we decoupled setting parameters from the sce-

nario configuration.

Our CloudSim Extension operates on the top of CloudSim engine. We added a techni-

cal debt layer to incorporate entities that identify, learn and track elasticity debts. We also
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Figure 5.6: Average Aggregate Costs per Approach

included a billing layer to hold entities that implement pricing schemes and billing cycles.

In the user interface structures layer, we incorporated jobs that can be migrated from

one virtual machine to another at runtime; such that load balancing and dynamic termi-

nation of virtual machines are possible. In the VM services layer, we modelled entities to

enrich virtual machines with random spin-up times conforming a Gaussian distribution;

we also extended time-shared scheduling policies to queue incoming jobs in overloaded

virtual machines for later processing. In the cloud services layer, we implemented entities

to support elasticity policies, based on either reinforcement learning or threshold-based

rules; load balancing; and underlying mechanisms such as the Rightscale voting process

[199]. In the cloud resources layer, we extended the behaviour of data centres to support

the migration of jobs between running virtual machines.

Our Burlap Extension, built on the top of Burlap core simulation engine [146], extends

the framework to enable a reinforcement learning in cloud computing environments. In

the domain layer, we modelled entities that define a cloud domain, state variables, and

available actions for an agent. Next, in the environment layer, we implemented the in-

stantiation of a cloud environment, while in the state layer, we modelled the instantiation
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Figure 5.7: Layered Architecture of Our Simulation Tool

of cloud states. In the behaviour learning, we implemented the Q-learning of elasticity

debts.

Our simulation tool is composed of the most widely used frameworks in their respective

contexts such as Burlap for reinforcement learning, Weka for machine learning algorithms

[244], Faban for stochastic resource demand simulation [221], and JFreeChart for display-

ing charts [112]. Figure 5.8 depicts the main components and their connections in the

implemented simulator, highlighting the two major extensions.

5.4.4 Threats to Validity

A potential threat to validity is that the evaluation of our approach was conducted via

a simulation tool that approximates a cloud platform. However, the tool was built on

Faban, CloudSim, Burlap, and Weka; which are the most widely extended frameworks to

simulate cloud user demand, cloud environments, reinforcement learning solutions, and

machine learning schemes, respectively. We justify the use of our simulation tool to create
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Figure 5.8: Main Components of Our Simulation Tool

a controlled environment to test for diverse tenant behaviours and scenarios that would

be expensive to analyse in a real cloud environment.

We have taken a conservative approach in assigning the weights for the debts to elim-

inate bias, assuming that all the debts are of comparable significance. This assumption

may introduce another threat to validity. Nevertheless, in practice, the analyst can adjust

the weights to perform what-if and sensitivity analyses.

A further threat to validity is that, for simplicity, we considered only one SLO in

terms of response time. But, our approach can be extended to support multiple SLOs

and incorporate others, such as reliability and availability.

5.5 Related Work

In this section, we discuss closely related research and how our work goes beyond the

coverage of previous initiatives.

In elasticity management, over- and under-provisioning states were considered by

Herbst et al. [100] as part of an accuracy metric to benchmark elasticity management

techniques from different IaaS cloud providers; the accuracy was determined by a weighted
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sum of over- and under-provisioning states over time. In contrast, our work learns from

over- and under-provisioning states to guide debt-aware elasticity adaptations at a multi-

tenant application level rather than at the underlying of elasticity management. Elasticity

management for multi-tenant environments has been previously addressed [214, 197] but,

unlike our work, they neither considered tenant specific elasticity adaptations [129] nor

used tenants’ diversity to satisfy individual SLOs.

Kruchten et al. [131] proposed that a technical debt incurred by an engineering de-

cision may be valued as positive or negative depending on its motivations. This idea

was later implemented in cloud service selection and composition by Alzaghoul et al. [9].

Additionally, Zablah et al. [248] suggested a mapping of the financial concepts of restruc-

turing and exchanging debts in the technical debt metaphor, but without any concrete

implementation. The above work looked at good and bad debts in a static context. Our

contribution goes beyond existing work; it is the first to map the concepts of good and bad

debt into runtime and develop mechanisms for debt exchanges. Tom et al. [235] described

an analogy between several financial debt attributes (e.g. amnesty, principal, leverage)

and their meaning in the technical debt metaphor. To the best of our knowledge, we are

the first that measure debt attributes on runtime engineering decisions to manage debt

evolution over time.

Notable use of stable matching includes the works of Kimbrough et al. [122] and

Maggs et al. [147]. Kimbrough et al. applied stable matching to present a dynamic multi-

agent perspective in a simulation focused on distributed market-based solutions; Maggs

et al. used an agent-oriented stable matching for load balancing between server clusters

in content delivery networks. But our work, to our knowledge, is the first that introduces

strategy-driven agents that utilises the algorithm to establish dynamic coalitions that

address elasticity management imperfections in multi-tenant environments.
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Figure 5.9: Additional Arrival Rates of Some of the Workload Traces
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5.6 Summary

We proposed a debt-aware multi-agent elasticity management for multi-tenant SaaS appli-

cations, in which agents act on behalf of tenants that define their SLO preferences without

the need to fit in one of the quality of service categories predefined by the application

owner.

The agents learn the types of debts associated with elasticity adaptation decisions

over time and form dynamic coalitions with others using a stable matching perspective to

minimise negative consequences of their resource provisioning. Simulation results indicate

that our approach can reduce SLO violations experienced by tenants without affecting the

aggregate utility of the application owner. Therefore, our approach preserves the diversity

of SLO from different tenants while keeping the advantage of economies of scale in multi-

tenancy. Furthermore, we posit that the underlying foundations of technical debt types

and attributes applied to this multi-agent context can be applied in other self-adaptive

settings with a trade-off between local and global perspectives.
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CHAPTER 6

REFLECTION AND APPRAISAL

6.1 Overview

The aim of this chapter is to revisit the research questions, posed in chapter 1, to review

how they were addressed throughout this thesis. Additionally, we review in retrospective

some qualitative aspects about the evaluation performed in previous chapters.

The remainder of this chapter is structured as follows. Section 6.2 revisits the research

questions, followed by a reflection on the thesis using qualitative criteria in Section 6.3.

Section 6.4 closes the chapter.

6.2 How the Research Questions are Addressed

This section discusses to what extent previous chapters have dealt with the four research

questions, matter of this thesis.

RQ1: What kind of managerial approaches are being used to assess elastic-

ity adaptation decisions in the implementation of elasticity initiatives? How

can an economics-driven elasticity management support value creation and

strategy-driven adaptation decisions? Which are pending challenges for re-

search into economics-driven elasticity management?

In chapter 2, we conducted a survey [161] to review existing elasticity initiatives and
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to gain a deeper understanding of approaches to manage elasticity. The survey lead

us to identify five elasticity managerial approaches: (i) quality-driven; (ii) cost-aware;

(iii) energy-aware; (iv) inter-cloud-oriented; and (v) economics-driven. Additionally, we

deduced that elasticity initiatives guided by an economics-driven approach adopt eco-

nomics criteria such as (i) economics-inspired frameworks; (ii) agent-based computational

economics; (iii) pricing techniques and yield management for profit maximisation; (iv)

analysis of the cost efficiency and cost effectiveness of decisions; and (v) adaptations

deemed as investments with long-term rewards under uncertainty. We also presented our

definition of elasticity management to make explicit its underlying economics concepts

and building blocks, which were used to construct our view of an elasticity management

architecture.

From a macroeconomics perspective, we examined the economics connections of per-

vasive elasticity aspects that determine the outcome of managerial decisions; namely (i)

elasticity level; (ii) elasticity method; (iii) elasticity policy; (iv) computing resource granu-

larity; (v) spin-up time; (vi) resource pricing schemes and billing cycles; and (vii) workload

characteristics. On the other hand, from a microeconomics perspective, we described the

elasticity management as an economics-driven process and identified activities within each

phase that contribute to create value for the managerial outcome.

Based on our findings from the survey, we identified pending challenges for research

into economics-driven elasticity management as follows: (i) incorporate the economics

concept of opportunity cost in runtime adaptation decisions; (ii) develop incentive struc-

tures to motivate strategy-driven adaptations; (iii) devise knowledge representations to

capture the creation of value in potential adaptations; (iv) incorporate energy and carbon

footprint aspects in the economics-driven analysis; (v) consider the usefulness of the eco-

nomics concept of sensitivity analysis to deal with uncertainty in dynamic adaptations;

(vi) the lack of a conceptual model of elasticity to support value-oriented considerations;

(vii) elasticity management overlooking the potential utility of the unavoidable gaps in

resource provisioning; and (viii) reconciling conflicting perspectives in elasticity manage-
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ment for multi-tenant SaaS applications. From the aforementioned list, we decided to

address the last three challenges.

RQ2: How can we leverage technical debt metaphor to support value-

driven analysis in adaptive elasticity management? What are the technical

debts that can be linked to elasticity adaptation decisions?

In chapter 3, we extended the scope of the technical debt metaphor towards runtime

settings to build an economics-driven elasticity management that conducts value-oriented

adaptation decisions with debt considerations [160]. We posited that an elasticity adapta-

tion decision can be deemed as a runtime engineering decision that carries technical debt.

Specifically, we defined that an elasticity technical debt is determined by the valuation of

the gap produced between an ideal and an actual adaptation decision (e.g. launch, stop,

or maintain a virtual resource).

The support of the metaphor for runtime decision-making was built on the similarities

between a financial decision and an elasticity adaptation decision when they incur debts;

both decisions (i) trade off short-term benefits against long-term ones; (ii) involve risks

due to the uncertainty; (iii) need to trade off exploration against exploitation of well-

known scenarios; and (iv) can accumulate interest over time (the cost of the borrowed

money / the extra effort required to manage a suboptimal engineering decision).

We argued the existence of two kind of debts linked to elasticity adaptation decisions:

strategic and unintentional. The former refers to an adaptation decision that incurs

intentional debts, intended to prepare the resource provisioning for imminent changes

and consequently unfold a future benefit if the anticipated conditions materialise. The

latter refers to an adaptation decision that incurs debts as a result of ill-considerations;

inaccurate or incomplete information, which provides no real prospect to pay for itself in

the future.

We built an elasticity conceptual model with debt considerations; it compiles technical

and economics aspects of elasticity and its management. We illustrated the instantiation

of the model through a working example. We reflected on several quality features of the
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conceptual model: validity, completeness, feasible comprehension, and syntax correctness.

Although guaranteeing completeness of the model may be debatable, the model is exten-

sible and can be subject to further refinements. Moreover, to our understanding, the

current state of the model serves as a guideline to design algorithms guided by value and

debt considerations.

RQ3: Since debt is a moving target, how can a runtime learning of technical

debts in elasticity support strategy-driven adaptation decisions for long-term

value creation in the face of uncertainty? How to measure the value of dynamic

gaps between ideal and actual resource provisioning?

In chapter 4, acknowledging that the value of a debt varies with time, we developed

an elasticity management approach based on a reinforcement learning of elasticity debts

incurred over time [162]. Both reinforcement learning and elasticity debt metaphor are

strategy-driven techniques to raise the visibility of runtime trade-offs between short-term

and long-term benefits in an uncertain environment.

Our approach enables the decision-making process to learn the potential utility pro-

duced by the gaps of an imperfect adaptation decision, leading to a value creation from

gaps that, although being unavoidable in any elasticity management, had been only con-

sidered as a waste of resources in previous elasticity initiatives. Moreover, our debt-aware

elasticity management not only captures the potential value of the gaps but also drives

adaptation decisions based on that learnt value; such that the value of elasticity debts is

learnt in retrospective but used in a proactive manner.

We extended one of the mainstream simulation tools and evaluated our approach using

a real workload trace, scaled to demand a controllable amount of resources. The results

of our experiments indicate that elasticity management can benefit from strategy-driven

adaptation decisions that estimate the value of the gaps in terms of the utility difference

between the actual and the ideal adaptation decision. The utility considered the revenue,

penalties linked to SLO violations, and operating costs incurred by an adaptation decision.

In particular, in comparison with a common threshold-based rule elasticity mechanism,
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our debt-aware elasticity management yielded a higher aggregate utility while producing

a lower number of SLO violations.

RQ4: How can a debt-aware elasticity management reconcile cloud cus-

tomer and cloud provider perspectives towards resource provisioning in multi-

tenant cloud-based applications?

In chapter 5, we developed an approach that described the management of elastic-

ity for multi-tenant cloud-based applications as an autonomous multi-agent debt-aware

ecosystem [163]. In the metaphor, the agents, acting on behalf on application tenants,

were guided by the value of their elasticity debts to form dynamic coalitions with other

peers aimed at exchanging elasticity debts.

Our approach reconciled two opposite perspectives in multi-tenant SaaS applications.

From one side, an application owner is aimed at maximising their utility by consolidating

tenants in a few categories to enable an aggregate resource provisioning at the expense

of compromising the diversity of needs (i.e. SLOs) from different tenants. On the other

side, self-interested tenants are willing to acquire a resource provisioning based on their

individual needs and meet specific SLOs, making the multi-tenancy transparent for them.

In this context, our approach was aimed to preserve the diversity of tenants in terms of

their expected SLOs without diminishing the aggregate utility of the application owner.

The elasticity management approach profiles the elasticity debts incurred by the dif-

ferent agents over time; such that the agents become aware of their own preferences,

expressed in terms of elasticity debt attributes (i.e. interest and amnesty), to match

agents with complementary needs. In particular, we turned the concepts of good and bad

financial debts into the context of elasticity debts to promote an exchange of opposite

debts between agents at runtime.

We further extended our simulation tool and evaluated our approach using a set of real

workload traces, scaled to demand a controllable amount of resources. We compared our

approach against a common threshold-based elasticity management with tenant categori-

sation. The results of our experiments indicate that the formation of dynamic coalitions
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to exchange debts can achieve a lower number of SLO violations for tenants without

diminishing the aggregate utility perceived by the application owner.

6.3 Reflection on the Research

In this section, we reflect on the approach and the evaluation presented in this thesis by

means of design aspects concerning the simulation environment, overhead, scalability, and

dealing with cloud dynamics.

6.3.1 Evaluation Using a Simulated Environment

In this thesis, we decided to implement a simulation environment, in which our elastic-

ity management approach could be examined. This controlled environment assisted us

to produce repeatable, reliable and free of cost experiments. Moreover, our evaluation

scenarios could switch between different pricing schemes, billing models, spin-up times

distributions, resource granularities and load variations. Otherwise, the reconfiguration

of experiments to suit different real cloud infrastructures would have been more time-

consuming and subject to the rigidity proper of each platform.

We devised more realistic experiments with the use of real workload traces, scaled to

represent a controllable amount of resources for several days; such that the resource de-

mand obeyed to patterns seen in real cloud environments. Furthermore, we configured our

scenarios using spin-up times following Gaussian distributions and elasticity determinants

available in real cloud providers such as CloudSigma.

Within this context, although the extent to which our simulation results hold in a real

cloud deployment can be debatable, the overall benefit of the evaluation via simulation was

to allow us to focus on the elasticity management approach while making an abstraction

of low-level details proper of a real test bed.
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6.3.2 Scalability

The scalability of our approach is mainly determined by the ability to accommodate a

growth in three dimensions: (i) the number of debt-aware agents interacting simultane-

ously; (ii) the number of SLOs considered; and (iii) the number of state variables defining

a environment state.

Regarding the first dimension, the scalability in the number of agents, our elasticity

management approach was built as a multi-agent ecosystem adopting two different multi-

agent organisational paradigms [102]. In chapter 4, we adopted a hierarchical multi-agent

organisation to facilitate local control actions and adaptation decisions that can benefit

from parallelism. Consequently, we implemented a parallel reinforcement learning that

enabled a runtime sharing of elasticity debts between agents to speed up the convergence

time. The corresponding experiment instantiated a parallel reinforcement learning with

one and two learning agents but the approach can scale to more learners; however, con-

sidering multiple learners can introduce several degrees of freedom in the experimentation

due to the complexity that can arrive from inter-agent communication. An extensive

experimental study covering this issue is worthy separate systematic study calling for

frameworks for managing, reconciling, and considering consistency of observations pro-

vided by the learners. On the other hand, in chapter 5, we followed coalition as the

multi-agent organisational pattern to promote short-lived and goal-oriented communities,

in which agents exchange elasticity debts in response to changing conditions. Specifically,

the coalitions were formed using a stable matching approach and although our experiments

were carried out with 16 agents, coalitions guarantee that our elasticity management so-

lution is decentralised, flexible and scalable [230].

With respect to the second dimension, the number of SLOs under consideration, we

have only considered one SLO (i.e. response time) for the sake of simplicity, but our

approach is scalable to incorporate more SLOs, such as reliability or availability, to be

analysed in conjunction with response time. For instance, in chapter 4, the utility function

used to estimate the rewards of the learning process can be adjusted to combine penalties
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coming from multiple SLOs violations. On the other hand, in chapter 5, the preferences

of agents for matching others can be extended to consider other SLOs parameters and

thus to improve the complementarity of the coalitions.

Concerning the third dimension, we have used three variables to define an environ-

ment state. The variables considered both performance and economic criteria intended

to achieve a balanced perspective of the observed states. As any reinforcement learning

solution, to some extent, our approach can support the inclusion of more variables to

improve the accuracy of a state definition. However, an indiscriminate inclusion of new

variables will produce an unnecessary exponential growth of states that may hurt the

effectiveness of our approach due to the runtime nature of elasticity management.

6.3.3 Overhead

Our experiments may have some hidden overhead due to the integration of the discrete

event simulation engine of CloudSim with the discrete time simulation kernel of Burlap

[250, 41]. However, the overhead observed in the simulation tool is indicative on the

likely overhead that can be experienced in the physical infrastructure. In particular, the

overhead of our elasticity managerial approach comes from two sources: (i) the estimation

of elasticity debts at runtime; and (ii) the formation of coalitions to exchange of elasticity

debts.

Regarding the first source, the estimation of debts consumes an extra computational

capacity when compared to a common threshold-based rule elasticity management. In

our approach, presented in chapter 4, the overhead has a direct link with the number

of potential decisions. We considered three potential adaptation decisions: launching,

maintaining or releasing virtual machines; but this set of alternatives may grow, for

instance, if we include in the analysis the launch of multiple instances corresponding to

different types of virtual machines.

Regarding the second source of overhead, the formation of coalitions in the approach,

this depends on the number of reinforcement learning agents calculating their debt at-

116



tributes and preparing their preferences to form coalitions with others for debt exchange.

Specifically, the stable matching algorithm has a time complexity of O(n2), where n repre-

sents the number of agents in either set [122]. Although our experiments were performed

with a reasonable number of agents, a relation between a rise in the number of agents and

the overhead incurred by variations of the stable matching algorithm (e.g. many-to-many

stable matching) [109] may require further investigation.

In general, variations or extensions to our approach may need an overhead analysis

to minimise potential side effects such as latency in the decision-making or unexpected

consumption of resources.

6.3.4 Dealing with Cloud Dynamics

In adaptive contexts, the dynamics refer to the changing conditions of the environment

in which a system operates; situation leading to continuous adaptations in the system to

guarantee the satisfaction of its goals [106]. Regarding elasticity management, the main

cloud dynamics are related to the workload producing the resource demand. Hence, the

selection of workloads for experiments is a non-trivial decision to perform a fair evaluation

of the managerial approach behaviour under realistic conditions [186].

In our experiments, despite the scarcity of real workloads [7], we have used a reasonable

set of realistic workloads based on real traces from Internet servers such as Wikipedia

traces [243], FIFA 1998 World Cup trace [6], ClarkNet trace [46], and IRCache service

traces [7]; and from other real data [105]. Although in our experiments the workloads are

scaled to demand a controllable amount of resources, the workload characteristics, such

as bursts, periodicity, variance among others, remained unaltered.

6.4 Concluding Remark

In this chapter, we revisited our research questions to provide a reflection in retrospective

of how and to what extent this thesis addressed them. Additionally, we reflected on (i)
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the advantages of evaluating our approach on a simulated environment; (ii) the scalability

dimensions of our approach; (iii) the sources of overhead in our solution; and (iv) the

way we dealt with cloud dynamics in our experiments. In general, although our work

is susceptible to be improved, our reflective analysis indicates that we have adequately

addressed the posed research questions throughout the thesis.

118



CHAPTER 7

CONCLUDING REMARKS AND FUTURE WORK

7.1 Overview

This thesis has introduced an economics-driven elasticity management approach grounded

on the principles of the technical debt metaphor and an economics-driven analysis to

address the problem of imperfect elasticity adaptations at runtime. Our work gained

inspiration from the technical debt metaphor to develop a managerial approach that

admits the impossibility of delivering a perfect resource provisioning at any point in

time and uses this fact to introduce a value-oriented decision making based on the dy-

namic gaps between ideal and actual adaptation decisions over time. In this direction,

we have explored the economics of elasticity management; we have turned the technical

debt metaphor into a runtime managerial approach for elasticity management; we have

combined strategy-driven techniques to learn the potential value of gaps in resource pro-

visioning to drive elasticity adaptations; and we have turned elasticity management into

a multi-agent ecosystem to motivate an exchange of technical debts in multi-tenant SaaS

applications.

The remainder of this chapter is structured as follows. Section 7.2 revisits the contri-

butions and implications of our work. Section 7.3 presents directions for future research,

followed by the closing remarks in Section 7.4.
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7.2 Contributions of the Thesis Revisited

This thesis promotes a technical-debt aware elasticity management for cloud computing

environments; the approach considers the varying nature of value in runtime adaptation

decisions under uncertainties. In particular, this thesis makes the following contributions:

• An economics-driven perspective towards cloud elasticity management [161]. We

performed a survey of elasticity initiatives to build a taxonomy of elasticity man-

agerial approaches from which economics-driven patterns emerged. Based on this

finding, we characterised and developed a view of an economics-driven elasticity

management; our view presents the factors that determine elasticity adaptations

and represents elasticity management as an economics-driven autonomous process

to identify value-oriented considerations throughout its phases. Additionally, we

outlined future directions to improve elasticity management based on economics-

driven research.

• A technical debt-aware approach to reason about elasticity adaptations [160]. We

turned the economics-driven framework of technical debt into an elasticity manage-

rial approach to raise the visibility of the dynamics gaps between ideal and actual

adaptation decisions, which are proper to the cloud nature. We developed a con-

ceptual model of elasticity with debt considerations to support a value-oriented

reasoning about elasticity and its management; the model compiles technical and

economics elements of elasticity to show their interconnections with technical debts

and value of elasticity adaptation decisions.

• A debt-aware learning approach for elasticity management [162]. We developed

an elasticity management approach that, based on the impossibility of achieving a

perfect resource provisioning at any point in time, learns the potential utility pro-

duced by the gaps between resource demand and supply. The managerial approach

builds on the technical debt metaphor and reinforcement learning to make strategy-

driven adaptation decisions that pursue a higher utility of cloud-based services in
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the long-term.

• A multi-agent elasticity management based on multi-tenant debt exchanges [163].

We formulated the elasticity management for multi-tenant SaaS applications as a

debt-aware ecosystem intended to reconcile the conflicting perspectives of the ap-

plication owner and application tenants through dynamic debt exchanges. On one

side, the application owner aimed to maximise their utility by clustering tenants for

delivering an aggregated resource provisioning with a few predetermined SLOs; but

on the other side, tenants, represented by debt-aware agents, preferred to preserve

their individual SLOs as occurs in single-tenant applications. Our multi-agent elas-

ticity management demonstrated its effectiveness to preserve and satisfy the SLOs

diversity of tenants, by promoting dynamic coalitions between agents exchanging

complementary gaps of resource provisioning, but without diminishing the utility

perceived by the application owner.

7.3 Future Work

This section explores future directions for research building on the work presented in this

thesis.

7.3.1 Applying the Runtime Perspective of Technical Debt in
Other Domains

This thesis developed the foundations for introducing the built-in decision support of

technical debt analysis to manage the adaptability of elasticity in cloud computing envi-

ronments. The foundations are generic enough to be applied in other adaptive domains

with runtime engineering decisions such as self-adaptive systems. A self-adaptive system

[249] can reflect on its own behaviour and adjust itself to accomplish its goals and guar-

antee its operation in the face of uncertainties. Some of the challenges of self-adaptive
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systems are (i) to analyse several alternatives for adapting components and parameters in

the system; (ii) to perform a multi-concern analysis of adaptations; and (iii) to correlate

local and global decision-making approaches [206]. In this context, given the proximity to

elasticity management, we argue that technical debt offers a novel perspective to value the

adaptation alternatives, to raise the visibility of the separation of concerns, and to iden-

tify trade-offs between different decision-making levels. Similarly, a debt-aware reasoning

may be useful to reason about distributed and collective adaptations in self-organising

systems [61, 249].

7.3.2 Evaluating Debt-Aware Support for Elasticity Manage-
ment Under Different Elasticity Policies

In this thesis, we demonstrated the feasibility of our debt-aware elasticity management

using a proactive elasticity policy. In particular, we adopted a policy based on reinforce-

ment learning. Since the underlying decision technique has an impact on debt strategy

[210], future work shall look at the behaviour of a debt-aware perspective using elasticity

policies with different underlying mechanisms such as queue theory, control theory and

time series analysis. Even the exploration of hybrid policies may offer interesting ap-

proaches to be used in conjunction with threshold-based rules. An underlying challenge

would be the implementation of a simulation tool to support experiments with other poli-

cies. However, we have already developed a common framework of entities in CloudSim

supporting threshold-based rules and reinforcement learning policies. This core offers the

basic building blocks to lessen the development effort involved in enhancing CloudSim

with support for more proactive elasticity policies.

7.3.3 Exploring Multi-Agent Reinforcement Learning for Inter-
Cloud Environments

In this thesis, we turned elasticity management into a multi-agent environment in which

we used parallel Q-learning to accelerate the learning convergence and stable matching
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to form coalitions aimed at enabling the cooperation between agents. But, there is a

complete family of multi-agent reinforcement learning algorithms [36]. Consequently,

another area for future research is to explore the use of other algorithms (e.g. team-

Q) for multi-tenant applications hosted in inter-cloud environments (either federation or

multi-clouds). Additionally, multi-agent reinforcement learning is intrinsically intertwined

with game theory [36, 182]. Moreover, in finance, game theory is used as a tool to

predict debt negotiations [2, 24]. Following this, the exploration of strategies based on a

cooperative game theoretic perspective [184] offers new directions for research into debt-

aware elasticity management in inter-cloud environments.

7.4 Closing Remarks

This thesis advocated the adoption of an economics-driven perspective towards elasticity

management to pursue value-oriented adaptation decisions. In this direction, we have

developed an elasticity managerial approach based on the economics-driven framework

of technical debt. The results of the experiments with our debt-aware approach indicate

that (i) it promotes a value-oriented reasoning of adaptation decisions; (ii) it captures

the potential utility of the unavoidable gaps in resource provisioning to drive elasticity

adaptations; and (iii) it mitigates the imperfections of adaptation decisions.

Although our experiments offer promising initial results, the gestation period of a

software engineering approach, model or technology usually takes 15 to 20 years to reach

a mature stage and be disseminated at a large scale [213, 198]. Therefore, we consider our

work as a starting point for an industrial adoption of technical debt analysis in elasticity

management. A potential impact of our work may include a debt perspective to some

dynamic cloud aspects which are close to elasticity management such as placement and

admission control [68].

We envision that our runtime perspective of technical debt motivates cloud providers

to consider debt as a dimension for value creation in elasticity management.
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