1,746 research outputs found

    Towards Hybrid-Optimization Video Coding

    Full text link
    Video coding is a mathematical optimization problem of rate and distortion essentially. To solve this complex optimization problem, two popular video coding frameworks have been developed: block-based hybrid video coding and end-to-end learned video coding. If we rethink video coding from the perspective of optimization, we find that the existing two frameworks represent two directions of optimization solutions. Block-based hybrid coding represents the discrete optimization solution because those irrelevant coding modes are discrete in mathematics. It searches for the best one among multiple starting points (i.e. modes). However, the search is not efficient enough. On the other hand, end-to-end learned coding represents the continuous optimization solution because the gradient descent is based on a continuous function. It optimizes a group of model parameters efficiently by the numerical algorithm. However, limited by only one starting point, it is easy to fall into the local optimum. To better solve the optimization problem, we propose to regard video coding as a hybrid of the discrete and continuous optimization problem, and use both search and numerical algorithm to solve it. Our idea is to provide multiple discrete starting points in the global space and optimize the local optimum around each point by numerical algorithm efficiently. Finally, we search for the global optimum among those local optimums. Guided by the hybrid optimization idea, we design a hybrid optimization video coding framework, which is built on continuous deep networks entirely and also contains some discrete modes. We conduct a comprehensive set of experiments. Compared to the continuous optimization framework, our method outperforms pure learned video coding methods. Meanwhile, compared to the discrete optimization framework, our method achieves comparable performance to HEVC reference software HM16.10 in PSNR

    Investigation of Different Video Compression Schemes Using Neural Networks

    Get PDF
    Image/Video compression has great significance in the communication of motion pictures and still images. The need for compression has resulted in the development of various techniques including transform coding, vector quantization and neural networks. this thesis neural network based methods are investigated to achieve good compression ratios while maintaining the image quality. Parts of this investigation include motion detection, and weight retraining. An adaptive technique is employed to improve the video frame quality for a given compression ratio by frequently updating the weights obtained from training. More specifically, weight retraining is performed only when the error exceeds a given threshold value. Image quality is measured objectively, using the peak signal-to-noise ratio versus performance measure. Results show the improved performance of the proposed architecture compared to existing approaches. The proposed method is implemented in MATLAB and the results obtained such as compression ratio versus signalto- noise ratio are presented

    Designs and Implementations in Neural Network-based Video Coding

    Full text link
    The past decade has witnessed the huge success of deep learning in well-known artificial intelligence applications such as face recognition, autonomous driving, and large language model like ChatGPT. Recently, the application of deep learning has been extended to a much wider range, with neural network-based video coding being one of them. Neural network-based video coding can be performed at two different levels: embedding neural network-based (NN-based) coding tools into a classical video compression framework or building the entire compression framework upon neural networks. This paper elaborates some of the recent exploration efforts of JVET (Joint Video Experts Team of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC29) in the name of neural network-based video coding (NNVC), falling in the former category. Specifically, this paper discusses two major NN-based video coding technologies, i.e. neural network-based intra prediction and neural network-based in-loop filtering, which have been investigated for several meeting cycles in JVET and finally adopted into the reference software of NNVC. Extensive experiments on top of the NNVC have been conducted to evaluate the effectiveness of the proposed techniques. Compared with VTM-11.0_nnvc, the proposed NN-based coding tools in NNVC-4.0 could achieve {11.94%, 21.86%, 22.59%}, {9.18%, 19.76%, 20.92%}, and {10.63%, 21.56%, 23.02%} BD-rate reductions on average for {Y, Cb, Cr} under random-access, low-delay, and all-intra configurations respectively

    QARV: Quantization-Aware ResNet VAE for Lossy Image Compression

    Full text link
    This paper addresses the problem of lossy image compression, a fundamental problem in image processing and information theory that is involved in many real-world applications. We start by reviewing the framework of variational autoencoders (VAEs), a powerful class of generative probabilistic models that has a deep connection to lossy compression. Based on VAEs, we develop a novel scheme for lossy image compression, which we name quantization-aware ResNet VAE (QARV). Our method incorporates a hierarchical VAE architecture integrated with test-time quantization and quantization-aware training, without which efficient entropy coding would not be possible. In addition, we design the neural network architecture of QARV specifically for fast decoding and propose an adaptive normalization operation for variable-rate compression. Extensive experiments are conducted, and results show that QARV achieves variable-rate compression, high-speed decoding, and a better rate-distortion performance than existing baseline methods. The code of our method is publicly accessible at https://github.com/duanzhiihao/lossy-vaeComment: Technical repor

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Nouvelles méthodes de prédiction inter-images pour la compression d’images et de vidéos

    Get PDF
    Due to the large availability of video cameras and new social media practices, as well as the emergence of cloud services, images and videosconstitute today a significant amount of the total data that is transmitted over the internet. Video streaming applications account for more than 70% of the world internet bandwidth. Whereas billions of images are already stored in the cloud and millions are uploaded every day. The ever growing streaming and storage requirements of these media require the constant improvements of image and video coding tools. This thesis aims at exploring novel approaches for improving current inter-prediction methods. Such methods leverage redundancies between similar frames, and were originally developed in the context of video compression. In a first approach, novel global and local inter-prediction tools are associated to improve the efficiency of image sets compression schemes based on video codecs. By leveraging a global geometric and photometric compensation with a locally linear prediction, significant improvements can be obtained. A second approach is then proposed which introduces a region-based inter-prediction scheme. The proposed method is able to improve the coding performances compared to existing solutions by estimating and compensating geometric and photometric distortions on a semi-local level. This approach is then adapted and validated in the context of video compression. Bit-rate improvements are obtained, especially for sequences displaying complex real-world motions such as zooms and rotations. The last part of the thesis focuses on deep learning approaches for inter-prediction. Deep neural networks have shown striking results for a large number of computer vision tasks over the last years. Deep learning based methods proposed for frame interpolation applications are studied here in the context of video compression. Coding performance improvements over traditional motion estimation and compensation methods highlight the potential of these deep architectures.En raison de la grande disponibilité des dispositifs de capture vidéo et des nouvelles pratiques liées aux réseaux sociaux, ainsi qu’à l’émergence desservices en ligne, les images et les vidéos constituent aujourd’hui une partie importante de données transmises sur internet. Les applications de streaming vidéo représentent ainsi plus de 70% de la bande passante totale de l’internet. Des milliards d’images sont déjà stockées dans le cloud et des millions y sont téléchargés chaque jour. Les besoins toujours croissants en streaming et stockage nécessitent donc une amélioration constante des outils de compression d’image et de vidéo. Cette thèse vise à explorer des nouvelles approches pour améliorer les méthodes actuelles de prédiction inter-images. De telles méthodes tirent parti des redondances entre images similaires, et ont été développées à l’origine dans le contexte de la vidéo compression. Dans une première partie, de nouveaux outils de prédiction inter globaux et locaux sont associés pour améliorer l’efficacité des schémas de compression de bases de données d’image. En associant une compensation géométrique et photométrique globale avec une prédiction linéaire locale, des améliorations significatives peuvent être obtenues. Une seconde approche est ensuite proposée qui introduit un schéma deprédiction inter par régions. La méthode proposée est en mesure d’améliorer les performances de codage par rapport aux solutions existantes en estimant et en compensant les distorsions géométriques et photométriques à une échelle semi locale. Cette approche est ensuite adaptée et validée dans le cadre de la compression vidéo. Des améliorations en réduction de débit sont obtenues, en particulier pour les séquences présentant des mouvements complexes réels tels que des zooms et des rotations. La dernière partie de la thèse se concentre sur l’étude des méthodes d’apprentissage en profondeur dans le cadre de la prédiction inter. Ces dernières années, les réseaux de neurones profonds ont obtenu des résultats impressionnants pour un grand nombre de tâches de vision par ordinateur. Les méthodes basées sur l’apprentissage en profondeur proposéesà l’origine pour de l’interpolation d’images sont étudiées ici dans le contexte de la compression vidéo. Des améliorations en terme de performances de codage sont obtenues par rapport aux méthodes d’estimation et de compensation de mouvements traditionnelles. Ces résultats mettent en évidence le fort potentiel de ces architectures profondes dans le domaine de la compression vidéo

    A study of deep learning and its applications to face recognition techniques

    Get PDF
    El siguiente trabajo es el resultado de la tesis de maestría de Fernando Suzacq. La tesis se centró alrededor de la investigación sobre el reconocimiento facial en 3D, sin la reconstrucción de la profundidad ni la utilización de modelos 3D genéricos. Esta investigación resultó en la escritura de un paper y su posterior publicación en IEEE Transactions on Pattern Analysis and Machine Intelligence. Mediante el uso de iluminación activa, se mejora el reconocimiento facial en 2D y se lo hace más robusto a condiciones de baja iluminación o ataques de falsificación de identidad. La idea central del trabajo es la proyección de un patrón de luz de alta frecuencia sobre la cara de prueba. De la captura de esta imagen, nos es posible recuperar información real 3D, que se desprende de las deformaciones de este patrón, junto con una imagen 2D de la cara de prueba. Este proceso evita tener que lidiar con la difícil tarea de reconstrucción 3D. En el trabajo se presenta la teoría que fundamenta este proceso, se explica su construcción y se proveen los resultados de distintos experimentos realizados que sostienen su validez y utilidad. Para el desarrollo de esta investigación, fue necesario el estudio de la teoría existente y una revisión del estado del arte en este problema particular. Parte del resultado de este trabajo se presenta también en este documento, como marco teórico sobre la publicación
    corecore