666 research outputs found

    Architecture for Cooperative Prefetching in P2P Video-on- Demand System

    Full text link
    Most P2P VoD schemes focused on service architectures and overlays optimization without considering segments rarity and the performance of prefetching strategies. As a result, they cannot better support VCRoriented service in heterogeneous environment having clients using free VCR controls. Despite the remarkable popularity in VoD systems, there exist no prior work that studies the performance gap between different prefetching strategies. In this paper, we analyze and understand the performance of different prefetching strategies. Our analytical characterization brings us not only a better understanding of several fundamental tradeoffs in prefetching strategies, but also important insights on the design of P2P VoD system. On the basis of this analysis, we finally proposed a cooperative prefetching strategy called "cooching". In this strategy, the requested segments in VCR interactivities are prefetched into session beforehand using the information collected through gossips. We evaluate our strategy through extensive simulations. The results indicate that the proposed strategy outperforms the existing prefetching mechanisms.Comment: 13 Pages, IJCN

    On I/O Performance and Cost Efficiency of Cloud Storage: A Client\u27s Perspective

    Get PDF
    Cloud storage has gained increasing popularity in the past few years. In cloud storage, data are stored in the service provider’s data centers; users access data via the network and pay the fees based on the service usage. For such a new storage model, our prior wisdom and optimization schemes on conventional storage may not remain valid nor applicable to the emerging cloud storage. In this dissertation, we focus on understanding and optimizing the I/O performance and cost efficiency of cloud storage from a client’s perspective. We first conduct a comprehensive study to gain insight into the I/O performance behaviors of cloud storage from the client side. Through extensive experiments, we have obtained several critical findings and useful implications for system optimization. We then design a client cache framework, called Pacaca, to further improve end-to-end performance of cloud storage. Pacaca seamlessly integrates parallelized prefetching and cost-aware caching by utilizing the parallelism potential and object correlations of cloud storage. In addition to improving system performance, we have also made efforts to reduce the monetary cost of using cloud storage services by proposing a latency- and cost-aware client caching scheme, called GDS-LC, which can achieve two optimization goals for using cloud storage services: low access latency and low monetary cost. Our experimental results show that our proposed client-side solutions significantly outperform traditional methods. Our study contributes to inspiring the community to reconsider system optimization methods in the cloud environment, especially for the purpose of integrating cloud storage into the current storage stack as a primary storage layer

    Web Caching and Prefetching with Cyclic Model Analysis of Web Object Sequences

    Get PDF
    Web caching is the process in which web objects are temporarily stored to reduce bandwidth consumption, server load and latency. Web prefetching is the process of fetching web objects from the server before they are actually requested by the client. Integration of caching and prefetching can be very beneficial as the two techniques can support each other. By implementing this integrated scheme in a client-side proxy, the perceived latency can be reduced for not one but many users. In this paper, we propose a new integrated caching and prefetching policy called the WCP-CMA which makes use of a profit-driven caching policy that takes into account the periodicity and cyclic behaviour of the web access sequences for deriving prefetching rules. Our experimental results have shown a 10%-15% increase in the hit ratios of the cached objects and 5%-10% decrease in delay compared to the existing schem

    Rough Set Granularity in Mobile Web Pre-Caching

    Get PDF
    Mobile Web pre-caching (Web prefetching and caching) is an explication of performance enhancement and storage limitation ofmobile devices

    HEC: Collaborative Research: SAM^2 Toolkit: Scalable and Adaptive Metadata Management for High-End Computing

    Get PDF
    The increasing demand for Exa-byte-scale storage capacity by high end computing applications requires a higher level of scalability and dependability than that provided by current file and storage systems. The proposal deals with file systems research for metadata management of scalable cluster-based parallel and distributed file storage systems in the HEC environment. It aims to develop a scalable and adaptive metadata management (SAM2) toolkit to extend features of and fully leverage the peak performance promised by state-of-the-art cluster-based parallel and distributed file storage systems used by the high performance computing community. There is a large body of research on data movement and management scaling, however, the need to scale up the attributes of cluster-based file systems and I/O, that is, metadata, has been underestimated. An understanding of the characteristics of metadata traffic, and an application of proper load-balancing, caching, prefetching and grouping mechanisms to perform metadata management correspondingly, will lead to a high scalability. It is anticipated that by appropriately plugging the scalable and adaptive metadata management components into the state-of-the-art cluster-based parallel and distributed file storage systems one could potentially increase the performance of applications and file systems, and help translate the promise and potential of high peak performance of such systems to real application performance improvements. The project involves the following components: 1. Develop multi-variable forecasting models to analyze and predict file metadata access patterns. 2. Develop scalable and adaptive file name mapping schemes using the duplicative Bloom filter array technique to enforce load balance and increase scalability 3. Develop decentralized, locality-aware metadata grouping schemes to facilitate the bulk metadata operations such as prefetching. 4. Develop an adaptive cache coherence protocol using a distributed shared object model for client-side and server-side metadata caching. 5. Prototype the SAM2 components into the state-of-the-art parallel virtual file system PVFS2 and a distributed storage data caching system, set up an experimental framework for a DOE CMS Tier 2 site at University of Nebraska-Lincoln and conduct benchmark, evaluation and validation studies
    corecore