
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

November 2015

On Applications of Relational Data On Applications of Relational Data

Samamon Khemmarat
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Khemmarat, Samamon, "On Applications of Relational Data" (2015). Doctoral Dissertations. 457.
https://doi.org/10.7275/7370600.0 https://scholarworks.umass.edu/dissertations_2/457

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/32441785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/7370600.0
https://scholarworks.umass.edu/dissertations_2/457?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ON APPLICATIONS OF RELATIONAL DATA

A Dissertation Presented

by

SAMAMON KHEMMARAT

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2015

Electrical and Computer Engineering

c© Copyright by Samamon Khemmarat 2015

All Rights Reserved

ON APPLICATIONS OF RELATIONAL DATA

A Dissertation Presented

by

SAMAMON KHEMMARAT

Approved as to style and content by:

Lixin Gao, Chair

Michael Zink, Member

Russell Tessier, Member

James Allan, Member

C. V. Hollot, Department Chair
Electrical and Computer Engineering

To my family,
for their unconditional love and encouragement.

ACKNOWLEDGMENTS

This thesis would not have been possible without the people who gave me support

along this journey. I am deeply grateful to my advisor, Professor Lixin Gao, who has

given me guidance and encouragement through all these years. I am indebted to her

for giving me the opportunity to come to UMass and develop myself as a researcher.

I am always inspired by her knowledge and insights in research problems, and I have

learned greatly from her both academically and personally. I am also grateful to

Professor Michael Zink, who gave me much helpful advice, especially for my first

paper, and is also one of my committee members. To the other committee members

of mine, Professor Russell Tessier and Professor James Allan, I am really thankful for

their insightful and valuable feedbacks.

I would like to give special thanks to Song Yang, my first friend in UMass, who

has always been supportive and kind to me. I thank Renjie Zhou and Jiahui Jin, who

worked closely with me in research. Renjie and Jiahui were always helpful and full

of new ideas, and the discussions with them benefited me greatly. I am also thankful

to the other past and current members of our MNIL lab, Jiangtao Yin, Guoyi Zhao,

Jianzhou Chen, Xiaozhe Shao, Yanfeng Zhang, Meng Shen, Fubao Wu, QianQian

Gao, and others. Thank all of you for kindly helping me in all sorts of things and

most importantly for the invaluable friendship. You all made my time in UMass

enjoyable and memorable.

I would like to sincerely thank Barbara Barnetts, Judy Broy, Christine Langlois,

and other school staff members, for their help with the administrative work through-

out my graduate study.

v

I am grateful to all of my teachers, in grade schools and in my undergraduate and

graduate studies, for equipping me with fundamental knowledge and shaping me to

be who I am today.

Last but not least, my deepest gratitude go to my parents, my grandmother, and

my sister for their unbounded love and support and for always believing in me.

vi

ABSTRACT

ON APPLICATIONS OF RELATIONAL DATA

SEPTEMBER 2015

SAMAMON KHEMMARAT

B.Eng., CHULALONGKORN UNIVERSITY

M.Eng., CORNELL UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Lixin Gao

With the advances of technology and the popularity of the Internet, a large

amount of data is being generated and collected. Much of these data is relational data,

which describe how people and things, or entities, are related to one another. For

example, data from sale transactions on e-commerce websites tell us which customers

buy or view which products. Analyzing the known relationships from relational data

can help us to discover knowledge that can benefit businesses, organizations, and our

lives. For instance, learning the products that are commonly bought together allows

businesses to recommend products to customers and increase their sales. Hidden or

new relationships can also be inferred based on relational data. In addition, based

on the connections among the entities, we can approximate the level of relatedness

between two entities, even though their relationship may be hard to observe or quan-

tify.

vii

This research aims to explore novel applications of relational data that will help to

improve our life in various aspects, such as improving business operations, improving

experiences in using online services, and improving health care services. In applying

relational data in any domain, there are two common challenges. First, the size of

the data can be massive, but many applications require that results are obtained

within a short time. Second, relational data are often noisy and incomplete. Many

relationships are extracted automatically from text resources, and hence they are

prone to errors. Our goal is not only to propose novel applications of relational data

but also to develop techniques and algorithms that will facilitate and make such

applications practical.

This work addresses three novel applications of relational data. The first appli-

cation is to use relational data to improve user experiences in online video sharing

services. Second, we propose the use of relational data to find entities that are closely

related to one another. Such problems arise in various domains, such as product

recommendation and query suggestion. Third, we propose the use of relational data

to assist medical practitioners in drug prescription. For these applications, we in-

troduce several techniques and algorithms to address the aforementioned challenges

in using relational data. Our approaches are evaluated extensively to demonstrate

their effectiveness. The approaches proposed in this work not only can be used in the

specific applications we discuss but also can help to facilitate and promote the use of

relational data in other application domains.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES .xiii

LIST OF FIGURES . xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Enhancing Service Quality of Online Video Sharing Services with
Video Relations . 3

1.2 Discovering Closely Related Entities with Relational Data 4
1.3 Supporting Drug Prescription using Relations of Drugs and Their

Properties . 7
1.4 Contributions . 9

2. USING VIDEO RELATIONS TO ENHANCE SERVICE
QUALITY OF ONLINE VIDEO SHARING SERVICES 11

2.1 Introduction . 11
2.2 Investigating User Experiences with Watching YouTube Videos 13

2.2.1 Data Collection . 13
2.2.2 Modeling a Video Player . 14
2.2.3 Emulating Video Playback from Video Download Trace 16
2.2.4 User Experience on YouTube . 17

2.3 Video Prefetching Scheme . 19

2.3.1 Prefetching Agent . 19
2.3.2 Video Selection for Prefetching . 20

ix

2.4 Data Collection . 22

2.4.1 Datasets . 22

2.4.1.1 Network Traces . 22
2.4.1.2 Search Result Lists and Related Video Lists 23

2.4.2 Usage of Search Result Lists and Related Video Lists 24

2.5 Evaluation . 25

2.5.1 Methodology and Evaluation Metrics . 26
2.5.2 Performance of Prefetching Using Search Result Lists

(SR-N) . 27
2.5.3 Performance of Prefetching Using Related Video Lists

(RV-N) . 28
2.5.4 Analyzing the High Hit Ratios . 28
2.5.5 Combining Caching and Prefetching . 31
2.5.6 Storage Requirement . 33

2.6 Discussion . 34

2.6.1 Impact of Storage Space . 35
2.6.2 How large should N be? . 36
2.6.3 Determining Video Prefix Size . 37
2.6.4 Feasibility of Prefetching . 40

2.6.4.1 Time to Prefetch. 40
2.6.4.2 Network Traffic Overhead of Prefetching 42

2.7 Related Work . 43
2.8 Conclusion . 45

3. USING ITEM RELATIONS TO DISCOVER TOP-K MOST
RELEVANT ITEMS . 47

3.1 Introduction . 47
3.2 Top-k Query with Path-based Relevance Metrics . 49

3.2.1 Path-based Relevance Metrics . 49

3.2.1.1 Example of Path-based Relevance Metrics 49
3.2.1.2 Generalized Form of Path-Based Metrics 53

3.2.2 Top-k Query Problem . 55

3.3 Determining the Emergence of Top-k Nodes with Bounds 56

x

3.4 Score Bounds . 57

3.4.1 Asynchronous Accumulative Computation . 57
3.4.2 Score Bounds for Asynchronous Accumulative

Computation . 59

3.4.2.1 Lower Bound . 59
3.4.2.2 Upper Bound . 60

3.4.3 Prioritized Node Update Scheduling . 65
3.4.4 Top-K Query with Bounds based on Prioritized Asynchronous

Accumulative Computation . 66

3.5 Detecting Top-k Nodes Emergence in Distributed Computation 66

3.5.1 Distributed Asynchronous Accumulative Computation 66
3.5.2 Bounds for Distributed Computation . 68
3.5.3 Distributed Top-k Emergence Test . 70
3.5.4 Performance Optimization . 72
3.5.5 Complexity Analysis of Top-k Emergence Test 73

3.6 Evaluation . 73

3.6.1 Preliminary . 74

3.6.1.1 Baseline and Evaluated Approaches 74
3.6.1.2 Experimental Setup . 75
3.6.1.3 Datasets . 75
3.6.1.4 Graph Preprocessing . 76

3.6.2 Performance Comparison . 77
3.6.3 Effectiveness of Prioritized Update Scheduling 79
3.6.4 Effect of Number of Query Nodes . 81
3.6.5 Ranking Accuracy among the Top-k Items . 82
3.6.6 Scalability . 84

3.6.6.1 Scalability with Input Size . 85
3.6.6.2 Scalability with the Number of Workers 85

3.7 Related Work . 87
3.8 Conclusion . 88

4. SUPPORTING DRUG PRESCRIPTION USING DRUG AND
DRUG PROPERTY RELATIONS . 90

4.1 Introduction . 90
4.2 Problem Description . 92

xi

4.2.1 Drug Graph Schema . 93
4.2.2 Query Expression . 94
4.2.3 Answering Drug Queries . 95

4.3 Methodology . 95

4.3.1 Quantifying Edge Likelihood . 95
4.3.2 Score Function for Query Answers . 99
4.3.3 Finding the Top-k Answers . 100

4.4 Personalizing Answers Based on Patient Profiles . 101

4.4.1 Data Sources for Personalization . 101
4.4.2 Patient Profiles . 102
4.4.3 Personalizing Answers . 102
4.4.4 Case study: Personalization on Side effects of Drugs 103
4.4.5 Case study: Personalization with Biomarker Data 104

4.5 Drug Query System Prototype . 104

4.5.1 System Overview . 104
4.5.2 User Interface . 105

4.6 Evaluation . 107

4.6.1 Data Sources and Drug Graph Characteristics 107
4.6.2 Evaluation of Edge Likelihood Quantification 108

4.6.2.1 Evaluation Method . 108
4.6.2.2 Performance Comparison . 109
4.6.2.3 Benefits from Using Multiple Path Types 112

4.6.3 Evaluation of Query Answering . 112

4.7 Related Work . 117
4.8 Conclusion . 119

5. CONCLUSION . 120

5.1 Summary . 120
5.2 Future Work . 122

BIBLIOGRAPHY . 124

xii

LIST OF TABLES

Table Page

2.1 Environment information. 14

2.2 Statistics from network traces collected at the campus network
gateway. 23

2.3 Normalized traffic load of prefetching schemes. 42

3.1 List of path-based metrics with their c, H, and type. 54

3.2 Notations. 55

3.3 Datasets. 76

3.4 Accuracy of ranking among the top-k items (measured by RCC). 84

4.1 Path types used for computing edge likelihood. 99

4.2 Drug graph characteristics. 108

4.3 Predicting performance comparison. 110

4.4 Results for Query 1. 114

4.5 Results for Query 2. 115

4.6 Results for Query 3. 116

4.7 Results for Query 4. 116

4.8 Results for Query 5. 117

xiii

LIST OF FIGURES

Figure Page

2.1 Example plot of r(t), sp(t) and pp(t) . 15

2.2 Video playback quality . 17

2.3 Histogram of number of pauses in disruptive playbacks 17

2.4 Fraction of time spent in waiting for the videos . 18

2.5 The architecture of prefetching proxy system . 19

2.6 Fraction of requests from each referrer type . 25

2.7 Hit ratios of SR-N and RV-N for T3 . 27

2.8 Referrers of hit requests (PF-Client) . 29

2.9 Referrers of hit requests (PF-Proxy) . 29

2.10 Hit ratios of each request category (PF-Client) . 30

2.11 Hit ratios for each request category (PF-Proxy) . 31

2.12 Hit ratio improvement from combining caching and prefetching 32

2.13 The sufficient storage size for the RV-N prefetching scheme with the
PF-Proxy setting . 34

2.14 Performance vs. storage size for prefetch-only mode (T3) 34

2.15 Performance vs. storage size for cache-and-prefetch mode (T3) 35

2.16 Hit ratio of cache-and-prefetch mode with different storage sizes S
and different N (T3) . 36

2.17 Precision of the RV-N algorithm vs N . 36

xiv

2.18 Average minimum start buffer size for smooth playout. 38

2.19 CDF of the time to prefetch. 41

3.1 Global score computation time. The number of workers used for each
graph is shown in the parentheses. 77

3.2 Running time of different bounds . 77

3.3 Bound performance comparison for different algorithms 78

3.4 Performance comparison with state-of-the-art approaches 80

3.5 Effect of priority settings . 80

3.6 Progress of ||∆v||1 and ||∆v||∞ . 81

3.7 Effect of the size of query set on running time . 82

3.8 Running time with and without ranking guarantee (RG) 83

3.9 Scaling to large input size . 84

3.10 Scaling to a large number of workers . 86

3.11 Emergence check time vs. the number of workers . 86

4.1 Schema of the drug graph and example query graphs. (solid edges:
positive, dashed edges: negative) . 93

4.2 Number of drug-side effect edges obtained from FDA reports. 103

4.3 Drug query system. 105

4.4 User Interface of Drug Query System . 105

4.5 Performance comparison between different approaches. 111

4.6 Percentage of drug properties in each group of positive training
sample sizes . 111

4.7 Performance comparison when a single path type is used and when
all the path types are used. 112

xv

CHAPTER 1

INTRODUCTION

Recent advances and ubiquity of sciences and technology, such as mobile devices,

e-commerce, and social networks, have led to a huge amount of data being generated

and collected. Much of these data describes how people and things, or entities, are

related to one another. For example, on social network services, like Facebook and

MySpace, we can learn who are friends with each other or who likes which books,

movies, etc. On e-commerce websites, like Amazon and eBay, we have the data

on which customers buy or view which products. On online social media sites, like

YouTube and Flikr, user usage logs contain data on which users view which videos

or images. We refer to this type of data as relational data.

Relational data contains known relationships, which are observable, measurable,

or have been discovered. Analyzing these known relationships can lead to discovery

of knowledge that can benefit businesses, organizations, and our lives. Statistics and

trends can be computed and derived from relational data. Businesses can use this

information to guide their strategies and increase their profits. For example, learning

the product sets that are usually bought together by customers allows businesses

to recommend more products to their customers to increase sales. Furthermore, by

analyzing patterns of how entities are interrelated, we may be able to infer hidden

relationships between entities or predict formation of new relationships [83, 112]. In

science, these inferred relationships can help to guide scientists to come up with

new hypotheses and discovery. For instance, by analyzing the similarity between

side effects of drugs, new usages of drugs and unknown drug interactions can be

1

discovered [29,30,61,103–105]. In addition, relational data allows us to approximate

the relevance between two entities, even though their relationship may be hard to

observe or quantify [12, 18, 54, 75]. For example, on a video streaming website, if we

want to recommend more videos to a user based on what he or she is watching, we

need to find a video that is related to the current video. It is very difficult to quantify

how two videos are related based on their contents. However, if we observe that two

videos are watched together by many users, then we can infer that they are related

without having to analyze their contents.

In this work, we explore novel usages of relational data in various real-life appli-

cations that will lead to improvement in business operations and profits, consumer

experiences, and our life. In applying relational data to any real-life applications,

there are two common major challenges. First, in various applications, the size of

relational data is massive and still growing rapidly, while the results from processing

and analyzing relational data should be obtained within a specific time frame for

them to be useful. Second, it is not uncommon that relational data are noisy and

incomplete. In some cases, data are manually curated and therefore have limited

coverage. Many datasets are created from information automatically extracted from

text resources, such as drug labels, web pages, and published articles, which are prone

to errors. Therefore, our goal is not only to explore novel applications of relational

data but also to develop techniques and algorithms that will facilitate and make such

applications practical.

We propose three novel applications of relational data. First, we propose using

relational data to improve service quality of online media services. We observe that

despite the increasing popularity of online video sharing services, their service quality,

or to be more specific, streaming delay and smoothness, is still unsatisfactory. We

propose a technique that leverages relationships between videos to improve service

quality. Second, we explore the use of relational data in finding entities related to

2

a given set of entities. Finding related entities is a key problem in various domains,

such as product recommendations on e-commerce websites and query suggestion in

search engines. Third, we present an application of relational data to facilitate and

enhance health care services. More specifically, we propose an approach to assist drug

prescription, which is a process that requires considerations of several complicated

factors. In the following, we provide necessary backgrounds and discuss challenges in

each of these applications.

1.1 Enhancing Service Quality of Online Video Sharing Ser-

vices with Video Relations

Online video sharing services, such as YouTube and DailyMotion, provide a space

for users to upload and share video clips to the public. In the past decades, these

services have been quickly gaining popularity as they are convenient channels for peo-

ple to share their personal experiences, knowledge, and creativity. The astronomical

amount of video content uploaded on video sharing sites has made these sites infor-

mation sources to which Internet users often turn to be informed, entertained, and

educated. For example, YouTube has hundreds of millions of viewers and delivers

billions of videos each month.

Despite the tremendous popularity of user generated video sharing sites, user

experience with watching videos from these sites can vary significantly [99]. Our

study shows that it is not uncommon that a user experiences pauses and delays when

watching a video online. These interruptions during video playback degrade the ser-

vice quality of the online video sharing websites, which can lead to user dissatisfaction

and eventually less revenues for the services.

We propose a solution to improve service quality of online video sharing websites

by utilizing relational data based on video relationships. In our approach, videos

are fetched from the service providers before they are requested by users and stored

3

in a location near users, such as users’ own computers or a local proxy server. This

approach allows videos to be delivered quickly to users and avoids interruptions caused

by network bandwidth limitation and congestion. While the prefetching technique is

well-studied and used in several problems, the key challenge in using this technique

is to be able to accurately predict the videos that will be requested by the users.

Intuitively, a user would request a video that is related to the videos she has

been watching in the current usage session. It is however very difficult for the video

prefetching module, which is located on the client side, to quantify relatedness of

videos as it has limited information of the videos, and video relatedness depends

on several factors. To address the aforementioned challenge, we utilize data on video

relationships extracted from video recommendations on video sharing websites. Video

sharing websites often provide video recommendation lists for each of the videos the

users are watching to encourage users to watch more videos. Our video prefetching

module leverages these recommendation-based video relationships to approximate

video relatedness and uses the information to predict the videos the users will request.

We evaluate our approach with real user usage patterns obtained based on network

monitoring traces. We compare this approach with other prediction approaches and

find that the performance obtained from our approach is significantly better.

1.2 Discovering Closely Related Entities with Relational Data

With the increasing popularity and the growth of online services, including the

previously discussed video sharing services, e-commerce websites, social networks,

and social media websites, the amount of contents and products, or items, on these

online services is also growing rapidly. For example, the number of products on

Amazon.com, an e-commerce website, is more than 300 million. YouTube, a video

sharing website, contains hundreds of millions of video clips. To encourage users to

use more of their services or make more purchases so that they can earn more revenue,

4

these services are trying to help users to discover items of interest among the large

collections of items.

In order to find interesting items for users, user usage history or purchase records,

usually available in these services, can help to provide clues on what kind of items

users are interested in. Given the items that the users have shown interest in, or

query items, the key problem becomes to find the items that are closely related to

the query items. To solve this problem, a relevance metric is needed so that we can

quantify how much each item is related to the given query items.

To quantify relevance, we consider that the user usage history or purchase records

not only provide hints on user interests but also provide us with relationships among

items. For example, with logs of user browsing sessions on Youtube, we can find out

which videos are viewed together in the same user browsing sessions and obtain pairs

of videos that have a co-view relationship. From this collection of observed item

relationships, not only direct relationships are meaningful, but items that connect

indirectly can also be closely related. For instance, if a video A is co-viewed with

videos B,C,D, and a video E is also co-viewed with these three videos, then it is

likely that videos A and E are closely related.

Several relevance metrics and algorithms have been proposed based on the afore-

mentioned idea, which incorporates both direct and indirect relationships in quanti-

fying item relevance. Well-known examples include Personalized PageRank [59], the

Katz metric [67], and Adsorption [18]. Despite having been shown to be effective in

various applications, the major disadvantage of these relevance metrics is that most of

them are computationally expensive. This limits their uses in real-world applications,

especially those that involve large datasets.

Many algorithms have been proposed to speed up the computation of the relevance

scores. We can group them into broad categories as follows. The first category

includes those that use Monte Carlo methods [17, 44]. The second category includes

5

algorithms that rely on precomputing matrix decompostion or inversion [46,48]. The

last category of algorithms are those that are based on graph approximation [102,

107]. While the approaches in all these categories offer shorter computation time of

relevance scores, each of the categories has a major disadvantage. For Monte Carlo

methods, because they are based on random sampling, they cannot guarantee the

exactness of the results. Similarly, approaches based on graph approximation cannot

provide accurate results. For matrix decomposition-based methods, it is not practical

to apply them with large datasets where there are hundreds of millions of items as

matrix decomposition requires extensive computation.

In this research, we propose an approach to obtain the highly relevant items

based on the aforementioned relevance metrics quickly. Our approach is based on the

observation that in several applications, the ultimate goal is to identify k items with

the highest relevance (where k is a small integer), while the exact relevance scores are

only an intermediate for identifying the top k items. Therefore, instead of computing

the exact relevance scores of items, our approach iteratively computes and refines the

bounds of the scores. As the bounds are being refined, we use the bounds to detect

whether the top-k items can be identified and returns the result as soon as they are

found. By avoiding unnecessary computation, our approach is able return answers

faster.

As the number of items in many applications can be huge, the size of item rela-

tional data is even larger. To support processing large datasets, several distributed

computation frameworks have been proposed, such as Haloop [25], GraphLab [86],

and Maiter [114]. However, these frameworks mainly aim towards batch processing

and cannot be readily used to efficiently answer top-k queries. We provide a dis-

tributed approach to answer top-k queries. This allows us to utilize computation

power and resources of multiple computers and speed up the computation time for

large datasets.

6

1.3 Supporting Drug Prescription using Relations of Drugs

and Their Properties

Drug prescription plays a crucial role in medical practice as it can significantly

affect patients’ health and recovery. In prescribing drugs, medical practitioners need

to consider several factors, such as interactions among the prescribed drugs, inter-

actions with the patient’s current medication, and contraindications. In some cases,

according to patients’ conditions and lifestyle, there are particular side effects that

should be avoided as they could cause serious health conditions or injuries. The pro-

cess is further complicated by the fact that the presence of some drug properties,

such as side effects, depends on characteristics of the patients, such as age, gender,

and genetic profile. Having to consider all these complicated factors can be a huge

burden to medical practitioners.

With the advances in pharmacology, there are several open resources of drug in-

formation, such as DrugBank [1], SIDER2 [9], and KEGG Drug [4]. Each of these

resources contains different facets on drug properties, such as side effects, interac-

tions, drug targets, and chemical structures. Additionally, as the Internet becomes

more and more accessible, drug consumers have formed online communities and used

online social networks, such as Twitter and Facebook, to share their information and

experiences in using drugs. Further, the Internet provides a convenient channel for

drug consumers to give their feedbacks on using drugs, including side effects and ef-

fectiveness, to drug manufacturers and governmental organizations. These collections

of drug data from multiple sources not only contain information on drug properties,

but also can potentially allow us to infer how drug properties vary in patients with

different characteristics, which can greatly help medical practitioners to make better

decisions in drug prescription.

Our research aims to assist decision making of medical practitioners in drug pre-

scription by utilizing drug information collected from the aforementioned sources.

7

More specifically, we will provide a tool that suggests the most suitable drugs or sets

of drugs based on relevant information provided by users, such as desired drug indica-

tions, side effects to be avoided, current medication of patients, and patient profiles.

For example, to find a schizophrenia drug for an elder female patient who has a heart

disease, a user can issue the query: Find a drug for schizophrenia without the side

effect of heart failure for a female patient, age 60.

In developing such a tool, there are several challenges. The first challenge is

that considering our data sources, the drug information we have is naturally noisy

and incomplete. With these characteristics of data, traditional query systems that

provide only answers that exactly match the queries have several disadvantages. Some

answers that in fact can satisfy the queries but do not exactly match the query due

to the imperfection of the data may be missed. Additionally, by not considering the

possibility of missing data, the answers returned can be misleading. For example,

if a query asks for a drug that does not interact with a particular drug, drugs that

interact with the given drug may also be given as an answer because their interaction

data is incomplete. The second challenge is that we need an approach that takes into

account the profile of patients and personalize the answers such that they are the

most suitable for a given patient. Finally, we need to provide answers to the queries

very quickly, while the amount of data aggregated from multiple sources can be huge.

To cope with incomplete and noisy data, we present an approach that consid-

ers not only the answers that exactly match the query but also the answers that

closely match the query. This requires a score function to quantify how well an an-

swer matches with a query. We propose a score function that takes into account

the likelihood that a drug will have a specific drug property (such as side effects or

interactions with another drug), even though their associations are not present in

our datasets. Our approach to quantify the likelihood is inspired by insights learned

from previous works. First, relationships among drugs and drug properties can effec-

8

tively help to discover novel drug properties [29,30,61,103–105,116]. Second, various

types of drug properties are potentially useful for predicting a specific type of drug

properties [21, 49, 58, 62, 93, 100]. Therefore, we utilize relations between drugs and

drug properties of different types, such as indications, side effects, target proteins,

and related biological pathways, to quantify the likelihood of each drug property.

Furthermore, we propose an approach to personalize the answers based on a given

patient profile, which leverages the underlying personalization datasets. Our focus in

this application is on handling data noisiness and providing personalization; however,

techniques discussed in the querying relevance items problem could be applied to cope

with the scale of the data and allow for interactive queries.

1.4 Contributions

The goal of our work is to explore novel applications of relational data to im-

prove businesses and bring convenience to our life and to provide tools that facilitate

such applications. To achieve our goal, we propose several applications of relational

data and develop techniques and algorithms that address the previously discussed

challenges.

Our main contributions are as follows.

• Propose an application of video relational data to improve user experience on

video sharing sites. We propose an approach to decrease the delay and interrup-

tions in streaming videos to users. This is achieved by a prefetching technique,

which fetches and stores prefixes of the videos before they are requested by

users. Our approach utilizes video relationships derived from recommendation

lists on video sharing sites to predict the videos that are likely to be requested by

users. The proposed approach is extensively evaluated using real user browsing

pattern data collected from network measurement.

9

• Design an efficient and scalable algorithm to answer top-k relevance item queries

based on item relational data. We propose an approach for finding k items

that are the most relevant to the given items by utilizing data containing item

relationships. To obtain results quickly, instead of computing exact scores, our

algorithm computes the lower bound and upper bound scores of items and derive

the top-k items based on the bounds. We provide generalized lower bounds and

upper bounds that can be applied to several relevance metrics. Our proposed

algorithm is designed in a distributed environment, which allows it to scale for

large datasets.

• Develop a drug query system to support personalized drug prescription using

drug relational data. Our approach handles incomplete and noisy underlying

datasets by considering both exact and close match answers. We design a score

function to evaluate answer quality that takes into account the likelihood of

incomplete data and patient characteristics. Based on the score function, we

propose an algorithm to find the k best answers for a given query. We evaluate

the effectiveness and the benefits provided by our approach through several

experiments and query examples.

We have four published journal and conference papers based on this work and two

papers under review for journal publications [69,71–73].

The rest of this thesis document is organized as follows. Chapter 2 presents

our approach for applying video relational data to improve user experience on video

sharing sites. In Chapter 3, we present an algorithm to answer top-k relevance item

queries based on item relational data. In Chapter 4, we present our drug query system

for supporting personalized drug prescription with drug relational data. We conclude

and discuss future work in Chapter 5.

10

CHAPTER 2

USING VIDEO RELATIONS TO ENHANCE SERVICE
QUALITY OF ONLINE VIDEO SHARING SERVICES

2.1 Introduction

The advent of user-generated video sharing sites such as YouTube, Dailymotion,

Metacafe, Tudou, and Daum has provided tremendous opportunities for Internet

users to share their personal experiences as well as to conduct business. Unlike

the traditional video-on-demand (VoD) systems that typically deliver professionally

produced content, video sharing sites typically contain short video clips produced

for a particular purpose [27]. The short duration of video clips combined with the

huge collection of videos makes it possible for users to browse around for content of

interest.

Despite the tremendous popularity of user generated video sharing sites, user

experience with watching videos from these sites can vary significantly [99]. Our

study, presented in this chapter, shows that it is common that a user experiences a

pause when watching a video online. These interruptions during video playback can

be quite annoying and can potentially discourage users from watching more videos or

simply turn users off at the very beginning of a video browsing session. Even a small

number of pauses can have a very negative impact since the majority of videos on

video sharing sites are usually relatively short (on the order of a few minutes) [51,117].

Clearly, an increase in network bandwidth and scalable solutions on video sharing

sites can solve some of these problems. However, the desire for and the increasing

availability of high quality videos (such as high quality or high definition videos)

might further exacerbate the experience of browsing video sharing sites.

11

In this chapter, we present an approach to prefetch video content in order to reduce

or eliminate the potential of pauses during video playback and decrease the service

delay. Our proposed prefetching scheme conserves bandwidth by prefetching only a

prefix of a video, since a video clip can playback smoothly if a sufficiently large prefix of

the video is prefetched [101]. Furthermore, the prefetching scheme can take advantage

of many “idle” periods of a video browsing session by prefetching when the current

playback does not saturate the available bandwidth or when users read comments

between watching videos. The key to the effectiveness of prefetching is to be able to

predict the videos that will be requested by users. We propose a recommendation

aware prefetching scheme, which utilizes video relationships extracted from video

recommendations provided on video sharing websites to predict the videos that will

be requested. We also introduce two other schemes, conventional caching scheme and

search result-based prefetching scheme for comparison.

We evaluate our proposed prefetching schemes with user browsing pattern data

collected from a university network. We use user browsing patterns on YouTube

since YouTube is the most popular video sharing web site in North America. Our

measurement results show that the recommendation-aware prefetching approach can

achieve an overall hit ratio of up to 81%, while the hit ratio achieved by the caching

scheme and search result-based prefetching scheme can reach only 40% and 38%,

respectively. Therefore, our study demonstrates a strong potential for improving the

playback quality at the client using recommendation-aware prefetching. To the best

of our knowledge, our work is the first to systematically measure and compare the

effectiveness of various prefetching schemes based on actual user browsing activities

and demonstrate the advantage of exploiting the recommendation system for video

delivery.

This chapter is organized as follows. In Section 2.2, we investigate user experience

on YouTube regarding the pauses experienced during video playout. Section 2.3

12

describes the prefetching schemes and the algorithms to select videos to prefetch. In

Section 2.4, we describe our datasets and measurement of the usage of video referrers.

The evaluation of the proposed prefetching schemes is presented in Section 2.5. In

Section 2.6, we discuss the trade-offs and feasibility of prefetching. We discuss related

work in Section 2.7 and conclude the work in Section 2.8.

2.2 Investigating User Experiences with Watching YouTube

Videos

Previous work has shown that service delay on YouTube is longer than on other

video sharing websites [99]. To further demonstrate the need for prefetching, we

perform an experiment to evaluate user experience in watching YouTube videos. In

particular, we measure how likely it is that a user experiences pauses during video

playback and how long the pauses are. We describe our data collection methodology

and how we emulate the playback. Then, we present our results on estimating the

possibility and duration of pauses experienced by a viewer.

2.2.1 Data Collection

We derived the information of pause frequency automatically by analyzing video

download traces. A video download trace is a trace of incoming and outgoing network

traffic captured while a user is watching a video on YouTube. In our case, we asked

volunteers to use Wireshark network protocol analyzer [10] on their computers to

capture the traffic. We automated the process of detecting pauses in video playbacks

to make the process easy for the volunteers and as precise as possible. Instead of

asking the volunteers to watch videos and record the number of pauses, the volunteers

only had to start the capturing before clicking on the link to a video and stop the

capturing after the video playback ends. We then used the trace data from Wireshark

to estimate whether pauses in a video playback occurred.

13

12 volunteers were asked to capture video download traces from various environ-

ments representing different locations and network access technologies as shown in

Table 2.1. We believe that the locations chosen for the experiment present a good

variety and represent typical places where users would watch YouTube videos.

Table 2.1: Environment information.

Environment Location Network Technology
E1 University 1 Campus WLAN
E2 Company 1 DSL
E3 Home 1 DSL
E4 Apartment 1 Cable Internet
E5 Dormitory 1 Campus LAN
E6 Dormitory 2 Campus LAN
E7 Apartment 2 Cable Internet
E8 Town Library Wireless Network
E9 Coffee shop Wireless Network
E10 University 2 Campus WLAN
E11 Home 2 DSL
E12 Hotel Wireless Network

We asked the volunteers to watch 10 videos from our selection and obtained 10

video download traces from each of them. We selected videos that have different

levels of quality (standard quality (SD), high quality (HQ), and high definition quality

(HD)). The average bit rate for these videos ranges from 162 to 2150 kbps.

2.2.2 Modeling a Video Player

The main requirement for a smooth video playback is that each byte of the video

arrives at the client before the time it is required to be played. More formally, let

sp(d) be the number of bytes needed to play the first d seconds of a video, r(t) be the

number of all bytes received at the client at time t, D be the video length in seconds,

and ts be the time the video starts playing. To get a smooth playback, the following

condition needs to be satisfied: r(t) >= sp(t− ts) where ts <= t <= ts +D.

14

0 10 20 30 40 50
0

5

10

15

20

25

30

35

Time (s)
N

um
be

r
of

 b
yt

es

sp(t)
r(t)
pp(t)

Figure 2.1: Example plot of r(t), sp(t) and pp(t)

In the example shown in Figure 2.1, the video starts playing at t = 0. During the

first 15 seconds, r(t) > sp(t), thus the video can be played smoothly. However, just

after t = 15 seconds, the number of bytes received is less than the number of bytes

required. At that point the video playback cannot be continued.

To deal with the buffer depletion, video players, including YouTube’s video player,

pauses to perform buffering whenever there is insufficient data at the client to render

the next frame. The video playback is resumed when the player’s buffer fills up to a

certain level. Based on the data rate at which the video is received at the client, this

may lead to one or more pauses during the playback of the video.

To model the video player, we define the function pp(t) as the number of bytes

required by a player at time t. The value of pp(t) depends on the length of the video

that has been played at time t. If the player has played up to d seconds of the video

at time t, then we have pp(t) = sp(d). In Figure 2.1, after t = 15 seconds, which

is the point when the buffer depletion starts, pp(t) remains steady for some period.

This period corresponds to a pause in the playback. pp(t) continues to increase after

t = 30 seconds, corresponding with the player resuming the playback after it has

filled up enough data in its buffer.

Based on the previous functions, the video player works as follows. At any time t,

the player’s state is either ‘play’ or ‘pause’. Let B be the minimum amount of data

15

required to be in the buffer for the playback to resume from pausing. The player

changes its state in these two cases:

• ‘play’ to ‘pause’: when there is insufficient data to play the video or pp(t) > r(t)

• ‘pause’ to ‘play’: when the data in the buffer reaches the resume threshold value

or r(t)− pp(t) >= B, or when the player has received the full video file

2.2.3 Emulating Video Playback from Video Download Trace

The function sp(d) and r(t) are essential in emulating the video player. In this

section, we describe how we derive these two functions from a video download trace.

To derive r(t), we examine the receive time and the TCP sequence number of the

packets that contain the video file to get the number of contiguous bytes of the video

file we have at each point in time.

To derive sp(t), we analyze the video file which we reassembled from the payload

of the packets. Video encoding divides video data into segments. Each segment has

its own play timestamp which specifies the time that the segment should be rendered

relative to the first segment. From this analysis, we can determine how many bytes

are required to render each frame of the video without any delay to allow for an

uninterrupted playback.

In addition to the two functions, we need to determine the value of B, the amount

of data required to resume from pausing. Since YouTube does not disclose its video

player’s specification, we let B equal to the amount of data needed to play 2 seconds

of a video based on our observation. This means the required buffer size varies for

different videos. If we use larger B, the number of pauses in our results will be fewer,

but each pause period will also be longer. Thus, although the value of B used in

our experiment are not exactly the same as YouTube’s video player, we believe our

results can reflect the user experience on YouTube well.

16

4

6

8

10

m
b
e
r
 o
f
v
id
e
o
s

Disruptive Smooth

0

2

4

6

8

10

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

N
u
m
b
e
r
 o
f
v
id
e
o
s

Disruptive Smooth

Figure 2.2: Video playback quality

0
2
4
6
8

10
12
14

m
be

r o
f p

la
yb

ac
ks

0
2
4
6
8

10
12
14

[1,10) [11,20) [21,30) [31,40) [41,50) > 50

N
um

be
r o

f p
la

yb
ac

ks

Number of Pauses

Figure 2.3: Histogram of number of pauses in disruptive playbacks

2.2.4 User Experience on YouTube

Using the described model, we emulate video playback from video download traces.

First, we determine whether the video was played at the client with a pause or not.

Figure 2.2 shows the number of smooth playbacks and disruptive playbacks for each

dataset. Some datasets contain 9 playbacks due to packet capture error. The results

show that 10 out of 12 environments contain playbacks with pauses. In addition, 41

of 117 playbacks (35%) contain pauses.

Next, we estimate the number of pauses in the interrupted playbacks. Figure 2.3

shows the estimated number of pauses in all 41 disruptive playbacks. We find that

31 playbacks, which are 75.6% of disruptive playbacks, contain more than 10 pauses.

(Even when we increase B to 5 seconds of videos, 57% of disruptive playbacks contain

more than 10 pauses.) Considering that the duration of the videos in our datasets

17

1.2

/)

0 6
0.8
1

1.2

Ɵm
e)

/
le

ng
th

)

0 2
0.4
0.6
0.8
1

1.2

(p
au

se
 Ɵ

m
e)

/
(v

id
eo

 le
ng

th
)

0
0.2
0.4
0.6
0.8
1

1.2

∑(
pa

us
e
Ɵm

e)
/

∑(
vi

de
o

le
ng

th
)

0
0.2
0.4
0.6
0.8
1

1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

∑(
pa

us
e
Ɵm

e)
/

∑(
vi

de
o

le
ng

th
)

0
0.2
0.4
0.6
0.8
1

1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

∑(
pa

us
e
Ɵm

e)
/

∑(
vi

de
o

le
ng

th
)

0
0.2
0.4
0.6
0.8
1

1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

∑(
pa

us
e
Ɵm

e)
/

∑(
vi

de
o

le
ng

th
)

Figure 2.4: Fraction of time spent in waiting for the videos

ranges between 3 to 10 minutes, pausing as much as 10 times or more would be

extremely unpleasant to users.

Finally, we compute the time that a user had to spend waiting for the videos.

We note that since the user’s download rate in our datasets is relatively stable, the

accumulated pause period is not significantly affected by the size of B. In Figure 2.4,

we show the ratio between accumulated pause time and accumulated video length

from all the playbacks in each environment. The user experience varies across different

locations. In some locations, like E2, E3, E11 and E12, the time spent waiting for

the videos (when the videos were paused), is longer than 40% of the total duration of

the videos. In E2, which is the worst sceanario, the time spent waiting is even longer

than the total video length.

Our results lead to our conclusion that YouTube users indeed experience disrup-

tive playbacks on YouTube, especially when they watch videos with higher quality.

Although a user can choose to wait for a video to buffer before she starts watching,

it is undesirable. We expect that this problem will become even more common as

high definition videos become increasingly popular on YouTube. The results of this

experiment motivated us to devise a video prefetching approach that has the potential

to reduce or even eliminate pauses during video playback. The approach is described

in the next section.

18

Client
YouTube

Server

Proxy
Internet

Client

Figure 2.5: The architecture of prefetching proxy system

2.3 Video Prefetching Scheme

The main principle of prefetching is to retrieve content from the source before

it is requested by a user and store it in a location that can be accessed by a user

conveniently and fast. This is fundamentally different from caching where content is

only stored locally if it has already been requested by a client. Prefetching can be

applied to various architectures and in different ways. In this section, we describe

the settings of the proposed prefetching scheme, followed by the algorithms used to

select videos to prefetch.

2.3.1 Prefetching Agent

Consider a typical network as shown in Figure 2.5, there are two apparent places

where we can implement the prefetch functionality, at the client and the proxy. We

call the module that performs prefetching the prefetching agent (PA). In this work,

we consider two settings of the prefetching scheme: in the first one, the PA is located

at the client (PF-Client), and in the second one, the PA is located at a proxy server

(PF-Proxy).

A PA is a module responsible for prefetching. It has memory to store prefetched

prefixes of videos. The PA determines the videos to be prefetched, retrieves their

prefixes from YouTube, and stores them. In addition, the PA can perform caching,

i.e., it stores either a whole or a prefix of videos that are requested by clients. Caching

19

YouTube videos at the network edge has been evaluated by Zink et al. and shown to

be useful in reducing network traffic and providing faster video access [117].

Every YouTube request from a client is directed to the PA. If the request is a video

request, the PA checks if the prefix of the video exists in its storage. If so, it serves

the client with the prefix of the video, and at the same time retrieves the remaining

part of the video from YouTube and sends it to the client. Note that the video prefix

and the remaining part are sent to the client simultaneously. This further helps to

decrease the chance of buffer depletion at the client. If the prefix is not in its storage,

the PA retrieves the whole video from YouTube and sends it to the client. If the

PA also performs caching, it stores the retrieved videos in its storage. Based on the

requests received, the PA selects the videos to be prefetched (which have not been

requested by any users yet), retrieves their prefixes from YouTube, and stores them

in its local storage.

The difference between PF-Client and PF-Proxy is the location of the PA. In

PF-Client, every client is connected to its own PA, thus each PA receives requests

from only one client. In PF-Proxy, the PA resides in a proxy which is situated

between clients and YouTube servers, close to the clients as shown in Figure 2.5. For

example, the proxy may be located at the gateway of a campus network or at the

local aggregation point of an ISP network. In this setting, the PA receives requests

from all clients in the local network.

The next section describes how the PA selects the videos to prefetch based on the

requests it receives.

2.3.2 Video Selection for Prefetching

In order to perform prefetching, the PA needs to determine the set of videos to

be prefetched. Given YouTube requests from clients, the PA needs to predict a set of

20

videos that are likely to be requested in the future. Here, we describe two algorithms

that the PA can use to select videos to prefetch.

The first algorithm is based on users’ search results. YouTube provides a search

box in which a user can enter a query phrase to search for videos of interest. After

the search query submission, a list of videos that match the query phrase, or a Search

Result list is shown in a search result page.

To implement this algorithm, the PA detects search result pages sent from YouTube

which are the responses to clients’ search queries. Then, it extracts the list of videos

to determine which videos to prefetch. A search result page can contain up to 20

videos in one page. Prefetching all of those videos may or may not be practical de-

pending on the available bandwidth and storage space at the PA. Therefore, the PA

may prefetch only the top N videos of the Search Result list based on their positions

on the list. We call this algorithm SR-N .

The second algorithm is based on the YouTube recommendation system. Each

YouTube video has its own web page, which we call a video page. Each video page

contains a Related Video list which is a list of videos that have similar content recom-

mended by the YouTube recommendation system. As shown in Section 2.4.2, besides

Search Result lists, a large number of video views originates from Relate Video lists.

Thus, videos in Related video lists are also good candidates for prefetching.

A Related Video list contains up to 25 videos. Similar to SR-N , we may prefetch

only the top N videos on the Related Video list according to the order they are shown

in the list. We call this algorithm RV-N . The PA implements the RV-N algorithm

by detecting all the videos pages from the responses it receives from YouTube and

parsing the video pages to obtain the Related Video lists.

The advantage of both algorithms, SR-N and RV-N , is that they are simple and

not computationally expensive. The PA can obtain the lists of videos to prefetch

without requesting or storing any additional data. In the next section, we present

21

the datasets we used to evaluate the two settings of prefetching scheme and video

selection algorithms we have described.

2.4 Data Collection

In this section, we describe the data collection process and datasets we use to

evaluate the prefetching schemes.

2.4.1 Datasets

Our data collection consists of two phases. In the first phase, we monitored and

recorded data traffic between a campus network and YouTube servers. Due to the

campus privacy policy, we only recorded fixed-length headers of the data packets, so

we cannot obtain the Related Video lists and Search Result lists which are essential

for our experiments from the traces. In the second phase, we retrieved the two lists

from YouTube using YouTube Data API [11]. The details of the two phrases are

described in the following subsections.

2.4.1.1 Network Traces

We obtained three network traces from monitoring YouTube traffic entering and

leaving a campus network. The monitoring device is a PC with a Data Acquisition

and Generation (DAG) card [3], which can capture Ethernet frames. The device is

located at a campus network gateway, which allows it to see all traffic to and from

the campus network. It was configured to capture a fixed length header of all HTTP

packets going to and coming from YouTube domain.

The monitoring periods are 1 day, 3 days, and 7 days (T1, T2 and T3 respectively).

The general statistics of the traces are shown in Table 2.2. Since T2 was obtained

during the winter break, it has fewer video requests than T1 although the capture

period is longer. T3 has the most video requests because it was taken when class was

in session and it has the longest capture period.

22

Table 2.2: Statistics from network traces collected at the campus network gateway.

Trace File T1 T2 T3
Duration 1 day 3 days 7 days
Start Date 20-Oct-09 8-Jan-10 28-Jan-10
Request 71,282 7,562 257,098
Unique Clients 7,914 607 10,511
Unique Videos 48,978 5,887 154,363

2.4.1.2 Search Result Lists and Related Video Lists

In addition to the network traces, to validate the prefetching approach, we need

the Search Result lists for every video search query in the traces and the Related

Video lists for every requested video. These lists are used by the prefetching agent

to determine the set of videos to be prefetched. We retrieved the Search Result lists

and the Related Video lists via YouTube Data API.

To retrieve the Search Result lists, we started from identifying all the video search

queries in the traces using URI pattern matching. A URI of a video search query

on YouTube starts with results?search query=, followed by the query phrase and

other parameters. After identifying the search queries in the network traces, we

retrieved the Search Result list for each query by sending the same search query to

YouTube via YouTube Data API. We retrieved at most 25 videos for each Search

result list.

Similarly, to retrieve the Related Video lists, we first extracted video page requests

from the traces. A video page request’s URI starts with watch?v=, followed by a

video’s ID, which is a 11-character string. With the set of video requests, we then

proceeded to fetch the Related Video list for each video through YouTube Data API.

We retrieved at most 25 videos for each Related Video lists.

23

2.4.2 Usage of Search Result Lists and Related Video Lists

In this section, we present our measurement results on the usage of different view

referrers. A referrer of a video is the source that refers a user to the video, for example,

a Related Video list of another video, YouTube featured video page, and links on

other web sites. The result from this study shows that the two most frequently used

referrers are Search Result lists and Related Video lists, which prompted us to use

the two lists in the proposed video selection algorithms.

We perform the study by analyzing the referrer of each video request in our traces.

The HTTP referrer fields of the video requests are not contained in our traces due

to the limited length of the captured packets. Hence, we employ another method to

identify the referrers. The requests coming from certain referrers contain the referrer

types explicitly in their URIs. This includes requests generated from users clicking on

Related Video lists, which contain the tag feature=related in their URIs. Therefore,

we can extract the referrers of these video requests from their URIs. However, there

are also video requests that contain no referrers information in their URIs, including

the requests from Search Results lists and most links from external websites. We

use an additional heuristic to infer the referrers of these video requests by analyzing

YouTube user sessions. A user’s YouTube session is a series of requests sent to

YouTube by a user in one visit [88]. We consider that a session ends when a user is

idle for 40 minutes, which is the threshold time-out used in [52]. A referrer of a video

request without tags is inferred from the previous pages visited in the same session

before the request is made. Referrers are then grouped into 4 types: Related Video

lists, Search Results lists, other YouTube pages, and external links. The external

links category are referrers that are outside YouTube such as video links on blogs and

social network sites.

We perform the analysis on trace T2 and T3 because they were captured with

longer packet length, so we have complete tags from the URIs. In Figure 2.6, we

24

0.3

0.4

P
e

rc
e

n
ta

g
e

 o
f

re
q

u
e

st
s T2 T3

0.2

0.3

0.4

P
e

rc
e

n
ta

g
e

 o
f

re
q

u
e

st
s T2 T3

0.1

0.2

0.3

0.4

P
e

rc
e

n
ta

g
e

 o
f

re
q

u
e

st
s T2 T3

0

0.1

0.2

0.3

0.4

Related Video Search Result YouTube External Links

P
e

rc
e

n
ta

g
e

 o
f

re
q

u
e

st
s T2 T3

0

0.1

0.2

0.3

0.4

Related Video

List

Search Result

List

YouTube

Pages

External Links

P
e

rc
e

n
ta

g
e

 o
f

re
q

u
e

st
s T2 T3

0

0.1

0.2

0.3

0.4

Related Video

List

Search Result

List

YouTube

Pages

External Links

P
e

rc
e

n
ta

g
e

 o
f

re
q

u
e

st
s T2 T3

0

0.1

0.2

0.3

0.4

Related Video

List

Search Result

List

YouTube

Pages

External Links

P
e

rc
e

n
ta

g
e

 o
f

re
q

u
e

st
s T2 T3

Figure 2.6: Fraction of requests from each referrer type

show the requests from each referrer type as a percentage of all requests. The results

show that the Search Result lists and Related Video lists are major view referrers.

There are 28% and 35% of the video requests with the Search Result lists as their

referrers (in T2 and T3, respectively), and there are 33% and 29% of the requests

with the Related Video lists as their referrers.

From the result, we decided to base the video selection algorithms on the two lists,

Search Result list and Related Video list. We note here that although this result might

leave the impression that the prefetching approach using the Search Result lists or

Related Video lists can only achieve a hit ratio around the same level as the usage

rate of the lists, as we show in Section 2.5, this is not the case since our evaluation

of the prefetching approach based on the Related Video lists results in hit ratios up

to 81%.

2.5 Evaluation

In this section, we present our evaluation of the video prefetching approaches. We

compare the performance of the two video selection algorithms and the two settings

proposed in Section 2.3.

25

2.5.1 Methodology and Evaluation Metrics

Our evaluation for the prefetching schemes is based on real user usage patterns.

This is achieved by performing a trace-driven simulation using the traces captured

from a campus network as presented in Section 2.4.1.1. In the simulation, video

requests are issued based on the network traces, which means the videos that are

requested and the order of the requests are exactly the same as in the traces. The

simulated PA determines the videos to be prefetched based on the requests received

and keeps track of the set of video prefixes that are in its storage. Thus, it can

determine whether a requested video has been prefetched or not. With this method,

we can determine the proportion of video requests from the traces that could have

been served faster from the PA if the prefetching system was implemented at the time

the traces were captured.

To study the characteristics and compare the performance of different prefetching

schemes, we first perform experiments in the cases when the PA always has sufficient

storage space, from Section 2.5.2 to 2.5.4. Then, in Section 2.5.6, we explore the case

when there is limited storage space. For simplicity, the storage space size is defined

by the number of slots, where each slot can hold a prefix of a video. Based on the

measurement result in [31], the average video size on YouTube is 8.4 MB. Suppose

the prefix size is 30% of a video, then each slot corresponds to about 2.5 MB.

In this study, two metrics are used to evaluate the prefetching schemes. The first

metric is the hit ratio, defined as a fraction of the number of requests for a video

that can be served from the prefetching storage (called hit requests): hit ratio =

hit requests/all requests. A higher hit ratio means we can serve more requests from

the prefetching agent’s storage, resulting in better user experience. The second metric

is the precision, which reflects the accuracy of the video selection algorithm. The

precision is defined as a number of prefetched videos that are actually requested by

26

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

N

H
it

R
at

io

Cache Proxy RV−N / PF−Client RV−N / PF−Proxy

SR−N / PF−Client SR−N / PF−Proxy

Figure 2.7: Hit ratios of SR-N and RV-N for T3

users (called the hit videos) over the total number of prefetched videos: precision =

hit videos/all prefetched videos.

2.5.2 Performance of Prefetching Using Search Result Lists (SR-N)

We first present the performance of the prefetching scheme which prefetches based

on the top N videos on Search Result lists (SR-N). Figure 2.7 shows the hit ratio

of the prefetching scheme using the SR-N algorithm when there is always sufficient

space at the PA. We also show the hit ratio of the cache proxy, which caches all

videos that users have requests, as a baseline. From the figure, the maximum hit

ratio at N = 25 is equal to 20.62% in PF-Client and 36.86% in PF-Proxy. It may

be unexpected that the maximum hit ratio achieved in the PF-Client setting is lower

than the inferred percentage of video requests from users clicking Search Result lists.

This may be attributed to two reasons. The first reason is that a user may click on a

video contained in a playlist in a search result, which we cannot retrieved via the API.

The second reason is that a user may click on a search result in the position lower

than 25. The result here shows that the hit ratio we obtain using the Search Result

lists cannot surpass the hit ratio of the caching scheme which is 39.96% despite the

fact that Search Result lists are one of the the major sources of video views.

27

2.5.3 Performance of Prefetching Using Related Video Lists (RV-N)

We now proceed to evaluate the performance of the prefetching scheme that relies

on the YouTube recommendation system, or the Related Video lists (RV-N). The hit

ratio of the prefetching scheme using the RV-N algorithm is shown in Figure 2.7. At

N = 25, the RV-N algorithm results in the maximum hit ratio of 50.38% and 75.68%

in the PF-Client and the PF-Proxy setting, respectively. These maximum hit ratios

are higher than the hit ratio achieved by the cache proxy. In fact, the PF-Proxy

setting can outperform the cache proxy with the value of N as low as 3. As for the

PF-Client setting, we need to prefetch at least 9 videos to surpass the cache proxy.

From the results, we also observe that as N increases, the increasing rate of the hit

ratio is smaller. This suggests that the top videos in the Related Video lists are better

predictions of users’ future views.

So far, we observe that PF-Proxy yields much higher hit ratio than PF-Client.

This suggests that users in the same local network share similar interests, and thus

videos from a Related Video list or a Search Result list of a user are also watched by

other users in the same local network. PF-Proxy benefits from this fact and achieves

about 50% to 100% improvement in the hit ratio compared to PF-Client.

Up to this point, the RV-N algorithm, which is based on the Related Video lists,

in combination with the PF-Proxy setting gives us the best hit ratio of up to 75.68%.

Consequently, we will focus on the particular prefetching scheme - the combination

of the RV-N algorithm and the PF-Proxy setting.

2.5.4 Analyzing the High Hit Ratios

One interesting observation from previous results is that the maximum hit ratio

achieved with the RV-N algorithm is much higher than how often users click on

Related Video lists, which is around 30% as analyzed in Section 2.4.2. This means

that the hit requests are not only the requests that come from users clicking on

28

0

0.1

0.2

0.3

0.4

0.5

0.6

H
it

 R
a

t
io

Youtube Pages

Related Video Lists

Search Result Lists

External Links

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25

H
it

 R
a

t
io

N

Youtube Pages

Related Video Lists

Search Result Lists

External Links

Figure 2.8: Referrers of hit requests (PF-Client)

0

0.2

0.4

0.6

0.8

H
it

 R
a

t
io

Youtube Pages

Related Video Lists

Search Result Lists

External Links

0

0.2

0.4

0.6

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25

H
it

 R
a

t
io

N

Youtube Pages

Related Video Lists

Search Result Lists

External Links

Figure 2.9: Referrers of hit requests (PF-Proxy)

Related Video lists, but also the requests from other referrers. To gain further insight,

we conduct an analysis to see how many requests from other referrers are hit requests

in the RV-N prefetching scheme.

In Section 2.4.2, we have identified the referrer of each video request in the traces.

Therefore, we can determine how many requests from each referrer are hit when we

prefetch using Related Video lists. Figures 2.8 and 2.9 show the referrers of the hit

requests for the prefetching schemes with the PF-Client setting and the PF-Proxy

setting. In PF-Client, only about 55% of the hit requests are from the users clicking

on Related Video lists. The remaining 45% are the requests caused by users clicking

29

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it

 R
a

ti
o

External Links

Search Result Lists

Related Video Lists

Youtube Pages

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25
H

it
 R

a
ti

o
N

External Links

Search Result Lists

Related Video Lists

Youtube Pages

Figure 2.10: Hit ratios of each request category (PF-Client)

on the Search Result lists and other referrers. This means that, for many videos in

the Related video lists, a user may not click on them from the lists, but she eventually

watches them through other referrers.

For PF-Proxy, the fraction of the hit requests that are from users clicking on

the Related Video lists becomes even smaller, while the requests that come from

users clicking the Search Result lists become a significant portion of the hit requests.

This means that the additional hit requests in the PF-Proxy setting, which are those

requests of a client that can be served by a video prefetched based on another client’s

request, are mostly the requests that come from a user clicking on Search Result lists.

From both figures, we learn that there is overlap between the videos shown in the

Related Video lists, which we prefetch, and video requests that users request through

other referrers. This overlap contributes to the high hit ratios when we use the RV-N

algorithm. Next, we investigate how large this overlap is for the video requests from

each referrer type.

Figure 2.10 and 2.11 shows the hit ratios computed separately for the requests

from each referrer type. In PF-Client, we can see that the requests from Search

Result lists, external links, and YouTube pages, have the hit ratio of up to to 20-50%.

Note that the hit ratio for the requests from the Related Video lists is 90%, less than

100% due to the small changes in the Related Video lists when we retrieved them. In

30

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it

 R
a

ti
o

External Links

Search Result Lists

Related Video Lists

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25
H

it
 R

a
ti

o

N

External Links

Search Result Lists

Related Video Lists

Youtube Pages

Figure 2.11: Hit ratios for each request category (PF-Proxy)

PF-Proxy, the hit ratios for these referrers are significantly improved, which makes

the aggregated hit ratio in PF-Proxy much higher than PF-Client. Especially, the

improvement of the hit ratio of requests from the Search Result lists, from up to 30%

in PF-Client to up to 65% in PF-Proxy, is the major contributor because a large

number of requests are from Search Result lists.

In sum, the property of the videos in the Related Video list that they largely

overlap with the video requests generated from a user clicking on the Search Result

lists, which are the large fraction of all requests, and also from other referrers makes

them very effective choices for prefetching. The videos in the Search Result lists, on

the other hand, do not have this property, and thus the SR-N algorithm does not

give as high hit ratio as the RV-N algorithm although the frequency that users use

the Related Video list and Search Result list are about the same.

2.5.5 Combining Caching and Prefetching

Because of the difference in their underlying principals, the prefetching scheme

and caching scheme conceptually captures different sets of videos, although there

may be some overlapping. Thus, combining these two schemes can potentially result

in a higher hit ratio. Figure 2.12 shows the hit ratio improvement resulting from

the combination of caching and prefetching called the cache-and-prefetch mode. The

31

combination of the two schemes increases the hit ratio by 5-20% compared to the

prefetch-only mode. The maximum hit ratios we obtain at N = 25 increase from

63.47%, 59.85% and 75.68% to 72.30%, 66.83% and 80.88% for trace T1, T2 and T3,

respectively. Note that the hit ratio of the cache-and-prefetch mode is not the sum of

the cache-only and prefetch-only mode. This is because there is an overlap between

the set of cached videos and the set of prefetched videos. As shown in Figure 2.12,

the improvement of the hit ratio induced by the cache-and-prefetch mode becomes

smaller as N increases. This means that as we prefetch more videos from the Related

Video lists, the overlap between the set of prefetched videos and the set of videos that

users have watched becomes larger. Thus, with regards to the hit ratio, the addition

of caching functionality is more helpful when we prefetches a small number of videos.

In Section 2.6.4.2, we show another advantage of combining caching and prefetching

when we discuss the traffic overhead introduced by the prefetching scheme.

0 2

0.3

0.4

0.5

0.6

0.7

0.8

H
it

R
at

io

C h l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25

H
it

R
at

io

N

Cache-only
Prefetch-only
Cache-and-Prefetch

(a) T1

0 2

0.3

0.4

0.5

0.6

0.7

0.8

H
it

R
at

io

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25

H
it

R
at

io

N

Cache-only
Prefetch-only
Cache-and-Prefetch

(b) T2

0 2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

H
it

R
at

io

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 5 10 15 20 25

H
it

R
at

io

N

Cache-only
Prefetch-only
Cache-and-Prefetch

(c) T3

Figure 2.12: Hit ratio improvement from combining caching and prefetching

32

2.5.6 Storage Requirement

So far, the prefetching scheme using the RV-N algorithm and the PF-Proxy setting

has yielded the best hit ratio of up to 80% in cache-and-prefetch mode. The presented

results are based on the assumption that there is always sufficient storage space to

store the prefetched and cached videos. This gives us the highest hit ratio that can

be reached. In Figure 2.13, we show the storage space that is actually required for

the case of sufficient storage space. The storage size in the figure is converted from

the number of slots to gigabytes where each slot is equal to 2.5 MB, as explained

in Section 2.5.1. The storage space required in cache-only mode is also shown as a

baseline.

As shown in Figure 2.13, whenN is larger, which means more videos are prefetched,

the required space increases. The required spaces for the three traces are different

because of the difference in the number of requests in the traces. The more requests

there are, the more space we need. Although prefetch-only mode requires much more

space than cache-only mode, the actual space it needs is merely 4.69 TB where it can

reach 75.68% hit ratio (in T3). For cache-and-prefetch mode, the storage requirement

are very close to prefetch-only mode, while it improves the hit ratio on the order of

5-20%. The maximum space needed is 4.76 TB, which results in a 80.88% hit ratio.

Although the storage requirement given here are specific to our traces with dif-

ferent duration and request volumes, it demonstrates that the storage required to

achieve the highest hit ratio with prefetching for a campus-size network is within a

feasible range. Later, in Section 2.6.1, we consider the cases when storage space is

insufficient and study how the storage size impacts the performance of the prefetching

scheme.

33

0 5 10 15 20 25
0

500

1000

1500

2000

N
R

eq
ui

re
d

sp
ac

e
(M

B
)

Cache−only
Prefetch−only
Cache−and−Prefetch

(a) T1

0 5 10 15 20 25
0

50

100

150

200

250

N

R
eq

ui
re

d
sp

ac
e(

M
B

)

Cache−only
Prefetch−only
Cache−and−Prefetch

(b) T2

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

N

R
eq

ui
re

d
sp

ac
e(

M
B

)

Cache−only
Prefetch−only
Cache−and−Prefetch

(c) T3

Figure 2.13: The sufficient storage size for the RV-N prefetching scheme with the
PF-Proxy setting

10
3

10
4

10
5

10
6

0

0.2

0.4

0.6

0.8

Storage size (slots)

H
it

R
at

io

Cache−only
N=1
N=3

N=9
N=15
N=25

Figure 2.14: Performance vs. storage size for prefetch-only mode (T3)

2.6 Discussion

In this section, we further explore the trade-offs when using the prefetching scheme

with the RV-N algorithm and the PF-Proxy setting. We also study certain aspects

of the feasibility of prefetching.

34

10
3

10
4

10
5

10
6

0

0.2

0.4

0.6

0.8

Storage size (slots)

H
it

R
at

io

Cache−only
N=1
N=3

N=9
N=15
N=25

Figure 2.15: Performance vs. storage size for cache-and-prefetch mode (T3)

2.6.1 Impact of Storage Space

In reality, the always-sufficient space is not realistic since there are always new

video requests and more prefixes to store as the PA continues running. The storage

space is fixed, while the storage requirement continues to increase. To investigate

the impact of limited storage space on the performance of the prefetching scheme, we

ran the simulation with limited storage sizes of 1k, 3k, 5k, 10k, 25k, 50k, and 400k

slots. As mentioned in Section 2.5.1, each slot is about 2.5 MB. Thus, the maximum

slot size of 400k approximately translates to 1 TB. The Least-Recently-Used (LRU)

replacement policy is used in our simulation. Figure 2.14 and 2.15 show the hit ratio

of the prefetch-only and prefetch-and-cache modes with different storage sizes for T3.

The results for T1 and T2 are similar but omitted due to space limitation.

The results indicate a correlation between the performance of the prefetching

scheme and the storage space size. The hit ratio decreases with the storage space.

However, even with a smaller storage space like 125 GB (50k slots), which is less

than 3% of space required in the sufficient case, we can still achieve high hit ratios

up to 52.59%, 59.36% and 56.26% (for T1, T2 and T3, respectively) with prefetch-

only mode and 59.84%, 66.26%, and 61.62% for the cache-and-prefetch mode. In

comparison to the caching scheme, the two prefetching schemes can achieve a much

better hit ratio using the same storage size. We believe that the hit ratios could even

35

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

N

H
it

R
at

io

S=1k S=10k S=50k S=400k Sufficient

Figure 2.16: Hit ratio of cache-and-prefetch mode with different storage sizes S and
different N (T3)

����

���

����

���

����

�
�
�
	

�

�

��

��

��

�

����

���

����

���

����

� � �� �� �� ��

�
�
�
	

�

�

�

��

��

��

Figure 2.17: Precision of the RV-N algorithm vs N

be further improved by applying a smarter cache replacement policy than the LRU

policy.

2.6.2 How large should N be?

In the RV-N algorithm, N is the number of videos we prefetch from each Related

Video list. The value of N directly affects the performance of prefetching. To inves-

tigate the impact of N , we plot the hit ratio versus N for each storage size for the

prefetching scheme with cache-and-prefetch mode, shown in Figure 2.16. From the

figure, with sufficiently large storage space, increasing N always results in a higher

hit ratio. However, using small N like 5, we can still achieve a hit ratio up to 65%.

36

On the other hand, with limited storage size, as N increases, the hit ratio improves

up to a certain point and then begins to decline. This effect can also be seen in Figure

2.14 and 2.15. When the storage size is small (1k slots), using large N like N = 25

results in a lower hit ratio than N = 9, 15. In order to explain the cause of this

effect, we show the precision of the prefetching scheme for each value of N in Figure

2.17. From the figure, the precision decreases when N is larger. This means that

with larger N the fraction of prefetched videos that are never requested by clients

is higher. With limited space, using a too large value of N results in those unused

videos taking up the space of the popular videos, giving us lower hit ratios. From

Figure 2.16, an optimal setting of N is between 5 to 11, which can yield the hit ratio

between 65-74% using 1 TB storage space (400k slots). We conclude that when the

prefetching scheme is implemented, the value of N should be chosen carefully to avoid

the adverse effect when there is limited space and to balance the trade-off between

the hit ratio and the additional bandwidth requirement.

2.6.3 Determining Video Prefix Size

In the proposed prefetching scheme, only prefixes of videos are prefetched to save

storage space and bandwidth. First, we would like to show that we do not need to

prefetch the whole video in order to deliver a smooth video playout, thus prefetching

only a prefix of a video is sufficient. To demonstrate this, we compute the minimum

size of video data that should be buffered before a video starts playing to give a

smooth video playout, or minimum start buffer size bmin, for each video playout in

the datasets from Section 2.2.

For a video playout with the function r(t) and sp(d) (as described in Section 2.2),

suppose we have video data of size b in the buffer when a video playout starts at t = ts.

The total data we have at time t becomes r(t)+b. Thus, to get a smooth playout, the

37

�

��

��

��

��

��

�
�
�
��
�
�
��
	�
�	
�

�
��
�
��
�

��
�

��
��
��
�

�
�
�
��

�
�
�

�

��

��

��

��

��

�� �� �� �� �� �� �	 �
 �� ��� ��� ���
�
�
�
��
�
�
��
	�
�	
�

�
��
�
��
�

��
�

��
��
��
�

�
�
�
��

�
�
�

����	
������	���	�

Figure 2.18: Average minimum start buffer size for smooth playout.

start buffer size b must satisfy the condition ∀t : r(t)+ b >= sp(t− ts). The minimum

start buffer size bmin is then given by bmin = max {maxt(sp(t− ts)− r(t)), 0} .

Using the derived function sp(t) and r(t) from each video download trace in Section

2.2, we compute bmin for every playout. Figure 2.18 shows the average value of bmin

as a percentage of the full video size for each dataset collected at different locations.

The result shows that bmin is much smaller than the full file size; therefore, we do

not need to prefetch the whole video file to deliver a smooth playout. The average

minimum start buffer size of each location varies from close to 0% to 42% due to the

different network condition at each location.

The remaining question is how large should the prefix be. One simple solution is

to let the prefix size be a sufficiently large constant percentage of the full video size,

but this approach is inefficient since the minimum start buffer size of each playout

is actually different. If a prefix is too large, we unnecessarily waste storage space

and bandwidth. On the other hand, if a prefix is too small, prefetching would not

be useful. A better solution is to let the prefetching proxy choose the prefix size

dynamically for each video. Ideally, the prefix size should be equal to bmin, which is

different for each playout. This solution will give a smooth playout, while using as

least storage and bandwidth resource for prefetching as possible. Unfortunately, the

38

computation of bmin can only be done after a video is played. Therefore, we propose

a mechanism to determine the size of the prefix dynamically.

Our experiment in Section 2.2 shows that although a video’s bit rate is not con-

stant, it usually does not vary significantly. Thus, we assume that a video’s bit rate

is constant and equal to the average bit rate. We also observe that a video’s down-

load rate is usually stable over some short period of time, so we assume that a video

download rate is constant as well. These two assumptions simplify the computation

of bmin. Let b be a video bit rate, d be a video duration and r be a video download

rate. The prefix size is given by bmin = d(b− r).

From the equation, we still need to determine the value of b, d and r before we

actually download a video. For the future download rate r, the PA can conservatively

use the lowest download rate it has seen in some time window as the worst case

estimate. In addition, the PA can determine the average video bit rate, b, and video

duration, d, from the header of a video file containing video metadata. Therefore,

not long after the PA starts prefetching the video, it can determine the value of d, b

and r, and can compute the appropriate prefix size. In this manner, the prefix size

are adapted according to the network condition and the properties of each video.

In addition to adapting the prefix size based on the network condition and video

properties, the popularity of the videos can also be taken into account. Popular

videos are more likely to be requested and may even be requested by multiple users.

Therefore, a general idea is to prefetch longer prefixes for the more popular videos.

Since these videos are likely to be requested multiple times, the prefetched prefixes

not only will provide quick and smooth delivery of the videos but also will help to

decrease the traffic volume in the manner similar to caching the videos. We leave the

specifics of how to determine the best prefix size according to the popularity of the

videos as future work.

39

2.6.4 Feasibility of Prefetching

One concern about prefetching scheme may be that it will worsen the situation

because it requires additional network bandwidth, while interrupted video playouts

implies that the network bandwidth is insufficient. Our arguments are as follows.

First, users are not watching videos all the time. For example, after watching a

video, a user may read or write comments, browse through a list of videos, or replay

the video. This provides “idle” time to perform prefetching. Second, since each

video’s bandwidth requirement is different, we may not have enough bandwidth to

accommodate higher bit rate videos, but for lower bit rate videos, we have more

than sufficient bandwidth. As shown in our experiments in Section 2, we found both

types of playouts, with and without pauses, in the same environment. Thus, we can

take advantage of the period where the bandwidth is sufficient to prefetch the videos.

Third, by combining caching and prefetching, the bandwidth consumption reduced

by caching can compensate the additional bandwidth requirement from prefetching.

In the following subsections, we further discuss some aspects about the feasibility of

prefetching.

2.6.4.1 Time to Prefetch.

In practice, a time gap between video requests may sometimes be short, and thus

we may not be able to prefetch some prefixes in time before they are requested. Here

we measure the time available to perform prefetching to estimate how this issue will

effect the performance of the prefetching scheme. Figure 2.19 shows the CDF of the

time gap between the time that the PA decided to prefetch a video and the time the

video was actually requested for every hit requests in trace T3 when N is 5 and 25.

When N is larger, the distribution of time to prefetch shifts to a higher value. This

means we have longer time to prefetch videos in the lower ranks of Related Video

lists. Comparing the PF-Client to PF-Proxy setting, PF-Proxy has longer time to

40

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

C
D

F

Time to prefetch (minutes)

(a) N=5 (PF-Client)

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Time to prefetch (minutes)

C
D

F

(b) N=25 (PF-Client)

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Time to prefetch (minutes)

C
D

F

(c) N=5 (PF-Proxy)

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Time to prefetch (minutes)

C
D

F

(d) N=25 (PF-Proxy)

Figure 2.19: CDF of the time to prefetch.

prefetch. This demonstrates the benefit of sharing prefetched videos in PF-Proxy.

Some videos prefetched based on one client’s request are requested by another client

some time later, and the time gap between the two events is large, allowing more time

to prefetch.

Using the result shown in Figure 2.19, we can estimate the number of hits that

are not feasible in practice, i.e., videos that may not be prefetched in time before

clients request them. For example, suppose the available bandwidth is 100 KB/s. To

download 25 prefixes of video, each with the size of 2.5 MB, we need 11 minutes.

Assuming we use a naive scheme where all the prefixes are downloaded in parallel,

then, from the CDF, 26% of the hit requests are not feasible, and the hit ratio in

the prefetch-only case with N=25 will decrease from 75.68% to 56.00%, yet it is still

in a satisfactory level. In practice, the PA can download the prefixes sequentially

and employ a smarter scheme, e.g., prefetching the top ranked videos first, to achieve

higher hit ratios.

41

2.6.4.2 Network Traffic Overhead of Prefetching

To address the concern about additional network bandwidth required for prefetch-

ing, we perform a simple calculation of an example case to show how much prefetching

will increase the network load. In this example, we prefetch the prefixes of the top 11

videos from Related Video lists using the prefix size equal to 15% of the video size.

For cache-only and cache-and-prefetch modes, we assume that videos are cached in

full size. Using the hit ratio from T3 to compute the overhead, we show the results

of the calculation in Table 2.3.

Table 2.3: Normalized traffic load of prefetching schemes.

Scheme Hit Ratio Normalized load
No scheme 0% 1.00
Cache-only 40% 0.60
Prefetch-only 66% 1.44
Cache-and-Prefetch 74% 1.02

Table 2.3 shows the traffic load for prefetching schemes compared with caching

scheme, normalized by the case in which no scheme is implemented. Caching has no

traffic overhead and helps reduce the traffic. On the other hand, we gain higher hit

ratio with prefetching-only mode, but traffic load is also increased by 44%. These

extra work comes from prefetching unused prefixes. Finally, cache-and prefetch mode

yields the highest hit ratio and introduces only 2% increase in the network load. Using

the combination of caching and prefetching, the extra overhead from prefetching is

compensated by the benefit of caching, while we can still maintain the high hit ratio

we get from prefetching. In addition, the PA can employ the technique like using

TCP Nice [109] to perform prefetching without affecting the peak bandwidth of the

network.

42

2.7 Related Work

The prefetching technique has its origins in the area of computer architecture.

The use of prefetching has been widely studied for web content delivery in early days.

Padmanabhan and Mogul were among the first who applied prefetching within

the context of web delivery by proposing the WWW prefetching scheme to reduce

latency [90]. In this scheme, a server makes predictions of the links that are likely to

be requested next by a client based on past observations. Clients use these predictions

to prefetch web documents. In [35], Cunha and Jaccoud proposed two models based

on random walk and digital signal processing to model user web access pattern for

prefetching. In [41], Fan et al. proposed the proxy-initiated prefetching for web

documents. Their approach addresses the low-bandwidth limitation between clients

and a proxy by prefetching the cached documents from the proxy to the clients. In

this approach, prefetching does not happen between the proxy and the web servers.

In [98], Sarukkai proposed and demonstrated the effectiveness of the Markov chain-

based link prediction algorithm for web prefetching. More recent work tend to focus

on improving the prediction algorithm for web prefetching. Pallis et al. used a

graph-based clustering algorithm to infer web objects’ correlation from user browsing

patterns and prefetch web objects from the same cluster [91]. In [37], Domenech et

al. introduced a double dependency graph of web pages and web objects to be used

with Markov-chain-based prediction algorithm to accommodate newer generation web

pages with several embedded web objects.

The use of proxies for multimedia streaming has been intensively studied in earlier

work. We mention the ones that are closest to our approach in the following.

In [101], Sen et al. proposed a prefix proxy caching scheme for Video on Demand

(VOD) systems in which the proxy is used to hide latency, packet loss, and jitter

between the local network and server sites. Their proxy caches only a prefix of a

video to avoid using a large cache space. They focused on using prefix caching to

43

smooth out the network bandwidth requirement from a proxy to a client and used

streaming traces of two videos to demonstrate the benefits of the approach. However,

they did not address the issue of how to select videos to prefetch. In [27] and [117],

trace-driven simulations were performed to investigate the effectiveness of caching

for YouTube videos. Although the traces for both studies were different, the results

showed that proxy caching can reduce server and network load significantly. Both

studies did not consider prefetching. In [76], caching and prefetching for online TV

services has been studied and shown to be very effective. In this study, popular videos

are prefetched to a proxy. In addition, there are many existing studies on the use of

proxy to improve the quality of media streaming, e.g., [28, 60,94,95,111,115].

Additional studies have been performed to understand YouTube’s characteristics.

Cha et al. performed an extensive study of video view statistics on Youtube [27].

Gill et al. studied the usage patterns and video characteristics on YouTube using

data from the network edges in [51]. In [52], they further studied user sessions on

YouTube. Results from this analysis motivated us to investigate the prefetching

approach since they were the first ones to show that users spend extended periods

of time on YouTube, often watching more than one videos. In [99], Saxena et al.

analyzed the service delay for YouTube and other user-generated video sharing sites.

Their measurement-based analysis showed that the service delay for YouTube is high,

which can lead to a poor playback experience. How often the playback is actually

interrupted is not the focus of their study.

Some studies on the related video recommendation on YouTube and its application

are as follows. Cheng et al. [33] measured the YouTube video graph created by

related video links and found that the graph has a large clustering co-efficient and

exhibits the small world property. A simulation-based evaluation of a P2P video

sharing systems showed that if users use the related video list to browse videos, the

percentage of source peers that have the requested video in their cache is high. Cheng

44

and Liu [32] also proposed a P2P video sharing system to reduce YouTube server load

and suggested using prefetching based on YouTube’s related video list at the clients

of a P2P system to provide smooth transition between videos. Their evaluation

was based on emulated user browsing pattern. The evaluation of their approach

showed that it performs significantly better (55% hit ratio) comparing with a random

prefetching approach (nearly 0% hit rate). How YouTube provides recommendation

of related videos is explained in [36].

In contrast to these previous work, we propose and compare various prefix prefetch-

ing schemes. Our focus is on user-generated video sharing sites, which are inherently

different from VoD systems. We demonstrate the benefit of the prefetching schemes

using real user browsing patterns collected from university network traffic. Our study

demonstrates that in addition to views from users clicking on related video lists,

views from other sources, such as search results, can also benefit from recommen-

dation aware prefetching. Also, the shared interests among network users leads to

50%-100% increase in hit ratios when prefetching is performed at a proxy server at

the network edge. This suggests that recommendation aware prefetching is a good

heuristic for predicting the interest of viewers both individually and across a commu-

nity.

2.8 Conclusion

In this chapter, we show that currently the user experience in watching videos

on video sharing web sites like YouTube is often dissatisfying. In particular, our

experiment indicates that many users experience pauses during a video playout. This

motivated us to propose a prefetching technique which improves the playback quality

and the delay of videos.

The proposed prefetching technique works by predicting a set of videos that are

likely to be watched in the near future and then fetching the prefixes of those videos

45

before they are requested. If a video has been prefetched, a user can access it faster

and the prefetched portion in the buffer can compensate for any insufficient bandwidth

and absorb network delay, resulting in a smooth playout of the video.

Our evaluation of the prefetching approach is based on actual network traces which

capture real user access patterns. We compare the performance of various prefetching

schemes to the traditional caching scheme. We find that applying prefetching at a

proxy while leveraging video relationships extracted from recommendation systems to

select videos to prefetch is the most effective prefetching scheme. Even with limited

storage space, prefetching at the proxy results in a hit ratio twice as high as the

caching proxy. In addition, the combination of caching and prefetching can further

enhance the hit ratio up to 81%. With our work, we have demonstrated that video

relationships based on recommendation systems on video sharing websites can be

effectively used to improve service quality.

46

CHAPTER 3

USING ITEM RELATIONS TO DISCOVER TOP-K MOST
RELEVANT ITEMS

3.1 Introduction

The task of selecting the items that are highly relevant to a given set of items, or

a query item set, is a key component in many applications. One well-known example

of such applications is a personalized recommendation system, in which the goal is

to present the items that will interest a user. This can be achieved by selecting the

items that are the most relevant to those that the user has previously shown interest

in. For marketing, it is useful to know a set of people that will highly influence a

targeted set of customers. Other examples are a personalized search system, which

tries to produce the results that match both a given search query and a known user

preference, and a search query suggestion system, which assists a user in searching

by offering search queries relevant to the user’s past queries.

To obtain a set of highly relevant items, a relevance metric is needed so that

each item can be assigned a score based on their relevance to the query item set.

There are many ways to quantify item relevance. Among them, there is a family of

relevance metrics that define the relevance between items based on the structure of a

graph induced from explicit relationships between items. Using the item relationship

graph, in which each node is an item and each edge represents a relationship between

a pair of items, these relevance metrics consider all the paths connecting between

items in order to quantify their relevance. We refer to this type of relevance metrics

as path-based relevance metrics. Scores computed from well-known algorithms such

47

as Personalized PageRank [59] and Adsorption [18] can be classified as path-based

metrics. These path-based metrics have been shown that they can effectively capture

the relevance between items and provide high-quality results for recommendation and

other applications.

Despite their effectiveness, path-based relevance scores can be time-consuming to

compute. Since the metrics rely on the path structure in an input graph, their com-

putation usually requires several iterations of graph processing. With many queries

to process and the interactive nature of many applications, this can hinder the use

of path-based metrics in real applications, especially when item graphs are very large

as commonly found in today’s applications. One solution is to precompute and store

all the path-based scores between each pair of items, but this approach needs at least

O(n2) storage space where n is the number of items, which is infeasible when n is

large. As a result, the computation needs to be performed as each query is issued.

The goal of this work is to provide an approach to find the set of highly relevant

items on large-scale graphs quickly when a path-based relevance metric is used. We

focus on finding the top-k items that are the most relevant to a given query item

set. Our solution adopts a technique that detects the emergence of the top-k items

during the computation by using score bounds. In adopting such technique, the key to

achieving good performance is to find good score bounds with an efficient computation

of the bounds. For this, we present novel bounds for path-based metrics. Our bounds

are easy to compute and suitable for a distributed setting, allowing it to scale for

massive graphs. Our experiments show that our approach can offer a significant

speedup over the baseline and state-of-the-art approaches and is scalable to large

input sizes.

The rest of this chapter is organized as follows. Section 3.2 introduces path-

based metrics and formally defines the top-k query problem. In Section 3.3, the

top-k emergence detection mechanism is described, followed by generalized bounds

48

for path-based metrics in Section 3.4. Section 3.5 addresses the implementation of the

emergence detection in a distributed environment. The evaluation of our approach is

presented in Section 3.6. Related work is discussed in Section 3.7, and the conclusion

is in Section 3.8.

3.2 Top-k Query with Path-based Relevance Metrics

In the following we introduce path-based relevance metrics and formally define

the top-k query problem.

3.2.1 Path-based Relevance Metrics

In many applications, explicit relationships between items can be observed. For

example, from sales records on e-commerce websites, the co-purchase relationships

among products can be derived. In online social networks, we have the friend rela-

tionships among the users. These observable item relationships can be represented

as a graph where each node in the graph represents an item and each edge represents

a relationship between a pair of items. Path-based relevance metrics quantify the

relevance between items based on the structure of the item graph. A path-based

metric defines a score of each path in the graph, and the relevance between nodes is

defined as the summation of the scores of all the paths connecting the nodes. In the

following, we present well known examples of path-based metrics and then provide

the generalized form of the path-based metrics.

3.2.1.1 Example of Path-based Relevance Metrics

First, we introduce the notations that will be used throughout the paper. Given

a query item set S, a relevance metric quantifies the relevance of each item to S.

Each item in the query set may be associated with a preference value that reflects its

importance or the bias towards the item. We represent the query set S as a query

49

vector s, where s[i] is a positive real preference value of item i. If i is not in the query

set, then s[i] = 0.

Path-based metrics are defined over an item graph G with a set of nodes V and a

set of edges E. An adjacency matrix W of a graph G is a |V| × |V| matrix in which

W [i, j] = 1 if there is an edge from node j to node i; otherwise, W [i, j] = 0. The

edges in the item graph may be associated with a weight to reflect the strength of

the item relationships; in this case, W [i, j] is the weight of the edge from node j and

node i. out(v) is a set of out-neighbors of node v and in(v) is a set of in-neighbors of

node v.

A path of length l is a sequence of l + 1 nodes, (p1, p2, ...pl+1), such that there is

an edge between node pi and pi+1 for all 1 ≤ i ≤ l. p1 is referred to as the source

node of the path, and pl+1 is referred to as the destination node. For a set of nodes

A ⊆ V, pathG(A, i) denotes the set of all paths having node j ∈ A as the source node

and node i as the destination node. We denote a relevance score vector computed for

a query vector s as v. Next, we provide examples of path-based metrics.

Personalized PageRank (PPR): PPR is one of the most well-known algorithms

for personalized recommendation. In a recommendation system’s context, a query

vector is formed based on known user preferences, e.g., the news read by a user or the

products bought by a user. PPR defines the relevance of each item as the stationary

distribution of a random walk on an item graph, which in each step with probability

d randomly moves to an out-neighbor of the current node, and with probability 1− d

jumps to a node in the query set chosen with the probability proportional to their

preferences. The probability d is called the damping factor.

Formally, the PPR score vector, v, can be computed by the following equation:

v = dMv + (1− d)s, where M [i, j] = W [i, j]/
∑

h∈V W [h, j]. The PPR score of node

i can be interpreted in terms of the sum of the score of all paths from the nodes in S

to node i [63] as follows:

50

v[i] = (1− d)s[i] +
∑

(p1,..,pl+1)
∈pathG(S,i)

(1− d)s[p1]
l∏

j=1

dM [pj+1, pj].

Adsorption: Adsorption [18] is a label propagation algorithm proposed for person-

alized recommendation. Given an item graph, the set of label, L, contains a label li

for each node i in the graph. The label distribution over L of a node j is a convex

combination of the label distributions of other nodes. From the random-walk inter-

pretation of the algorithm, the weight of label li at node j depends on the probability

that a random walk on the reverse input graph starting from node j reaches node i

and takes its label li. In each step of the random walk, with the injection probability

dinj it takes the label li of the current node i, and with the continue probability dcont,

it continues walking to a randomly selected neighbor of node i.
Given a query set S, the relevance of a node i can be defined as the sum of the

amount of label li in the label distributions of the query nodes. From the definition,
the relevance score of node i can be given in terms of the sum of the score of all paths
as follows:

v[i] = dinjs[i] +
∑

(p1,..,pl+1)
∈path

GT (S,i)

dinjs[p1]

l∏
j=1

dcont ·W [pj , pj+1]∑
h∈VW [pj , h]

,

where pathGT (S, i) is the set of all paths from node j ∈ S to node i in the reverse

input graph.

Katz Metric: In the Katz metric [67], the proximity between two nodes in a graph

is quantified based on the number of paths between the two nodes, where shorter

paths are considered to be more important. The equation for computing the Katz

proximity is K =
∑∞

l=1 β
lW l, where K[j, i] is the proximity from node i to node j

and β is a damping factor with the value between 0 and 1. Given a query set S, the

relevance of a node i can be defined as
∑

j∈S s[j]K[i, j]. In a path-based form, this

can be given as

v[i] = s[i] +
∑

(p1,..,pl+1)
∈path(S,i)

s[p1]
l∏

j=1

βW [pj+1, pj].

51

PageRank Contribution (CPR): CPR from node i to node j is the amount that

node i contributes to the PageRank score of node j [15]. CPR was proposed for link

spam detection [20, 57], where the top PageRank contributors of a suspicious web

page are examined. A spam web page is likely to have large CPRs from a small set

of nodes, as opposed to a non-spam web page, which usually have small CPRs from

a large number of nodes.

Let M be the transition probability matrix for PageRank. That is, M [i, j] =

W [i, j]/
∑

h∈V W [h, j]. For a set of query nodes S, the CPR vector containing the

CPR from each node to the nodes in S can be computed as v = dMTv + (1 − d)s,

where d is the PageRank damping factor. From the definition, we can compute the

CPR of node i to the query set S in a path-based form as follows:

v[i] = (1− d)s[i] +
∑

(p1,..,pl+1)
∈path

GT (S,i)

(1− d)s[p1]
l∏

j=1

dM [pj, pj+1].

Decayed Hitting Time (DHT): DHT is a random-walk-based proximity measure

on graphs. DHT was proposed as a variation of hitting time to provide more emphasis

on nearby nodes (in terms of the shortest path distance) and to allow for more efficient

computation [55]. Given a query node set S, a transition probability matrix MS is

defined such that MS[j, i] = 0 if i ∈ S, otherwise, MS[j, i] = W [j, i]/
∑

h∈VW [h, i].

A DHT vector containing the DHT from each node in the graph to a set of query

nodes S is defined as v = dMT
S v + s, where d is a decaying factor and 0 < d < 1.

Equivalently, we can give v[i] in terms of the sum of path scores as follows:

v[i] = s[i] +
∑

(p1,..,pl+1)
∈path

GT (S,i)

s[p1]
l∏

k=1

dMT
S [pk+1, pk].

SimRank: SimRank [64] is a similarity measure between two nodes in a graph.

The similarity between two nodes is defined as the average similarity between their

52

incoming neighbors. Cao et al. has proposed Delta-SimRank for computing SimRank

efficiently [26]. Delta-SimRank converts the original input graph G(V,E) to a node-

pair graph G2(V2,E2). For each pair of node a, b in G, there is a node uab in V2.

For each pair of edges (a, c) and (b, d) in G, there is an edge (uab, ucd) in E2. Using

this node-pair graph, the SimRank score between a node pair a, b can be computed

iteratively as

v(t)[uab] =

 1 if a = b

d
|inG2 (uab)|

∑
ucd∈inG2 (uab) v(t−1)[ucd] otherwise,

where t is the iteration number, d is a damping factor, and inG2(uab) is the set of in-

neighbors of node uab in G2. SimRank for a node pair a, b can be given in a path-based

form on G2 as follows:

v[uab] =
∑

(p1,..,pl+1)
∈pathG2 (A,uab)

s∗[p1]
l∏

j=1

d

|inG2(pj+1)|
, (3.1)

where A is a set of nodes uij ∈ V2 such that i = j, and s∗ is a vector of size |V|2 such

that s∗[uij] = 1 if i = j; otherwise, s∗[uij] = 0. With SimRank, given a query node

q ∈ V, the relevance of a node i is the SimRank between q and i, which is v[uqi].

3.2.1.2 Generalized Form of Path-Based Metrics

From the examples of path-based metrics, we identify a generalized form of path-

based metrics as follows:

v[i] = cs[i] +
∑

(p1,..,pl+1)
∈path(S,i)

cs[p1]
l∏

j=1

H[pj+1, pj], (3.2)

where s is a query vector, c is a constant, and H is a non-negative matrix, referred

to as influence matrix. From the equation, we can see that the score of each node i is

53

Table 3.1: List of path-based metrics with their c, H, and type.

Algorithm c H[j, i] Type

PPR 1− d d ·M [j, i] CB

Adsorption dinj
dcont·W [i,j]∑

h∈VW [i,h]
CB

Katz 1 β ·W [j, i] CB
if β < 1

maxu∈V |out(u)|
CPR 1− d d ·MT [j, i] RB
DHT 1− d d ·MT

S [j, i] RB

SimRank 1 d
|inG2 (j)| RB

computed from the sum of the scores of the paths from the query nodes in S to node

i, where the score of a path is computed by multiplying the influence of the edges

along the path according to matrix H.

In Table 3.1, we show the values of c and H for each path-based metric discussed

earlier. Note that for SimRank, the set of source nodes of the paths and the query

vector need to be changed (see Equation 3.1) since we are using the node-pair graph

instead of the original graph. From the table, it can be seen that for all the metrics

listed, each entry of H, i.e., H[j, i], has a damping factor (i.e., dcont for Adsoprtion,

β for Katz, and d for the other metrics) as one of its factors. The damping factor

serves to decrease the score of the paths in each hop. Effectively, the longer paths

contribute smaller scores to the total score of a node. Additionally, despite having

loops in the item graphs, the scores can still converge.

From Equation 3.2, the vector-matrix equation for computing path-based metrics

can be given as

v =
∞∑
l=0

cH ls.

A matrix power series
∑∞

l=0 H
l is convergent if ||H|| < 1 for some matrix norm

|| · || [13]. Accordingly, it is usually the case that either ||H||1 or ||H||∞ is less than 1

to ensure that v converges. The definitions of || · ||1 and || · ||∞, along with the vector

norms used in the rest of this paper, are given in Table 3.2. We refer to the path-

54

Table 3.2: Notations.

Notation Definition/Description

||M ||1 maxj
∑

iM [i, j] (L1 norm of matrix M)
||M ||∞ maxi

∑
jM [i, j] (Infinity norm of matrix M)

||v||1
∑

i v[i] (L1 norm of vector v)
||v||∞ maxi v[i] (Infinity norm of vector v)

based metrics with ||H||1 < 1 as column-bounded (CB) and those with ||H||∞ < 1

as row-bounded (RB). Table 3.1 shows the types of our example path-based metrics.

These properties are used in our bound derivation.

3.2.2 Top-k Query Problem

The problem of our interests is to find the items that are highly relevant to a query

item set when a path-based metric is used to quantify item relevance. We focus on

finding the top-k items that are the most relevant to the given query set, which is a

common problem in many applications. For example, for product recommendations,

there are usually a fixed number of slots to display the products to users, so we need to

select k items that are the most relevant. We formally define our problem as follows.

Top-k Query Problem: Given an item graph G and a query vector s, find the set

of k items that have the highest relevance scores.

To answer a top-k query, a relevance score of every node needs to be computed

and compared. The computation of path-based relevance scores is usually performed

iteratively. It can take a large amount of time for the scores to converge to their final

values, resulting in slow response time to the top-k query. Our observation is that in

fact the final result for the top-k query does not require precise relevance scores. This

provides an opportunity to improve the computation time. If the correct result can be

determined using the intermediate scores during computation, the computation can

terminate early and return the result to the query sooner. The important question

55

is how to check whether the result obtained with the intermediate scores at a given

time is correct. In the rest of this paper, we provide the solution and demonstrate

that our approach helps to decrease the computation time for the top-k query.

3.3 Determining the Emergence of Top-k Nodes with Bounds

In this section, we briefly describe the approach for determining whether the

correct top-k items can be obtained at a given point of time during computation by

using score bounds. This technique has been applied in several solutions for top-k

problems [42,46–48,56]; however, the bounds and their computations vary in different

solutions.

We refer to this process as the top-k emergence test. The top-k emergence test is

performed periodically. When the test returns pass, i.e., when the top-k items can be

determined, the computation can be terminated. The top-k emergence test uses the

upper bounds and lower bounds of node scores. This section assumes that the upper

bound scores and lower bound scores of nodes at time t are known. Later, in Section

3.4 we will address how to compute these bounds.

The emergence test works by maintaining a set of candidate nodes, i.e., nodes

that can potentially be in the top-k set. In each emergence test, the upper bound

scores and lower bound scores are used to prune the nodes from the candidate set.

Assuming that the upper bounds and lower bounds converge to the real scores as

the computation progresses, the size of the candidate set will keep decreasing. When

only k nodes remain in the candidate set, the computation can be terminated since

all the remaining candidates must be the top-k nodes.

Now we describe how the bounds are used to determine the candidate status. Let

v̄(t)[i] and v(t)[i] denote the upper bound score and the lower bound score of node

i at time t, respectively. Let i1, i2, ..., in be the list of nodes sorted descendingly by

their lower bound scores at time t. We know that the scores of the top-k items must

56

be greater than or equal to the lower bound score of node ik, v(t)[ik]. From this idea,

we have a necessary condition for a node to be in the top-k set as follows.

Candidate condition: A node i in the top-k set must satisfy v̄(t)[i] ≥ v(t)[ik].

We refer to v(t)[ik] as a threshold score. With the candidate condition, we use the

upper bound score of each node to check whether the node can potentially be the

top-k nodes. Any node with an upper bound score lower than the threshold score

can be pruned off the candidate set.

In each top-k emergence test, node pruning is performed, and we check the number

of remaining candidates. If the size of candidate set is k, the emergence test is a pass

and the results can be returned to users. It can be seen that the lower bounds and

upper bounds of node scores are the essential components of the emergence test. In

the next section, we describe how the bounds can be obtained.

3.4 Score Bounds

The top-k emergence test described in the previous section can be used with any

types of computation of path-based scores as long as the upper bounds and lower

bounds of the scores can be computed during the computation. We propose to use

the emergence detection mechanism with Asynchronous Accumulative Computation

(AAC) [5], with which path-based scores can be computed efficiently and the bounds

of node scores can be easily obtained. In the following, we introduce AAC for path-

based metrics and then present how to compute the upper bounds and lower bounds

of node scores when AAC is performed.

3.4.1 Asynchronous Accumulative Computation

From Section 3.2.1.2, the generalized form of path-based metrics in a vector-matrix

equation form is v =
∑∞

l=0H
lcs. For clarity, we denote the converged relevance score

with v(∞), while v(t) denotes the relevance score at any time t during the computation.

57

From the equation, path-based metrics can be computed iteratively. Let v(h) denote

the relevance score vector in iteration h. We let v(0) = 0, a zero vector, and in each

iteration h, v(h) is computed as v(h) = Hv(h−1) + cs.

In the above form, v is computed using its value in the previous iteration. Al-

ternatively, the iterative computation can be performed in an accumulative manner,

where the changes of scores in each iteration, denoted by ∆v(h), are computed and

used to update the scores in the next iteration [113]. The accumulative computation

is computed with the following equations:

v(h) = v(h−1) + ∆v(h−1) (3.3)

and ∆v(h) = H∆v(h−1), (3.4)

where v(0) = 0 and ∆v(0) = cs.

To achieve better performance, accumulative computation can be performed in

an asynchronous manner. In asynchronous computation, each node i updates its

v[i] and ∆v[i] independently, and the most recent value of ∆v[i] is always used, as

opposed to using the value from the previous iteration like in the synchronous model.

When node i is selected to be updated, it accumulates ∆v[i] to v[i], triggers the

other nodes j to update their ∆v[j] according to ∆v[i] × H[j, i], and resets ∆v[i]

to zero. At convergence, asynchronous accumulative computation yields the same

results as synchronous computation. The intuition for the equivalence between the

two computation models is as follows. From Equation 3.3 and 3.4, it can be seen that

the change of the score of each node (∆v) in iteration h is computed based on the

changes of the other nodes in iteration h − 1 and then accumulated to v. This can

be viewed as a change of score in each node being propagated to the other nodes and

affecting their scores. Regardless of when the changes are propagated, as long as all

of them are eventually propagated, the scores will approach the correct values. More

58

details on AAC and the formal proof of the equivalence between asynchronous and

synchronous computation can be found in [5].

AAC provides an efficient way to compute the path-based scores. Moreover, its

accumulative nature provides a good basis for deriving the upper bounds and lower

bounds of node scores. Since the scores of nodes keep increasing and approaching

their real values, the lower bounds can be naturally obtained. Also, since the scores

of the nodes are accumulated based on ∆v, the upper bounds can be derived based on

∆v. In the next section, we show precisely how the upper bounds and lower bounds

of node scores can be computed from v and ∆v.

3.4.2 Score Bounds for Asynchronous Accumulative Computation

When AAC is performed, each node i is associated with two values, v[i] and

∆v[i]. Given the vectors v and ∆v from the computation at time t, denoted by v(t)

and ∆v(t), we present a lower bound and three different upper bounds that can be

computed from these intermediate values.

3.4.2.1 Lower Bound

In AAC, we repeatedly propagate the change of a node score (∆v[i]) to its neigh-

bors, who then accumulate the changes their scores. An entry H[j, i] in the influence

matrix H indicates the factor of how much ∆v[i] affects the score of node j (as in

Equation 3.4). Since H is a non-negative matrix, the change of a node score, ∆v(t),

is always positive, which means a node’s score is non-decreasing. Therefore, we can

directly use v(t)[i] as the lower bound score of a node i, as stated in Definition 1.

Definition 1 (Lower bound). At time t, the lower bound score of node i, v(t)[i] is

defined as follows:

v(t)[i] = v(t)[i]. (3.5)

Theorem 1. For any node i at any time t, v(t)[i] ≤ v(∞)[i].

59

3.4.2.2 Upper Bound

To obtain the upper bound score of node i, we first quantify how much more ∆v

node i will receive after time t if the computation continues until convergence. We

denote this amount by d(t)[i]. In other words, d(t)[i] is the distance from v(t)[i] to its

converged value v(∞)[i], i.e., d(t)[i] = v(∞)[i] − v(t)[i]. To derive d(t)[i], we suppose

that after time t every node is updated synchronously in iterations. Thus, d(t)[i] is

the sum of ∆v that node i receives in iteration 0, 1, 2, ..., which can be computed with

Equation 3.4. Lemma 1 provides the formal equation for computing d(t)[i].

Lemma 1. d(t)[i] =
∑∞

h=0(Hh∆v(t))[i].

Proof. To derive d(t)[i], suppose that after time t the nodes are updated at the same

time in iterations. According to Equation 3.3, in the kth iteration node i will receive

(Hk∆v(t))[i]. At convergence, node i will receive a total of
∑∞

k=0(Hk∆v(t))[i].

The upper bound of node score can be given in the form of v(t)[i] + d̄(t)[i], where

d̄(t)[i] is the upper bound of d(t)[i]. In the following, we present three upper bounds

obtained from different derivation of d̄(t)[i].

Naive upper bounds

The first upper bound is derived using the properties that d(t)[i] ≤ ||d(t)||1 and

that d(t)[i] ≤ ||d(t)||∞. With these properties, we further derive the upper bound

of ||d(t)||1 and ||d(t)||∞ and use them as an upper bound of d(t)[i] for every node i.

We refer to these bounds as the naive bounds. The naive upper bounds are given in

Definition 2.

Definition 2 (Naive upper bound). At time t, the naive upper bound of node i,

v̄
(t)
NV [i], is defined as follows:

v̄
(t)
NV [i] =

 v(t)[i] + ||∆v(t)||∞
1−||H||∞ if ||H||∞ < 1

v(t)[i] + ||∆v(t)||1
1−||H||1 if ||H||1 < 1

(3.6)

60

Theorem 2. For any node i at any time t, v̄
(t)
NV [i] ≥ v(∞)[i].

Proof. The derivation for when ||H||∞ < 1 is as follows.

v(∞)[i] = v(t)[i] + d(t)[i]

<= v(t)[i] + ||d(t)||∞

= v(t)[i] + ||
∞∑
k=0

Hk∆v(t)||∞

<= v(t)[i] +
∞∑
k=0

||H||k∞||∆v(t)||∞

= v(t)[i] +
||∆v(t)||∞
1− ||H||∞

if ||H||∞ < 1

For the case when ||H||1 < 1, the derivation starts from v(∞)[i] <= v(t)[i] + ||d(t)||1
and continues similarly to the above derivation using the L1 norm instead of the
infinity norm.

l-hop-precise upper bounds

In the naive bounds, the derived upper bound of d(t)[i] is the same for every node

as no specific information of node i is used. The naive bounds can be improved by

computing the exact amount of ∆v that each node will receive in the next l itera-

tions and deriving the upper bound of ∆v that a node will receive in the remaining

iterations. This is equivalent to computing the first l + 1 terms of d(t)[i] as given in

Lemma 1, where l ≥ 0, and deriving the upper bounds of the remaining terms. The

improved bounds, called l-hop-precise upper bounds, are defined in Definition 3.

Definition 3 (l-hop-precise upper bound). At time t, the l-hop-precise upper bound

of node i, v̄
(t)
LHP [i] is defined as follows:

v̄
(t)
LHP [i] =



v(t)[i] +
∑l

h=0(Hh∆v(t))[i]

+||∆v(t)||∞ ||H||l+1
∞

1−||H||∞ if ||H||∞ < 1

v(t)[i] +
∑l

h=0(Hh∆v(t))[i]

+||∆v(t)||1 ||H||
l+1
1

1−||H||1 if ||H||1 < 1

(3.7)

61

Theorem 3. For any node i at any time t, v̄
(t)
LHP [i] ≥ v(∞)[i].

Proof. The derivation for when ||H||∞ < 1 is as follows.

v(∞)[i] = v(t)[i] +
l∑

k=0

(Hk∆v(t))[i] +
∞∑

k=l+1

(Hk∆v(t))[i]

<= v(t)[i] +
l∑

k=0

(Hk∆v(t))[i] + ||
∞∑

k=l+1

(Hk∆v(t))[i]||∞

<= v(t)[i] +

l∑
k=0

(Hk∆v(t))[i] +

∞∑
k=l+1

||H||k∞||∆v(t)||∞

= v(t)[i] +
l∑

k=0

(Hk∆v(t))[i] + ||∆v(t)||∞
||H||l+1

∞
1− ||H||∞

if ||H||∞ < 1

For the case when ||H||1 < 1, the theorem can be derived similarly using the L1 norm
instead of the infinity norm.

Computing the l-hop-precise upper bounds of every node requires O(l|E|) work

where |E| is the number of edges in the graph. To limit the overhead of computing

the bounds we let l = 1, resulting in the 1-hop-precise bound shown in Definition 4.

Definition 4 (1-hop-precise upper bound). At time t, the 1-hop-precise upper bound

of node i, v̄
(t)
1HP [i] is defined as follows:

v̄
(t)
1HP [i] =



v(t)[i] + ∆v(t)[i] +H∆v(t)[i]

+||∆v(t)||∞ ||H||2∞
1−||H||∞ if ||H||∞ < 1

v(t)[i] + ∆v(t)[i] +H∆v(t)[i]

||∆v(t)||1 ||H||21
1−||H||1 if ||H||1 < 1

(3.8)

Global-score-based upper bound

Although the l-hop-precise upper bounds provide improvement over the naive

bounds, both of these bounds do not take into account the structure of the influence

62

between nodes embedded in H. Our third derivation of the upper bounds utilizes

such the structure.

For this third upper bound, each node records a single precomputed value of ∆v

it receives when every node i is initialized with ∆v(0)[i] = 1. We refer to this value

as a global score of a node. Given a snapshot of a computation at time t, to obtain

the upper bound scores, ∆v[i] of each node i is bounded by ||∆v(t)||∞. Thus, we can

obtain the upper bound of ∆v a node will receive by scaling the node’s global score

according to ||∆v(t)||∞. We refer to this bound as global-score-based upper bound.

Definition 5 and Definition 6 provide formal definitions of the global scores and

the global-score-based upper bound.

Definition 5 (Global score). A global score of node i, vglobal[i], is defined as vglobal[i] =

(
∑∞

h=0H
h1̃)[i], where 1̃ is a vector where every entry is equal to 1.

Definition 6 (Global-score-based upper bound). At time t, the global-score-based of

node i, v̄
(t)
GB[i] is defined as follows:

v̄
(t)
GB[i] = v(t)[i] + ∆v(t)[i] + ||∆v(t)||∞(vglobal[i]− 1) (3.9)

Theorem 4. For any node i at any time t, v̄
(t)
GB[i] ≥ v(∞)[i].

Proof. From Lemma 1,

v(∞)[i] = v(t)[i] +
∞∑
k=0

(Hk∆v(t))[i]

<= v(t)[i] + ∆v(t)[i] + (
∞∑
k=1

Hk∆v(t))[i]

<= v(t)[i] + ∆v(t)[i] + (
∞∑
k=1

Hk||∆v(t)||∞~1)[i]

= v(t)[i] + ∆v(t)[i] + ||∆v(t)||∞(
∞∑
k=1

Hk~1)[i]

= v(t)[i] + ∆v(t)[i] + ||∆v(t)||∞(vglobal[i]− 1)

63

To use the global-score-based upper bound, vglobal should be precomputed and

stored. Computing vglobal can be done in a reasonable time even for massive graphs

by utilizing a distributed system, as shown in our experiment in Section 3.6.1.4.

Furthermore, the space requirement for storing the global scores is only O(|V|).

It is clear that the 1-hop-precise bound is tighter than the naive bound. However,

it is not obvious whether the global-score-based bound is better than the 1-hop-precise

bound. In the following theorem, we show that for a row-bounded path-based metric,

if every row of H sums to a constant z < 1, the global-score-based bound is equivalent

to the 0-hop-precise bound.

Theorem 5. If every row sum of H is equal to a constant z, where z < 1, then

v̄
(t)
GB[i] = v̄

(t)
0HP [i].

Proof. Let H be an influence matrix such that every row H sums to z < 1. We have

that H l1̃[i] = zl. From Definition 5, we have vglobal[i] = 1 + z + z2 + ... = 1
1−z for

all node i. Using Definition 6, we have v̄
(t)
GB[i] = v(t)[i] + ∆v(t)[i] + ||∆v(t)||∞(z

1−z).

Since every row of H sums to z, it follows that ||H||∞ = z. According to Definition

4, we have v̄
(t)
0HP [i] = v(t)[i] + ∆v(t)[i] + ||∆v(t)||∞(z

1−z). Therefore, we have proved

that v̄
(t)
GB[i] = v̄

(t)
0HP [i].

All the row-bounded path-based metrics in our examples, including DHT, CPR,

and SimRank, have this property. Therefore, for all these metrics, the 1-hop-precise

bounds are better than the global-score-based bounds. For column-bounded path-

based metrics, we compare the quality of the bounds through experiments in Section

3.6.

Convergence of the Bounds To guarantee that the top-k emergence test will even-

tually become successful, the lower and upper bounds of the scores should converge

64

to the exact scores. Zhang et al. [5] has proven that with accumulative computation,

v(t) converges to the exact score. Thus, it follows that our lower bound, which is

equal to v(t)[i], also converges. The convergence of v(t) also implies that ∆v(∞)[i] = 0

for every node i. With this property, according to Definition 2, 3, and 6, we have that

v̄
(∞)
NV [i] = v̄

(∞)
LHP [i] = v̄

(∞)
GB [i] = v(∞)[i]. That is, the three upper bounds also converge

to the exact scores.

3.4.3 Prioritized Node Update Scheduling

As mentioned in Section 3.4.1, nodes are selected to update their values inde-

pendently in AAC. There are different ways to determine how the nodes should be

selected for an update. One basic scheme is round-robin scheduling, in which the

nodes are selected in a circular order. Alternatively, prioritized scheduling can be

used, in which nodes with high ”priority” are selected to be updated first. Intuitively,

for the best performance, the nodes that will contribute the most to the completion

of the computation should have higher priority.

For top-k query computation, the computation completes when the emergence

test returns true. The success of the emergence test depends on the tightness of

the upper bound and lower bound of the scores. When the bounds are tight, more

nodes can be marked off as a non-candidate. Considering the bounds proposed in

the previous section, it can be seen that each node’s upper bound and lower bound

depend on its individual values, which are v[i] and ∆v[i], and the globally aggregated

values, which are ||∆v||1 and ||∆v||∞. Since we want to make the bounds as tight

as possible for every node, we should make ||∆v||1 and ||∆v||∞ small because these

values are commonly used to compute the upper bounds for every node. Accordingly,

nodes with the highest ∆v should be updated first so that ||∆v||1 and ||∆v||∞ will

decrease at a faster rate. Therefore, for top-k query computation, the priority of

65

node i for prioritized scheduling should be ∆v[i]. The benefit from using prioritized

update scheduling is evaluated in Section 3.6.

3.4.4 Top-K Query with Bounds based on Prioritized Asynchronous Ac-

cumulative Computation

The top-k query algorithm using bounds based on AAC is shown in Algorithm 1.

The algorithm maintains the top-k candidate nodes in the set C, which is initialized to

be all the nodes in the graph excluding the query nodes (line 1). After initialization,

the algorithm can be divided into two phases that are executed alternately until the

candidate set has k nodes. The first phase (line 5-12) is for updating the score of nodes

according to Equation 3.3 and 3.4, where the nodes are selected to be updated based

on their priority (line 5). The second phase (line 14-20) is for performing the top-k

emergence test. Although in this algorithm the two phases are performed alternately,

in practice to avoid performing the termination check too often, we only execute the

termination check periodically at a fixed period of time.

3.5 Detecting Top-k Nodes Emergence in Distributed Com-

putation

This section discusses the implementation of the top-k emergence detection mech-

anism in a distributed setting. First, we describe performing asynchronous accumu-

lative computation in a distributed setting. Then, we discuss the modification of the

bounds from Section 3.4 for distributed computation. Finally, we explain the details

of the implementation of distributed top-k emergence test.

3.5.1 Distributed Asynchronous Accumulative Computation

In distributed computation, there are multiple processors. We designate one pro-

cessor as a master to control the flow of the computation. The other processors are

referred to as workers. To perform asynchronous accumulative computation, nodes

66

Algorithm 1 Top-k query

Input: G(V,E), item graph; S, query node set; s, query vector; k, the number of top nodes to be
found;

Output: a set of top-k items
1: C← V− S /*initialize candidate set*/
2: For all i ∈ V, v[i]← 0 and ∆v[i]← cs[i]
3: while |C| > k do
4: /*update node scores*/
5: P← a set of ρ|V| nodes with the highest ∆v
6: for all i ∈ P do
7: v[i]← v[i] + ∆v[i]
8: for all j ∈ out(i) do
9: ∆vs[j] = ∆vs[j] + ∆vs[i] ·H[j, i]

10: end for
11: ∆vs[i]← 0
12: end for
13: /*termination check*/
14: lk ← the kth largest v[i]
15: for all i ∈ C do
16: v̄s[i]← upper bound of node i according to Def. 2, 3, or 6.
17: if v̄s[i] < lk then
18: remove i from C
19: end if
20: end for
21: end while
22: return C

from an input graph are partitioned so that each worker is responsible for a subset

of nodes of equal size. In this paper, we assume the nodes are partitioned by a hash

function using node IDs as input. Other partitioning schemes can also be applied.

Each worker stores the information about the nodes it is responsible for, referred to

as its local nodes. The information associated with node i includes v[i], ∆v[i], and

the influence from node i to the other nodes (i.e., column i of matrix H, as defined

in Section 3.2.1.2).

During the computation, each worker selects its local nodes to update based on an

update scheduling policy. If an update of a local node affects the value of a non-local

node, the corresponding ∆v is sent to the worker responsible for that node. The mas-

ter periodically collects the progress statistics from the workers and determines the

termination of the computation. If the scores are to be computed until convergence,

the master determines the termination by computing ||∆v||1 from the local statistics

67

sent from the workers. When the value ||∆v||1 is below a user-defined threshold, the

computation will be terminated. When the top-k emergence test is used, the master

determines the termination based on the number of remaining candidates sent from

the workers. The details of this mechanism are provided in Section 3.5.3.

From the above description, it can be seen that the use of non-local nodes’ infor-

mation at a worker will incur communication overhead and should be avoided. Next,

we analyze the bounds proposed in Section 3.4 and propose a modification to reduce

such an overhead.

3.5.2 Bounds for Distributed Computation

In the top-k emergence test, the upper bound score of each node needs to be

computed to determine whether it is a candidate node. We classify the values used

for computing the bounds of node i into three types as follows.

1. Local values. These values includes all the values specific to node i, stored the

the worker responsible for node i.

2. Remote values. These are the local values of the other nodes j 6= i.

3. Global statistics. These are the values computed using the local values of every

node, e.g., the sum of ∆v.

Since each worker performs the upper bound score computations for its local nodes,

to avoid communication overhead it is better that the upper bound computation of a

node does not rely on remote values. For the global statistics, while they have to be

computed using the values of every node, the computation of all the global statistics

needed by our upper bounds can be done by first computing local statistics on each

worker and then aggregating the local statistics at the master. Additionally, a single

transfer of the global statistics can be used for computing the bounds for every local

node on a worker. Therefore, they incur only small communication overhead. In the

68

following, we describe our modification of the bounds to eliminate the use of remote

values.

First, we consider the naive bound and the global-score-based bound. Both of

these bounds rely only on a node’s local values and global statistics. Therefore, no

further modification is needed for these two bounds.

Next, we consider the 1-hop-precise bound (Definition 3). The term (H∆v(t))[i]

requires ∆v of the in-neighbors of node i. This can incur large communication over-

head; therefore, we provide a relaxed version of the 1-hop-precise bound, which allows

it to be computed more efficiently in a distributed setting.

The modified bound is obtained by using an upper bound for the term (H∆v(t))[i],

instead of using its exact value. The exact value of (H∆v(t))[i] is computed by

multiplying ∆v of each in-neighbor j of node i to H[i, j], and then summing the

products from all the in-neighbors. As we aim to use only the local values and global

statistics for the bound computation, there are two alternative upper bounds for this

amount.

First, we can bound ∆v at every in-neighbor of i using the current maximum

∆v, i.e., ||∆v(t)||∞. The global statistics ||∆v(t)||∞ is then used in place of the in-

neighbors’ ∆v, eliminating the need for the in-neighbor’s information. This is given

formally in Lemma 2.

Lemma 2. (H∆v(t))[i] ≤ ||∆v(t)||∞
∑

j H[i, j].

Proof.

(H∆v(t))[i] =
∑
j

H[i, j]∆v(t)[j] <=
∑
j

H[i, j]||∆v(t)||∞

Second, instead of focusing on what each node receives from incoming neighbors,

we can compute the maximum possible contribution from each node j to any other

node. Then, the sum of the maximum contribution from every node is the upper

69

bound of how much a node can receive from the other nodes. The sum of the maximum

contribution from every node is considered to be one of the global statistics since it is

computed once from the values of every node and then used by every node. Lemma

3 provides a formal statement for this upper bound.

Lemma 3. (H∆v(t))[i] ≤
∑

j ||H∗,j||∞∆v(t)[j], where H∗,j is the column j of matrix

H.

Proof.

(H∆v(t))[i] =
∑
j

H[i, j]∆v(t)[j] <=
∑
j

||H∗,j ||∞∆v(t)[j]

Using the above lemmas, the term (H∆v(t)[i]) in the 1-hop-precise bound is re-

placed with the minimum between the two of its upper bounds. We refer to the

resulting bound as the 1-hop-approx bound. The proof for Lemma 2 and Lemma 3

can be found in in [70].

3.5.3 Distributed Top-k Emergence Test

The top-k emergence test works by checking the number of candidate nodes pe-

riodically. To divide the workload among the workers, we let each worker check the

candidate status of its local nodes. For determining the candidates, each worker

needs the threshold score and a set of global statistics used for computing the upper

bound scores of the local nodes. The threshold score, i.e., the k highest v(t)[i], and

the required global statistics, including
∑

j ||H∗,j||∞∆v(t)[j], ||∆v(t)||∞, ||∆v(t)||1, can

be computed in a distributed setting efficiently by letting the master aggregate the

local statistics from the workers and distribute the global statistics to the workers.

However, to obtain the correct global statistics, the local statistics from the workers

have to be computed from the same snapshot of values.

To satisfy the above requirement, we divide the top-k emergence test into three

phases. In Phase 1, we synchronize the workers to ensure the same snapshot of values.

70

Phase 2 involves computing the global statistics (including the threshold score). Phase

3 is for computing the number of candidates to determine the emergence of the top-k

nodes. The details of each phase is give as follows.

Phase 1: Prepare

• The master broadcasts a PREPARE message to the workers.

• Upon receiving the PREPARE message, each worker stops updating the nodes,

applies all the ∆v received from the other workers, and sends the READY

message to the master.

• The master collects the READY message from every worker.

Phase 2: Compute statistics

• The master broadcasts a START message.

• Upon receiving the START message, each worker computes the local statistics

from its local nodes and sends the values to the master.

• The master aggregates the local statistics and broadcasts the global statistics.

Phase 3: Count candidates

• When each worker receives the global statistics, it determines the candidacy of

its local nodes and reports the number of candidates back to the master. Then,

it resumes updating the nodes.

• The master computes the total number of candidates and determines termina-

tion.

71

3.5.4 Performance Optimization

In this section, we discuss optimization techniques that can be applied to improve

the performance of the system.

Maintaining Visited Node Set. The first technique aims to reduce the workload

in computing the local statistics and in extracting the nodes with high priority to

update the scores at each worker. Let the number of nodes at each worker be nw. For

computing the local statistics, each worker needs to iterate over all its local nodes,

which takes O(nw). Similarly, to extract the nodes with high priority, we adopt a

sampling-based approach from [5], which also takes O(nw). However, we observe that

by using the top-k emergence detection, we can find the top-k nodes quickly and

thus it is common that a large portion of nodes in the graph have not received any

∆v when the computation terminates. It is inefficient to include these nodes when

computing the statistics and scheduling node updates. To improve performance,

we let each worker maintain a set of visited nodes, containing the nodes that have

received ∆v during the computation. When computing the statistics and scheduling

node updates, only the nodes in the visited set are iterated. This helps to reduce the

work in the two tasks, especially when the number of query nodes are small relative

to the number of nodes in the graph.

Early Termination of Candidate Counting. The second technique is used to

reduce the work performed during the candidate counting phase. We consider the

fact that to determine the termination, the master only needs to know whether the

number of total candidates exceeds k, not the exact number of candidates. Therefore,

when a worker is counting the candidates, as soon as it finds that the number of

local candidates exceeds k, it can report the number of candidates as k without

having to check all the nodes. Therefore, if the top-k still cannot be identified, the

termination check can be completed in a short time, and the workers can continue on

with performing the score updates.

72

3.5.5 Complexity Analysis of Top-k Emergence Test

Here we discuss the complexity of the work introduced by using the top-k emer-

gence test in comparison to performing a traditional convergence check. Let the

number of workers in the system be w. Each worker is responsible for |V|/w nodes.

The traditional convergence check requires computing the sum of ∆v of every node

(||∆v||1). This is executed by having each worker compute the sum of ∆v of its local

nodes and send the local sum to the master. The workload at the worker is O(|V|/w)

and the workload at the master is O(w) for aggregating the local sums.

In a top-k emergence test, the first task is to compute all the global statistics and

the threshold score. All the global values can be computed in the same way as in the

traditional convergence check. To compute the threshold score, i.e., the kth highest

v[i], each worker first finds its local k highest v[i]’s and send them to the master. A

QuickSelect algorithm can be used for this purpose, which requires an average work

of O(|V|/w) at each worker. Then, the master selects the kth highest values among

the (k ·w) values sent from w workers. This requires O(kw) on an average case. The

second task is to count the candidates, in which each worker scans its local nodes and

checks their candidate status. The work at each worker is O(|V|/w).

In total, the work at each worker for performing one top-k emergence test is

O(kw) + O(|V|/w). The workload of O(kw) at the master is an addition to the

workload of the traditional convergence test. In practice kw � |V|/w; therefore, the

work is dominated by the computation at the workers.

3.6 Evaluation

We present the evaluation of our approach in this section. We compare the per-

formance with baseline approaches and evaluate the scalability and accuracy of the

results obtained from our approach.

73

3.6.1 Preliminary

First, we review the approaches in our evaluation and describe our experimental

setup, the dataset, the performance metric, and the preprocessing in our experiments.

3.6.1.1 Baseline and Evaluated Approaches

We implement the proposed top-k emergence detection by modifying Maiter [5], a

framework for distributed asynchronous accumulative computation. Maiter originally

determines the termination of a computation by checking ||v||1 or ||∆v||1 against a

predefined threshold value. We replace the termination check with the top-k emer-

gence test as described in Section 3.5.3.

We implement three versions of the top-k emergence test using the three upper

bounds proposed in Section 3.4 and 3.5 to compare their performance. The three

upper bounds are the naive bound, the 1-hop-approx bound, and the global-score-

based bound. We refer to each version of the implementation as M-Naive, M-1Hop,

and M-Global, respectively.

As a baseline, we use the power iteration method to compute the full scores of the

nodes. The termination threshold is set so that ||v−v∞|| < 10−9, as suggested in [87].

Furthermore, we compare our algorithm with two state-of-the-art algorithms, the al-

gorithm proposed by Gupta et al. based on the Basic Push algorithm (BPA) [56],

denoted by kBPA, and Castanet [47]. Both of these approaches are proposed for

Personalized PageRank in a context of a single machine computation. The two algo-

rithms also use score bounds to derive the top k nodes, but the bounds are different

from ours. kBPA derives the bounds of the nodes based on the BPA algorithm. kBPA

iteratively refines the bounds of the nodes based on a random walk on a subgraph of

the item graph G.

74

3.6.1.2 Experimental Setup

The single-machine experiments are performed on a machine with an Intel Xeon

E5607 2.27GHz CPU with 4 GB memory. The distributed experiments are performed

on Amazon EC2. We utilize the medium instances, each of which having 2 EC2

compute units and 3.75 GB memory. The number of instances used ranges from 10

to 80. Our configuration runs one worker process on each instance. Nodes in an input

graph are partitioned among workers using a hash-based partitioning. If not stated

otherwise, the damping factor d used in the experiments is set to 0.8.

3.6.1.3 Datasets

Our dataset consists of real-world graphs from different domains and synthetic

graphs. The statistics of the graphs are shown in Table 3.3. We generate synthetic

graphs with different number of nodes to evaluate the scalability of our approach.

The synthetic graphs are generated with a log-normal in-degree distribution with

the parameters µ = −0.5 and σ = 2.3. For Adsorption, which runs on weighted

graphs, the float weights for the edges are generated with the parameters µ = 0.32

and σ = 0.8. The parameters used for graph generation are extracted from real-world

graphs [5]. The size of the synthetic graphs ranges from 10 million nodes to 1 billion

nodes. In all the synthetic graphs, the number of edges is approximately 8 to 9 times

of the number of nodes.

The queries used in our experiment are generated using a random jump sampling

strategy [80]. We believe the random jump should provide a query set similar to

real-world queries, where the query nodes are not completely random, but somewhat

related. To generate a query set with qn nodes, a seed node is randomly selected as

a starting point of a random walk. Then, in each step, the random walk moves to a

random out-neighbor of the current node with probability d or jumps to a random

node with probability 1− d. The nodes visited by the random walk are added to the

75

Table 3.3: Datasets.

Graph Nodes Edges

Arxiv GR-QC [81] 5K 14K
Amazon co-purchase (Amz) [79] 400K 3.3M

Web graph (Web) [82] 870K 5.1M
Pokec social network (Pokec) [106] 1.6M 30M

LiveJournal social network (LJ) [16] 4.8M 68M
Web graph UK 2005 (UK05) [24] 39M 936M
Web graph IT 2004 (IT04) [24] 41M 1.15B

Synthetic graphs (Syn) 10M to 1B 90M to 9B

query set. The random walk stops when the size of the query set is equal to qn. We

set d as 0.8 and the query size ranges from 10 to 100. Each experiment is run with

30 randomly generated queries.

3.6.1.4 Graph Preprocessing

Each graph in our experiment is preprocessed to compute the information needed

in computing the upper bounds. For the 1-hop-approx bound, the total incoming

influence for every node i (
∑

j H[i, j]) and the maximum outgoing influence (||H∗,j||∞)

for every node j are computed. These can be obtained quickly by scanning the graphs

once. To compute the global scores for the global-score-based bound, we use the

original Maiter framework and set the computation to terminate when ||∆v||1 ≤

10−10. In Figure 3.1, we show the computation time of the global scores along with

the number of workers used in the computation. It can be seen that the global scores

can be obtained within a reasonable time (less than two hours) by utilizing multiple

workers. For a billion-node graph (Syn1B), we can obtain the global scores within

only two hours by using 80 workers.

76

1E+00

1E+01

1E+02

1E+03

1E+04

Amz
(1)

Web
(1)

Pokec
(4)

LJ
(4)

UK05
(30)

IT04
(30)

Syn1B
(80)

P
re

pr
oc

es
si

ng
 ti

m
e

(s
)

Figure 3.1: Global score computation time. The number of workers used for each
graph is shown in the parentheses.

0.1

1

10

100

1000

Amz Web Pokec LJ

R
un

ni
ng

 ti
m

e
(s

)

M-Naïve
M-1Hop
M-Global

Figure 3.2: Running time of different bounds

3.6.2 Performance Comparison

In the following experiments, we evaluate our approach on a single machine to

compare the performance of the bounds and to compare with the state-of the-art

approaches.

First, we compare the performance when different upper bounds are used. Figure

3.2 shows the running time for PPR when the query set size, |S|, is 10 and k is 10. It

can be seen that M-1Hop performs slightly better than M-Naive, with the maximum

speedup of 1.9 times over the M-Naive approach. On the other hand, M-global can

obtain the results 3 to 105 times faster than M-Naive and M-1Hop. This result shows

that the global-score-based bound is the tightest among the three upper bounds.

77

1

10

100

1000

Adsorption DHT CPR SimRank
R

un
ni

ng
 ti

m
e

(s
)

M-Naïve
M-1Hop
M-Global

Figure 3.3: Bound performance comparison for different algorithms

In Figure 3.3, we show the performance comparison of the bounds for Adsorption,

DHT, CPR, and SimRank. Note that for the row-bounded metrics (DHT, CPR,

and SimRank), we only compare M-Naive and M-1Hop since the global-score-based

bounds are equivalent to the 0-hop-precise bounds for these metrics (see Theorem

5). We use synthetic graphs with 10 million nodes for the first three metrics. For

SimRank, which requires computation on the converted node-pair graph, we use a

real world graph, Arxiv GR-QC [81], which results in a node-pair graph with 12.5

million nodes and 400 million edges. First, for Adsorption, which is column-bounded

like PPR, it can be seen that M-Global provides a significant speedup in computation

time (72 to 82 times faster), comparing to M-Naive and M-1Hop. For the three row-

bounded metrics, M-1Hop performs slightly better than M-Naive, providing up to 1.5

times speedup. We observe that with the row-bounded metrics, the top-k items can

be identified much faster with the naive and 1-hop-approx bounds, comparing to the

column-bounded metrics with similar input size.

Next, we compare the performance of our approach with the baseline, Power, and

the state-of-the-art approaches, kBPA and Castanet. The result is shown in Figure

3.4. It can be seen that M-Global outperforms the other algorithms on all the graphs

and with both settings of the damping factor d, 0.5 and 0.8. The speedup of M-Global

ranges from 17 to 66 times over Power, 3 to 404 times over kBPA, and 2 to 283 times

78

over Castanet. We observe that when the damping factor is large (e.g., d = 0.8) or

when the graph is dense (i.e., Pokec), kBPA and Castanet can take longer running

time than the baseline, Power. In these two scenarios, M-Global provides a major

speedup. For example, on the Pokec graph, with d = 0.8, M-Global is 404 times faster

than kBPA, 283 times faster than Castanet, and 27 times faster than Power.

There are two major reasons for the better performance of M-Global. First, M-

Global utilizes the precomputed global scores coupling with the prioritized AAC, which

provide tighter bounds than those used in kBPA and Castanet. Second, kBPA and

Castanet have expensive overhead when the damping factor is large and when the

graph is dense. In kBPA, a heap is maintained to select the node with the highest

impact to update each time. When the damping factor is large or with a dense

graph, more nodes are visited and put into the heap, and thus maintaining the heap

is costly. In kBPA, the bounds in iteration i are computed based on i-step random

walk probability where the random walk starts from the query nodes. The more nodes

visited in the ith step of the random walk, the more expensive the computation. When

the graph is dense, many nodes are visited in each step of the random walk. When

the damping factor is large, Castanet needs to perform more iterations, where more

and more nodes are visited in the later iterations. Therefore, in both cases, Castanet

has expensive overhead in computing the bounds.

3.6.3 Effectiveness of Prioritized Update Scheduling

To measure how much prioritized update scheduling affects the performance,

we compare the running time when the round-robin scheduling and the prioritized

scheduling are used. Scheduling is performed in rounds at each worker. In each round,

the top p fraction of nodes with the highest priority are scheduled for the update,

where p is the computation parameter. When p = 1, the scheduling is performed in

a round-robin fashion.

79

0.01

0.1

1

10

100

1000

Amz Web Pokec

R
un

ni
ng

 ti
m

e
(s

)

Power kBPA
CastaNet M-Global

(a) d=0.5

0.01

0.1

1

10

100

1000

Amz Web Pokec

R
un

ni
ng

 ti
m

e
(s

)

Power kBPA
CastaNet M-Global

(b) d=0.8

Figure 3.4: Performance comparison with state-of-the-art approaches

0.1

1

10

100

1000

1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

R
un

ni
ng

 ti
m

e
(s

)

Fraction of nodes updated in each round

Amz Web Pokec LJ

Figure 3.5: Effect of priority settings

Figure 3.5 shows the running time for various settings of p. First, it can be seen

that the running time is significantly smaller when the prioritized scheduling policy

is used, i.e., when p < 1. At the optimal setting of p, prioritized scheduling provides

a speedup of 84 times on the Amazon graph, 60 times on the Web graph, 56 times

on the Pokec graph, and 96 times on the LiveJournal graph over the round-robin

scheduling.

The results also show that if p is too small or too large, the running time can be

worsen. When p is smaller, the node update scheduling needs to be performed more

frequently, which introduces more overhead in finding the top priority nodes. On the

80

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25 30

S
um

 o
f Δ
�

Time

p=1E-03

p=1E-04

p=1E-05

(a) ||∆v||1

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

5 10 15 20 25 30

M
ax

 Δ
�

Time

p=1E-03

p=1E-04

p=1E-05

(b) ||∆v||∞

Figure 3.6: Progress of ||∆v||1 and ||∆v||∞

other hand, as p becomes larger, more nodes with low priority will be updated, which

is inefficient. In our experiments, the optimal p is between 5× 10−4 to 1× 10−3. We

find that this optimal p is much smaller than the optimal value of p for computing

the converged scores, as suggested by Zhang et al. [113], which is approximately

2 × 10−1. To explain why this is the case, in Figure 3.6 we show how the values of

||∆v||1 and ||∆v||∞ change during the computation on the LiveJournal graph with

different settings of p. It can be seen that while a larger p decreases ||∆v||1 faster

(Figure 3.6a), which means the scores of nodes approach the converged scores faster,

a smaller p can decrease ||∆v||∞ faster in a shorter amount of time (compare p = 10−3

and p = 10−4 in Figure 3.6b). On the other hand, setting p too small (e.g., p = 10−5)

may result in slower decrease of ||∆v||∞ as the overhead becomes too large. Since our

global-score-based bounds rely on ||∆v||∞, the optimal p for the LiveJournal graph

is 1× 10−4.

3.6.4 Effect of Number of Query Nodes

The size of a query node set varies in different applications. For example, for a

news recommendation system which uses user view history to create a query, a new

81

0

5

10

15

5 10 15 20 25 30
R

un
ni

ng
 ti

m
e

(s
)

Size of query node set, |S|

Amz Web Pokec LJ

Figure 3.7: Effect of the size of query set on running time

user may have only a few views, while an existing user may have a long history of

news views. We examine how the number of query nodes affects the running time.

The average running time for different query sizes, ranging from 5 to 30 nodes, is

shown in Figure 3.7. It can be seen that the running time grows almost linearly with

the query size. We also observe that the growth rate of the running time is larger for

the Pokec and LiveJournal graphs. Since the two graphs have higher density than

the other graphs, the computation workload increases faster as the number of query

nodes becomes larger.

3.6.5 Ranking Accuracy among the Top-k Items

When presenting the top-k items to users, we usually need to order the items.

For some applications, this ordering among the top-k items is important. For ex-

ample, when showing product recommendation to customers, we may want to put

the items with the highest score in the position that has the highest visibility from

users. We explore two approaches to obtain the order among the top-k items. In

the first approach, we modify the emergence detection to further ensure that correct

ranking among the top-k (according to the converged scores) is obtained before the

computation is terminated. This is achieved by introducing an additional step in the

82

0.1

1

10

100

Amz Web Pokec LJ

R
un

ni
ng

 ti
m

e
(s

) w/o RG
RG

(a) k=10

1

10

100

1000

Amz Web Pokec LJ

w/o RG
RG

(b) k=20

Figure 3.8: Running time with and without ranking guarantee (RG)

emergence detection called rank checking. Rank checking is performed only after the

top-k items are found. Rank checking checks the following condition.

Correct ranking condition: Let i1, i2, ..., ik be the list of top-k items sorted de-

scendingly by their lower bound scores. For all ir, v(t)[ir] >= v̄(t)[ir+1].

With this approach, the computation is continued until the correct ranking con-

dition is satisfied. While this approach guarantees exact ranking among the top-k

items, it requires additional computation time since the condition is stricter than only

identifying the top-k items. In Figure 3.8, we compare the running time for finding

the top-k items with and without ranking guarantee. It can be seen when k is 10,

the running time increases by 1.2 to 3.5 times to guarantee ranking. When k is 20,

the difference in the running time is much greater. The running time increases up

to 7 times on the Pokec graph and 107 times on the Web graph. Additionally, we

observe that the running time required on the Web graph is greater than the Pokec

and LiveJournal graphs, although its size is smaller. This is because for the Web

graph, the score gap among the top 20 nodes are smaller than the other two graphs;

therefore, more computation is required to obtain the correct ranking.

The second approach to rank the top-k items is to order the items based on their

lower bound scores when the original top-k emergence test (without ranking guaran-

83

0

5

10

15

20

0.2 0.4 0.6 0.8 1
R

un
ni

ng
 ti

m
e

(s
)

Number of nodes (billion)

|S|=10

|S|=20

|S|=30

Figure 3.9: Scaling to large input size

tee) is successful. Although this approach does not guarantee the correct ranking, our

experiment shows that it can provide good approximate of the correct ranking, while

the results can be obtained quickly, as shown in the previous experiment. To mea-

sure the ranking accuracy, we compute Spearman’s rank correlation coefficient (RCC)

between the ranking obtained from this approach and the correct ranking (obtained

with the ranking-guaranteed approach described above). The RCC can range from

-1 to 1; the closer the RCC to -1 or 1, the higher the correlation between the two

rankings. Table 3.4 shows the average RCC when k = 10 and k = 20. For all the

graphs and for both values of k, the RCC is between 0.996 and 1. This result shows

that the ranking produced by this approach is highly similar to the correct ranking.

Table 3.4: Accuracy of ranking among the top-k items (measured by RCC).

k Amz Web Pokec LJ

10 0.999 0.996 1 1
20 0.999 0.998 0.999 0.999

3.6.6 Scalability

Large graphs are very common in current real world data, making scalability a

very important property. In this section, we evaluate the scalability of our approach.

84

3.6.6.1 Scalability with Input Size

To study the scalability with the input size, we measure the running time on the

synthetic graphs of varying sizes, ranging from 200 to 1 billion nodes using 80 instances

on Amazon EC2 cloud. In each graph, the number of edges are approximately 9 times

the number of nodes. We set k = 10 and varies |S| from 10 to 30. Figure 3.9 shows

the scaling performance of our approach with different input sizes. It can be seen that

the running time grows almost linearly with the size of the graphs and our approach

can answer top-k queries on a billion-node graph with billions of edges in less than

20 seconds. This result demonstrates that our approach can scale to support large

input efficiently.

3.6.6.2 Scalability with the Number of Workers

We test the scalability of our approach when different numbers of machines are

used. Two large real world graphs, UK05 and IT04, are used as input graphs. The

number of workers is varied from 5 to 30.

Figure 3.10 shows the running time we increase the number of workers from 5 to

30. It can be seen that by increasing the number of workers, the running time can

be reduced. For smaller query sizes, e.g., when |S| = 10, the performance gain from

increasing the number of workers is smaller as there is less work to perform. However,

for larger query sizes, we can leverage additional workers and achieve a significant

speedup.

Additionally, we measure the average time used for each round of the emergence

test as the number of workers increases, as shown in Figure 3.11. The result agrees

with our analysis in Section 3.5.5. Since the work for the emergence test is dominated

by the candidate status check and local statistics computation at each worker, with the

complexity of O(|V|/w), we can see that the average time to perform the emergence

test decreases as the number of workers increases.

85

0

10

20

30

40

50

60

5 10 15 20 25 30

R
un

ni
ng

 ti
m

e
(s

)

Number of workers

|S|=10
|S|=50
|S|=100

(a) UK05

0

10

20

30

40

50

60

70

5 10 15 20 25 30

R
un

ni
ng

 ti
m

e
(s

)

Number of workers

|S|=10
|S|=50
|S|=100

(b) IT04

Figure 3.10: Scaling to a large number of workers

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30

Te
rm

ch
ec

k
tim

e
(s

)

Number of workers

|S|=10
|S|=50
|S|=100

(a) UK05

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5 10 15 20 25 30

Te
rm

ch
ec

k
tim

e
(s

)

Number of workers

|S|=10
|S|=50
|S|=100

(b) IT04

Figure 3.11: Emergence check time vs. the number of workers

86

3.7 Related Work

Despite the effectiveness of path-based relevance metrics, computing path-based

relevance scores can be time-consuming. Among the family of path-based relevance

metrics, Personalized PageRank has received much attention from research commu-

nity. Solutions for obtaining the top-k items for PPR have been proposed. Fujiwara

et al. proposed approaches that store the decomposed PPR matrix and perform prun-

ing during the computation [46,48]. While their approaches can provide answers very

quickly, they require expensive precomputations, which are not clear whether they

scale to massive graphs. In contrast, the precomputation needed in our approach can

be performed on large graphs efficiently in a distributed setting. Gupta et al. [56] and

Fujiwara et al. [47] proposed approaches that do not require precomputation. Similar

to our approach, their approaches are based on node pruning and score bounding,

but the proposed bounds are specific to PPR and different from ours. Fang et al. [42]

proposed a new graph proximity metric based on round trip paths between nodes,

in which path scores in the forward and backward trips are computed similar to

PPR. They proposed a computation framework using the score bounds along with a

distributed solution for scalability.

These existing works provide efficient solutions for obtaining the top-k items for

PPR and its variants. However, they focus only on the specific metric and mostly

address the computation in a single machine setting, which limits their scalability.

While the work from Fang et al. [42] provides a distributed solution, the computation

is performed on a single machine, and the other machines are used as a distributed

graph storage. This solution may work well with a small query set, but applications

with larger graphs and larger query sets can benefit more from using multiple pro-

cessors. In this work, our goal is to provide a generic and scalable approach that

can be applied to speed up the computation of the top-k queries for any path-based

87

metrics. Our distributed platform provides scalability, allowing efficient computation

on billion-node graphs.

Several existing works offer a solution for accelerating full PPR computation. For

example, one solution is to compute an approximation of PPR based on stored short

random walks [17, 44]. A few other approaches are based on approximation of the

input graph [102,107]. Recent work from Maehara et al. provides a fast and accurate

PPR computation based on core-tree decomposition [87]. These approaches for full

PPR computation are orthogonal to the top-k problem. The bound-based technique

for finding the top-k answers may be applied on top of these approaches to find the

top-k answers quickly.

Several frameworks, such as Haloop [25], GraphLab [86], and Maiter [114], are

proposed for computing iterative algorithms in a distributed environment. These

frameworks can be used to compute the path-based relevance scores on large graphs

but are not designed for answering top-k queries. Maiter uses asynchronous accumu-

lative computation (AAC) to achieve fast convergence for iterative algorithms. Our

bounds are derived based on the AAC model. By combining the efficient AAC model

with our bounds and the top-k emergence test, our approach has demonstrated good

performance in computing the top-k items for path-based metrics.

3.8 Conclusion

In this chapter, we propose an approach to accelerate the computation time for

the top-k most relevance item query when path-based metrics are used. The approach

works in conjunction with asynchronous accumulative computation by detecting the

emergence of the top-k items during the computation. This eliminates the need to

compute the converged scores of items, which results in faster computation time. The

proposed approach is generalized for a family of path-based metrics and can be applied

to both a single machine computation and a distributed computation, allowing it to

88

support a very large input graph containing several hundreds of millions of nodes.

Our experimental results show that the proposed method can significantly decrease

the response time for the top-k queries and provide high scalability.

89

CHAPTER 4

SUPPORTING DRUG PRESCRIPTION USING DRUG
AND DRUG PROPERTY RELATIONS

4.1 Introduction

In prescribing drugs, several factors need to be considered to ensure effectiveness

and patient safety, such as interactions among the prescribed drugs, interactions with

the patient’s current medication, and contraindications. In many cases, some side

effects need to be strictly avoided as they could cause serious health conditions or

injuries. In addition, the fact that the presence of some drug properties, such as side

effects, depends on characteristics of the patients, such as age, gender, and genetic

profile, should be taken into account. Having to consider all these complicated factors

can be a huge burden to medical practitioners.

In this work, our goal is to provide a tool to assist practitioners in the process of

drug prescription. To achieve this goal, we develop an approach that allows a user

to query for drugs that satisfy a set of conditions based on drug properties, such as

drug indications, side effects, and drug interactions. For example, for a patient whose

occupation is a driver, a doctor may want to issue a query: Find a drug for fever and

allergy that does not cause drowsiness. Suppose a patient is currently taking some

medicines, Enoxaparin and Aspirin, a query can be: Find a drug for diabetes and a

drug for epilepsy that do not interact with Enoxaparin and Aspirin and do not interact

with each other. Furthermore, the approach allows users to specify patient profiles

and tailors the answers for the given profile. For example, to find a schizophrenia

drug for an elder female patient who has a heart disease, a query can be: Find a drug

for schizophrenia without the side effect of heart failure for a female patient, age 60.

90

In order to answer these queries, it is important that we have comprehensive

drug information. There are currently several drug information sources that are

open to public, such as SIDER2 [9], DrugBank [74], KEGG DRUG [66], and Phar-

mGKB [96]. However, data from these data sources are usually noisy and incomplete.

Our challenge is to be able to provide meaningful answers to the queries despite the

imperfection of the data. There are a few studies that also aim to answer medical

questions (including drug-related questions) and provide decision support on drug

prescription [19, 39, 40]. These works focus on the problem of how to convert raw

data into structured databases and how to translate questions in natural languages

to query languages. In contrast, our focus is to provide high quality answers from

noisy data sources.

Considering the incompleteness and the noisiness of data, traditional query sys-

tems that provide only answers that exactly match the queries according to the data

have several disadvantages. First, these systems can miss some answers that in fact

can satisfy the queries but do not exactly match the query due to the imperfection

of the data. Second, by not considering the possibility of missing data, the answers

returned can be misleading. For example, if the query asks for a drug that does not

interact with a particular drug, drugs that interact with the given drug may also be

given as an answer because their interaction data is incomplete.

To cope with incomplete and noisy data, our approach considers not only the

answers that exactly match the query but also the answers that closely match the

query. We model the problem of answering a query as a subgraph matching problem,

in which drug information is represented as a heterogeneous graph and a query is

represented as a query graph. To rank answers, we propose a score function for

evaluating the quality of answers based on how well they match with the query graph.

Our score function considers the likelihood that there would be an edge between

two nodes in the drug graph; thus, both exact and inexact matches are included

91

in our answer space. We utilize the structure of the drug graph to quantify the

edge likelihood. As it has been shown that the structure of networks that represent

relationships among drugs and drug properties can effectively help to discover novel

drug properties [29, 30, 61, 103–105, 116], we quantify edge likelihood based on the

number of paths between two nodes. However, in contrast to previous works in which

the networks contain limited types of nodes, our drug graph contains various node

types, and our approach takes into account the types of nodes along the paths in

order to leverage the semantics in the heterogeneous drug graph.

We evaluate our network-based approach of quantifying the missing edge like-

lihood. The result shows that our approach outperforms an existing approach that

does not utilize network structure, achieving up to 40% increase of the AUROC value.

Additionally, we develop a prototype of our approach, integrating data from academic

databases, including DrugBank [1], SIDER [9], and KEGG Drug [4], and FDA drug

adverse event reports, and demonstrate the benefits provided by our system through

several example queries.

The rest of this chapter is organized as follows. Section 4.2 provides our prob-

lem definition. Our methodology is presented in Section 4.3. In Section 4.4, we

describe how our approach personalizes answers for specific patient profiles. Section

4.5 describes our drug query system prototype. Section 4.6 presents the evaluation

of our approach. Related work is discussed in Section 4.7. We summarize our work

in Section 4.8.

4.2 Problem Description

We represent drug information aggregated from multiple data sources as a hetero-

geneous graph, i.e., a graph that has nodes of multiple types. Using the drug graph as

a basis, we model the problem of answering queries as a subgraph matching problem.

92

Drug

Side effect

Chemical

Substructure

Pathway

Drug

target

Drug

indication

(drug interaction)

(a) Schema of drug graph

��

Fever (I)

Allergy (I)

Drowsiness (SE)

Nausea (SE)Enoxaparin (D)

(b) Example query graph 1

d� d�

Diabetes (I) Epilepsy (I)

High blood

pressure (SE)
Cartrol (D) Aceon (D)

(c) Example query graph 2

Figure 4.1: Schema of the drug graph and example query graphs. (solid edges:
positive, dashed edges: negative)

In this section, we describe the schema of the drug graph, the query graph, and our

problem.

4.2.1 Drug Graph Schema

Drug information is represented by a graph G(VG, EG, typeG, keyG), where VG is

a set of nodes and EG is a set of edges. typeG is a function that maps a node to a

node type, which is either a drug (D) or a type of drug properties, such as a pathway

associated with a drug (P), a protein that is a target of a drug (T), an indication

of a drug (I), a side effect of a drug (SE), and a chemical substructure of a drug

(CH). keyG is a function that maps a node to a set of keywords that are identifiers or

descriptions of the node. For example, a node v that represents a drug has typeG(v) =

“Drug”, and keyG(v) includes the drug’s generic names and brand names.

The schema of the drug graph is shown in Figure 4.1a. An edge from a drug to

a drug property node (a note of type P, T, I, SE, or CH) represents the fact that the

drug has or is associated with the particular property. An edge between two drug

nodes represents the fact that the two drugs can interact. Notice that the drug graph

includes not only the drug properties expected to be in the queries but also drug

chemical/biological information, such as chemical structures, targets, and pathways.

These nodes allow us to establish relationships among drugs, which are useful for

inferring potential associations between drugs and drug properties.

93

4.2.2 Query Expression

Now we describe queries on the drug graph. A query is represented as a graph

Q(VQ, EQ, typeQ, keyQ). We refer to nodes in the query graph as query nodes. The

query graph follows the same schema as the drug graph, but in contrast to the drug

graph, some nodes may not be assigned a keyword as they represent the information

the user is looking for. Accordingly, we can divide the query nodes into two groups.

(1) Variable node: A variable node represents the information the user wants to

find. The keywords of the variable nodes are not given in the query. (2) Reference

node: A reference node serves as a reference for identifying the variable nodes. Each

reference node has a keyword specified by a user.

Each edge in the query graph has a sign, which can either be positive or negative.

A positive edge means that the user wants the connection to exist between the two

nodes, while a negative edge means there should be no connection between the two

nodes.

We show two example query graphs in Figure 4.1. In Figure 4.1b, the query graph

corresponds to the query: Find a drug for fever and allergy that does not interact

with Enoxaparin and does not cause drowsiness and nausea. In this query graph,

there is one variable node, d1, representing the drug to find. The drug d1 is connected

to the two indications with positive edges. To avoid side effects and interactions,

negative edges are used to connect d1 to the side effect nodes and another drug node.

The query graph in Figure 4.1c is for the query: Find a drug for diabetes and a

drug for epilepsy that do not interact with Cartrol and Aceon, do not interact

with each other, and do not cause high blood pressure. Notice that there are now

two variable drug nodes, d1 and d2, and there is a negative edge between them as we

want to avoid drug interaction between d1 and d2.

In this work, to allow flexibility in query expression, we assume the signs are given

in the query graph. However, for specific applications, the signs may be inferred based

94

on the types of the nodes adjacent to the edges. For example, for drug prescription,

an edge between a drug node and an indication node should always be positive.

4.2.3 Answering Drug Queries

Given a drug graph and a query graph, answering query is to find a subgraph in

the drug graph that matches the query graph. We formally define an answer to a

query as follows. An answer of a query Q(VQ, EQ, typeQ, keyQ) is in the form of a

mapping function f that maps each query node to a node in the drug graph such

that: (1) For each variable node qv, typeG(f(qv)) = typeQ(qv). (2) For each reference

node qr, typeG(f(qr)) = typeQ(qr) and keyG(f(qr)) ∩ keyQ(qr) 6= ∅.

Traditional query systems find exact answers for a given query, which are defined

as follows. An exact answer is an answer f that satisfies the following properties:

(1) For each positive edge e(qi, qj) in EQ, there is an edge e(f(qi), f(qj)) in the drug

graph. (2) For each negative edge e(qi, qj) in EQ, there is no edge between f(qi) and

f(qj) in the drug graph. In this work, to cope with data incompleteness, we consider

both the answers that exactly match the query graph and those that closely match

the query graph. Therefore, the main problems we address are as follows: (1) How

to assign a score to an answer to quantify how well it matches the query? (2) How

to find the top-k answers with the highest scores to present to the users? We present

our solutions to these problems in the next section.

4.3 Methodology

4.3.1 Quantifying Edge Likelihood

Several approaches for predicting drug properties have been proposed, which may

be applied to quantify the edge likelihood between a drug and a drug property. Most of

the approaches apply supervised machine learning techniques, using different feature

sets to represent drugs. In these approaches, for each targeted drug property p, a

95

classifier that determines whether a drug has the property p is trained by using the

drugs known to have property p as positive examples. A state-of-the-art approach

proposed by Liu et al. uses chemical, biological, and phenotypic properties of drugs

as drug features to predict drug side effects [84]. In this approach, each dimension

of a drug feature vector is associated with a drug property p and has a binary value

indicating whether the drug has the drug property p. We refer to this approach as

the fine-grained-feature approach or the FG approach.

While the FG approach has shown great potential in predicting drug properties,

our experiments (Section 4.6) show that its performance degrades when the number of

positive examples of the targeted drug property is small. This is a common problem

when the feature vector is high-dimensional. To improve the predicting performance

for drug properties with small positive samples, we propose a network-based approach,

which uses summarized features instead of fine-grained features to represent drugs.

We describe our network-based approach in the following.

Network-based Approach. The network-based approach utilizes the structure of

the drug information graph to create drug features. Intuitively, in the drug graph,

two nodes that have many paths in-between should be closely related and more likely

to have an edge between them. Thus, given a property node p, we can use the number

of paths between the property node p and a drug node to quantify the likelihood that

the drug will have property p. However, simply using the number of paths may not

be effective. Because the drug graph contains several types of nodes, the paths in

the graph are representing different types of complex relationships. These complex

relationships can have different importance in indicating whether there is an edge

between a given node pair. Therefore, we differentiate the paths by path types so

that different importance levels can be assigned to different path types. A type of

a path is defined from the types of nodes along the path. For example, the path

d1(D)-t1(T)-d2(D)-se1(SE), where d1, t1, d2, and se1 are nodes in the drug graph, has

96

the path type of D-T-D-SE, which represents the relationship where a drug shares a

target with another drug that has a particular side effect.

Our approach uses the closeness between a drug and a targeted drug property

according to a path type m as a feature of the drug. To quantify the closeness

between a drug d and a drug property node p with respect to a path type m, we

consider two metrics:

1. Path count. In this metric, the number of type-m paths between d and p is

used as their closeness.

2. Random walk. This metric is based on a random walk. The closeness of node

d to node p is the probability of being at node d when we perform a random

walk starting from node p and going along the paths of type m. In other words,

in each step of the random walk, only the nodes with the type specified by the

path type m should be visited.

We model the likelihood of an edge between a drug d and a property node p

as a function of the closeness between d and p with respect to multiple path types.

Formally, let M = {m1, ...,mk} be the set of path types. Let cml
(vi, vj) be the

closeness between d and p with respect to path type ml. The likelihood of an edge

between vi and vj, denoted by p(vi, vj), is based on a logistic regression model as

follows.

p(vi, vj) = 1/(1 + e−(β0+β1cm1 (vi,vj)+...+βlcml
(vi,vj))), (4.1)

where β0, ..., βl are the model parameters reflecting the importance of each path type.

Learning Model Parameters. For different types of edges (e.g., drug-side effect

edge or drug-drug edge), the importance of each path type can be different. Further-

more, even for the same edge type, the importance of path types could be different

for each individual drug property. Therefore, we consider two schemes for parameter

learning.

97

1. Global parameter learning: Learn one set of parameters for each edge type.

2. Local parameter learning: Learn one set of parameters for each property

node.

For example, with global learning, a single set of parameters is learned for the

edge type drug-side effect; with local learning, one set of parameters is learned for

each side effect. While local learning may provide the parameters that better fit each

node, its performance may be limited when the targeted drug property has only a

few positive samples. In contrast, in global learning, all the positive samples for the

targeted edge type are combined and used in a single learning process. However, if

the importance of the paths varies greatly among the nodes, global learning may not

yield good performance. We compare the performance of the two schemes in our

experiments.

Selecting Path Types. The path types used as features should correspond to the

relationships that hint existence of the targeted edge type. In this work, our targeted

edge types include drug-side effect, drug-indication, and drug-drug. The path types

used for the drug-side effect edges are shown in the second column of Table 4.1. The

path type D-D-SE (P1) is based on the hypothesis that drugs that interact tend to

have similar side effects. The other path types are selected based on the hypothesis

that if two drugs share a property, such as an indication or a target, they tend to

have similar side effects; therefore, these paths are in the form of D-propType-D-SE,

where propType is a property node type, including I, P, T, SE, and CH. The path

types used for drug-indication edges and drug-drug edges are selected with the same

idea, as shown in Table 4.1.

Hybrid Approach. Since our network-based approach uses summarized features,

which is less informative than the fine-grained features, when a targeted drug property

has large positive training data, the FG approach could perform better. Therefore,

98

Table 4.1: Path types used for computing edge likelihood.

Path ID D-SE edge D-I edge D-D edge
P1 D-D-SE D-D-I D-D-D
P2 D-I-D-SE D-I-D-I D-I-D-D
P3 D-SE-D-SE D-SE-D-I D-SE-D-D
P4 D-P-D-SE D-P-D-I D-P-D-D
P5 D-T-D-SE D-T-D-I D-T-D-D
P6 D-CH-D-SE D-CH-D-I D-CH-D-D

we propose a hybrid approach that combines the FG approach and the network-based

approach. In the hybrid approach, if a targeted drug property has more than τ known

associated drugs, the FG approach is applied. Otherwise, the network-based approach

is applied. We select τ to be 20 based on our experiments in Section 4.6.

4.3.2 Score Function for Query Answers

Based on our approach for quantifying the edge likelihood, we now define the score

of an answer for a given query. Intuitively, in a good answer, the edges among the

matches of the query nodes should correspond to the edges in the query graph. More

specifically, if there is a positive edge between qi and qj, then there should be an edge

between f(qi) and f(qj), the matches of qi and qj in an answer f . If there is a negative

edge between qi and qj, then there should be no edges between f(qi) and f(qj). Our

scoring function is defined based on this concept, as follows. For a given query graph

Q, let E+
Q and E−Q denote the set of positive edges and the set of negative edges in

the query graph, respectively. Let wG(vi, vj) be the function indicating whether there

is an edge between vi and vj in the drug graph. That is, wG(vi, vj) = 1 if there is an

edge between vi and vj in the graph G. Otherwise, wG(vi, vj) = 0. The score of an

answer f , denoted by S(f), is defined as

S(f) =
∏

e(qi,qj)∈E+
Q

p′(f(qi), f(qj))

∏
e(qi,qj)∈E−Q

(1− p′(f(qi), f(qj))),
(4.2)

99

where p′(vi, vj) = 1 if wG(vi, vj) = 1; otherwise, p′(vi, vj) = p(vi, vj) (defined in Eq.

4.1). The function p′ is used to adjust the edge likelihood score to 1 if an edge

already exists in the graph. The first product in S(f) considers the edge likelihood

between the node pairs connected by positive edges. The second product considers

the complement of the edge likelihood, i.e., 1− p(vi, vj), for the node pairs connected

by negative edges. The value of S(f) ranges from 0 to 1. An answer f having S(f)

equal to 1 is an exact answer.

4.3.3 Finding the Top-k Answers

Having defined the score function, now we describe the algorithm for finding the

top-k answers that have the highest scores. The algorithm consists of three main

steps as follows.

Step 1: Find candidates matches of each query node. Based on the definition

of an answer in Section 4.2.3, the candidates of a reference node, qr, are the nodes that

have the same type as qr and have at least one keyword that matches with keyQ(qr).

The candidates of a variable node, qv, are the nodes that have the same type as qv.

We denote the set containing all the candidate matches of a query node qi as can(qi).

Step 2: Compute edge likelihood among candidate matches. The edge like-

lihood scores are used for computing the scores of the answers. For each edge in the

query graph, e(qi, qj), we compute the edge likelihood between the nodes in can(qi)

and can(qj), which requires counting paths of different types among the candidate

nodes. To count the paths of a specific type T , we use a modified breadth-first search

(BFS) algorithm, where in each level of the search, only the nodes having the correct

type according to T are visited. With a BFS starting from a source node v, we can

obtain the number of T -paths from v to every node in the graph. Therefore, for an

edge e(qi, qj), for each node in can(qi), we perform m BFSes, where m is the number of

100

path types being used. In total, for an edge e(qi, qj), we perform at most m · |can(qi)|

BFSes.

Step 3: Search for top-k answers. In this step, we search for k answers that

have the highest scores among all the answers, which are all the combinations of

the query nodes’ candidate matches. We apply the branch-and-bound technique to

obtain the top answers quickly. As the technique is a classic solution for combinatorial

optimization, we refer readers to [34] for more details.

4.4 Personalizing Answers Based on Patient Profiles

It is not uncommon that some drug properties are more common or present only

in a patient with a specific profile. For example, the side effect vomiting for the drug

Tamiflu is more common in children than adults [50]. In this section, we describe how

to extend the approach in Section 4.3 to use such information to personalize query

answers.

4.4.1 Data Sources for Personalization

We assume that based on available data sources, we can obtain drug properties

that are conditional on patient characteristics. There exist several data sources that

can potentially be used to obtain such information. For example, the FDA adverse

event reports contain information on side effects of drugs experienced by a patient

along with his/her information including age, gender, and weight. Another potential

data sources are online communities, such as Facebook, Twitter, and health-related

online message boards. Existing studies have shown promising results in using these

resources to learn about side effects of drugs [22, 45, 53, 78, 85, 89, 92, 97, 108]. These

online sources usually contain basic user profiles, such as age, gender, and location.

Additionally, based on what users have expressed online, we may be able to infer user

habits and lifestyles that can affect drug properties.

101

From such data sources, we assume that we have a set of tuples T = {(vi, vj, Ak, val)},

where vi is a drug node, vj is a drug property node, Ak is a patient attribute, and

val is a value of Ak. Each tuple (vi, vj, Ak, val) indicates that a drug vi exhibits a

property vj for a patient whose attribute Ak is equal to val.

4.4.2 Patient Profiles

A patient profile is used to describe a patient. Let A1, ..., An be all the attributes

presented in T . We represent a patient profile as a vector ~A of size n, where ~A[i] is a

value corresponding to attribute Ai of the patient. We assume that the domain of each

attribute is categorical. Attributes that are originally numerical can be transformed

to categorical by grouping into ranges. For example, age can be divided into four

ranges: child (age 0-12), teenage (age 13-19), adult (age 20-64), and elder (age 65

and up).

4.4.3 Personalizing Answers

To provide personalized answers for a query with patient profile ~A, we create a

personalized drug graph, G ~A, that contains information about drug properties with

respect to the profile ~A. Let G represent a core drug graph, containing relationships

between drugs and drug properties that do not rely on patient characteristics. G ~A

is constructed by using data from T to modify the edges in G. Initially, we let G ~A

contains all the nodes and edges in G. Then, for each tuple (vi, vj, Ak, val) in T , if

~A[k] = val, an edge (vi, vj) is added to G ~A.

With G ~A, the approach described in Section 4.3 can be applied to obtain person-

alized answers. Since G ~A contains the drug properties with consideration of patient

profiles, the answer obtained is tailored for the specific patient with profile ~A.

102

0

5

10

15

20

25

30

Child Teen Adult Elder

N
um

be
r

of
 D

-S
E

 e
dg

es
fr

om
 r

ep
or

ts
 (

th
ou

sa
nd

s)

Age

Existing edge
New edge

(a) For age attribute

0
5

10
15
20
25
30
35
40

Male Female

N
um

be
r

of
 D

-S
E

 e
dg

es
fr

om
 r

ep
or

ts
 (

th
ou

sa
nd

s)

Gender

Existing edge
New edge

(b) For gender attribute

Figure 4.2: Number of drug-side effect edges obtained from FDA reports.

4.4.4 Case study: Personalization on Side effects of Drugs

As a case study, we describe how we personalize the answers on side effects of

drugs. We use FDA adverse event reports as a side effect personalization data source.

Each report contains the information about a patient (age, gender, and weight), the

list of drugs taken by the patient, and the side effects of the drugs. The reports

are submitted by both healthcare professionals and consumers. Although we cannot

conclude that the drugs in each report are the causes of the side effects, the reports

provide signals of potential associations between side effects and drugs for different

patient profiles.

Our core drug graph contains only the associations between drugs and side effects

that are common for all patients, for example, those extracted from drug labels. Using

the reports, we add a tuple (d, se, A, val) to T if there are at least T reports that

indicate a patient with attribute A = val has experienced the side effect se when

using the drug d, where T is a threshold value. We focus on two patient attributes,

age and gender. As mentioned earlier, age is grouped into four ranges. In Figure 4.2,

we show the number of drug-side effect edges obtained from the reports with respect

to each attribute and its value. The figure shows both the number of edges that are

already in the core graph and those that are not. It can be seen that using the FDA

103

reports, we can obtain a large number of additional drug-side effect associations that

may be linked to a particular patient attribute.

4.4.5 Case study: Personalization with Biomarker Data

Genetic traits in patients can effect drug effectiveness and side effects. Some drugs

are designed for treating diseases with specific biomarkers. To include this information

in our query system, we use the table of drug pharmacogenomic biomarkers provided

by FDA1. By manually going through the drug labels, we obtain 98 personalized tuples

from this data source and add them to T . These tuples include drug indications that

are specific to a particular biomarker and side effects that are introduced if patients

have specific biomarkers. From the drug labels, we can also obtain information on the

need of dosage adjustment in case some biomarkers are presented. While currently

our system does not provide dosage recommendations, these data can potentially be

utilized to provide personalized dosage recommendations.

4.5 Drug Query System Prototype

As a proof of concept, we implement a prototype of the drug query system. In

this section, we first describe the overview of the system and then discuss the user

interface of the system.

4.5.1 System Overview

The overview of the drug query system is shown in Figure 4.3. The system has

four main components: drug information base, query processor, query translator,

and user interface. The user interface accepts a drug query from a user and displays

the answers obtained from the query processor to the user. The query translator is

1http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics
/ucm083378.htm

104

Drug
Information

Base

User
Interface

Query
Processor

Query
Translator User

Figure 4.3: Drug query system

1

2
3

Figure 4.4: User Interface of Drug Query System

responsible for translating an input query, which is in a user-friendly format, to its

corresponding query graph. The query processor computes the answers for the query

graph using the algorithm we have described.

4.5.2 User Interface

The user interface of the system is shown in Figure 4.4. The user interface provides

a form for the user to input the conditions for the drug query in terms of drug

indications, side effects, and drug interactions, along with a patient profile (No. 1 in

Figure 4.4). For each type of conditions, the user can input keywords, each of which

105

will be mapped to nodes in the drug information graph by the query translator. The

answers of a query and their scores are shown in a result table (No. 2 in Figure 4.4).

In a drug query, some conditions may be more crucial to the users than the others,

while the answers are ranked based on an aggregated score that captures how well

the answers can satisfy all the conditions. Considering the subjective nature of the

drug queries, to help users find the answers that best suit their needs, we provide two

additional features: score component visualizer and condition weight adjustment.

Score component visualizer. A score component visualizer (No. 3 in Figure

4.4) displays how well an answer can satisfy each of the conditions in the query.

The condition scores are color-coded to allow users to quickly see the overview the

results. For example, in Figure 4.4, the user queries for a drug for headache and

a drug for diarrhea without the sleepiness side effect and without drug interaction

with Carboplatin. The sixth column in the score component visualizer corresponds

to whether the second drug in an answer has sleepiness slide effect. By scanning the

column, the user can quickly see that the second and third answers are likely to cause

sleepiness. If sleepiness needs to be strictly avoided, the user can decided to leave the

drugs out from their options.

Condition weight adjustment. Condition weight adjustment allows the user to

increase the importance of some conditions in the query. By default, every condition

has a weight of 1, which means they are treated equally. By assigning higher weights

to some conditions, the query processor will adjust the ranking of the answers to bias

towards those than can better satisfy such conditions. The weight adjustment can

be done by tagging a weight with the keyword of a condition. For example, to assign

a weight of 10 to the headache indication, the user can put ”headache:10” into the

indication input field.

106

4.6 Evaluation

Our evaluation consists of two parts. First, we evaluate the quality of edge like-

lihood scores. Then, we evaluate our query system by showing examples of query

results and discuss the benefits provided by our system.

4.6.1 Data Sources and Drug Graph Characteristics

We consolidate drug information from multiple data sources to create the drug

graph for our prototype query system. The details of each data source are given as

follows.

DrugBank. DrugBank [74] is a database that contains chemical, pharmacological,

and pharmaceutical data of drugs along with drug target information. For each drug,

we obtain its targets, drug interactions, and chemical substructure signature. The

number of drugs in DrugBank is 7,682. 86% of the drugs have target information.

15% of the drugs have the drug interaction information.

SIDER2. SIDER2 [77] contains the information about side effects extracted from

drug labels. The side effects are mapped to MedDRA2 preferred terms. There are

2,021 drugs in SIDER2. 49% of the drugs have side effect information.

KEGG Drug. KEGG Drug [65] is a database containing information for approved

drugs in Japan, USA, and Europe. For each drug, we obtain the information of its

associated pathways. There are 9,354 drugs in the database. 27% of the drug have

pathway information.

NDF-RT. The National Drug File-Reference Terminology (NDF-RT) is a part of the

Unified Medical Langage System (UMLS) [23], which defines and provides connec-

tions between medical terms. We use the relationships between drugs and diseases

(indications) extracted from NDF-RT by Wang et al. [110]. The dataset contains 799

drugs and 719 diseases.

2http://www.meddra.org

107

From the above data sources, we link the information of each drug by matching

drug brand names and generic names in each of the data sources and create the core

drug graph. We remove the drug nodes that do not have any links to the other nodes.

The resulting graph contains 16,565 nodes and 256,447 edges. The numbers of nodes

and edges of each type are shown in Table 4.2. To create a personalized graph, we

use the adverse drug event reports and the biomarker data from drug labels, provided

by FDA, as described in Section 4.4.

Table 4.2: Drug graph characteristics.

Node Type #Nodes
Drug 7,705
Indication 711
Side effect 3,034
Pathway 131
Target 4,103
Chem. Sub. 881
Total 16,565

Edge Type #Edges
Drug-Drug 24,224
Drug-Indication 3,210
Drug-Side Effect 93,158
Drug-Pathway 2,427
Drug-Target 15,105
Drug-Chem. Sub. 118,323
Total 256,447

4.6.2 Evaluation of Edge Likelihood Quantification

Edge likelihood scores are the basis for computing the scores of the answers;

therefore, it is important that the likelihood scores are good predictors of the existence

of edges in reality.

4.6.2.1 Evaluation Method

We evaluate the edge likelihood scores obtained from six approaches:

1. Fine-grained-feature approach (FG)

2. Network-based approach with path count metric and local parameter learning

(MP)

3. Network-based approach with path count metric and global parameter learning

(MPG)

108

4. Network-based approach with random walk metric and local parameter learning

(MP RW)

5. Network-based approach with random walk metric and global parameter learn-

ing (MPG RW)

6. Hybrid approach (Hybrid): combination between FG and MPG RW

The evaluation is performed for three types of edges: drug-side effect (D-SE),

drug-indication (D-I), and drug-drug (D-D). For each edge type t, we perform a 10-

fold cross validation. In each fold, 10% of the drugs are assigned as test drugs, used for

evaluating the performance of the predictors. We use AUROC [43] as the evaluation

metric. The AUROC is the area under the ROC curve, the plot of the true positive

rate against the false positive rate computed from different threshold values of the

likelihood score. The AUROC has the value between 0 and 1. The higher the value,

the better.

4.6.2.2 Performance Comparison

Table 4.3 shows the performance of the six edge likelihood prediction approaches.

It can be seen that the MP approach has competitive performance with the FG ap-

proach. The MP approach outperforms the FG approach for two out of the three edge

types, which are D-SE and D-D. On the other hand, the MP RW approach signifi-

cantly outperforms both the FG and MP approaches. This signifies the importance

of the closeness metrics used with path type features.

Additionally, the approaches with global parameter learning (MPG, MPG RW)

perform better than their local-learning counterparts (MP, MP RW). This illustrates

the advantage of the global parameter learning, where the positive samples from all

the drug properties can be combined. Finally, the Hybrid approach has the best

performance among all the six approaches. Comparing to the FG approach, the

109

Hybrid approach offers 18%, 10%, and 15% improvement in predicting performance

for edge type D-SE, D-I and D-D, respectively

Table 4.3: Predicting performance comparison.

Algorithm
Edge type FG MP MPG MP RW MPG RW Hybrid

D-SE 0.7409 0.7503 0.8400 0.8276 0.8658 0.8753
D-I 0.8311 0.7938 0.8835 0.9166 0.9166 0.9171
D-D 0.7211 0.7546 0.7871 0.8219 0.8289 0.8297

The above results may be counterintuitive in that the network-based approaches

have better performance than the FG approach despite using a less informative feature

set. To better understand why this is the case, we investigate the performance of

the edge likelihood prediction approaches with varying number of training positive

samples. For each property type (SE, I, D), we group the properties based on their

numbers of positive training samples and report the prediction performance of each

approach for each group. The result is shown in Figure 4.5.

From the figure, we observe that the network-based approaches outperform the

FG approach when the number of training samples is small. The improvement is

especially significant for drug properties with less than 20 positive training samples.

For such drug properties, the MPG RW approach improves the prediction perfor-

mance over the FG approach by 37%, 11%, and 21% for the edge type D-SE, D-I and

D-D, respectively. As the number of positive training samples becomes larger, the

performance of the FG increases and finally overcomes the network-based approaches.

The points where the FG approach becomes better vary among the network-based

approaches and different edge types. For the MPG RW approach, the FG approach

requires 60 positive examples for each drug property to obtain better performance.

We use this number as a threshold for selecting between MPG RW and FG in our

hybrid approach.

110

0

0.2

0.4

0.6

0.8

1

[1,20] [21,40] [41,60] [61,80] [81,100] [101,∞)

A
U

R
O

C

Number of positive samples

FG MP MPG MP_RW MPG_RW

(a) AUROC for D-SE edge

0

0.2

0.4

0.6

0.8

1

[1,20] [21,40] [41,60] [61,80]

A
U

R
O

C

Number of positive samples

FG MP MPG MP_RW MPG_RW

(b) AUROC for D-I edges

0

0.2

0.4

0.6

0.8

1

[1,20] [21,40] [41,60] [61,80] [81,100] [101,∞)

A
U

R
O

C

Number of positive samples

FG MP MPG MP_RW MPG_RW

(c) AUROC for D-D edge

0

0.2

0.4

0.6

0.8

1

[1,20] [21,40] [41,60] [61,80] [81,100] [101,∞)

A
U

C
P

R

Number of positive samples

FG MP MPG MP_RW MPG_RW

(d) AUCPR for D-SE edge

0

0.2

0.4

0.6

0.8

1

[1,20] [21,40] [41,60] [61,80]

A
U

C
P

R
Number of positive samples

FG MP MPG MP_RW MPG_RW

(e) AUCPR for D-I edge

0

0.2

0.4

0.6

0.8

1

[1,20] [21,40] [41,60] [61,80] [81,100] [101,∞)

A
U

C
P

R

Number of positive samples

FG MP MPG MP_RW MPG_RW

(f) AUCPR for D-D edge

Figure 4.5: Performance comparison between different approaches.

0

20

40

60

80

100

[1,20] [21,40] [41,60] [61,80] [81,100] [101,∞)

%
 o

f s
id

e
ef

fe
ct

s

Number of positive samples

(a) D-SE

0

20

40

60

80

100

[1,20] [21,40] [41,60] [61,80]

%
 o

f i
nd

ic
at

io
ns

Number of positive samples

(b) D-I

0

20

40

60

80

100

[1,20] [21,40] [41,60] [61,80] [81,100] [101,∞)
%

 o
f d

ru
gs

Number of positive samples

(c) D-D

Figure 4.6: Percentage of drug properties in each group of positive training sample
sizes

In Figure 4.6, we show the percentage of drug properties in each group of training

sample sizes. It can be seen that the majority of drug properties have less than 20

positive training samples. This explains why the overall performance of the network-

based approaches is better than the FG approach, as shown in the beginning of this

section. Additionally, these results illustrate the benefit of the Hybrid approach,

which selects the appropriate approaches to use based on the size of the positive

training data.

111

0

0.2

0.4

0.6

0.8

1

D-SE D-I D-D

A
U

R
O

C

Edge type

P1 P2 P3 P4 P5 P6 All Paths

Figure 4.7: Performance comparison when a single path type is used and when all
the path types are used.

4.6.2.3 Benefits from Using Multiple Path Types

We evaluate how much using multiple path types helps to improve the perfor-

mance, compared to using a single path type. Figure 4.7 shows the performance

when each of the path type is used individually and when all the six path types

(listed in Table 4.1) are used. The results show that using multiple types of paths

can significantly improve the performance. When a single path type is used, the max-

imum AUROC that can be achieved are 0.8651 (P3), 0.8743 (P2), and 0.7804 (P5),

for D-SE, D-I, and D-D edges, respectively. When all the six path types are used,

we can obtain the AUROC of 0.8658, 0.9166, and 0.8289. Additionally, it should

be noted that the difference in the AUROC obtained from each path type supports

our hypothesis that different path types have unequal importance in signifying the

likelihood of edge existence.

4.6.3 Evaluation of Query Answering

In this section, we demonstrate the usefulness of our query system by showing

examples of the query results returned from our system.

112

First, we show the top results for the query [Query 1] “Find a drug for ton-

sillitis3” in Table 4.4. Our system finds both exact matches and close matches for

this query. The top four answers, which include Cefdinir, Ceftibuten, Azithromycin,

and Cefpodoxime, have the highest possible score of 1. This means according to the

drug information graph, these drugs are indicated for tonsillitis and thus they exactly

match the query. The answers below the fourth place are inexact matches. Accord-

ing to the drug graph, these answers are not indicated for tonsillitis. However, by

manually checking with external online data sources, we found supporting evidence

that Cefaclor, Cefixime, Moxifloxacin, Cefprozil, and Levofloxacin, which are ranked

from the fifth to the ninth places, may be used to treat tonsillitis [2, 6–8]. For the

tenth drug, Ceftazidime, although we cannot find references for its use in treating

tonsillitis, it is also an antibacterial drug according to RxList4. This example illus-

trates that our approach can provide answers that exactly match the query as well as

inexact matches that are potentially useful for users, which provides users with more

alternatives. Nevertheless, it should be noted that the query system is not intended

to replace experts but to assist them in finding drugs that suit their needs.

Next, we consider the following query: [Query 2] “Find a drug for schizophrenia

for the patient who is taking Paroxetine.” In Table 4.5, we compare the results from

the traditional approach that finds only exact matches and the top results from our

approach. Using the traditional approach, we obtain exactly 13 drugs. There are no

ranking among these drugs since only the exact matches are returned. We manu-

ally checked drug interactions on external data sources, Drugs.com5 and Medscape6,

and found that in fact all drugs except Reserpine and Deserpidine can interact with

3an inflammation of tonsils caused by bacteria or virus infection

4http://www.rxlist.com

5http://www.drugs.com

6http://www.medscape.com/

113

Table 4.4: Results for Query 1.

Rank Drug Score Answer quality
1 Cefdinir 1 Exact match
2 Ceftibuten 1 Exact match
3 Azithromycin 1 Exact match
4 Cefpodoxime 1 Exact match
5 Cefaclor 0.11 Relevant
6 Cefixime 0.11 Relevant
7 Moxifloxacin 0.08 Relevant
8 Cefprozil 0.07 Relevant
9 Levofloxacin 0.07 Relevant
10 Ceftazidime 0.07 No direct support

Paroxetine. However, such interaction data are not contained in our drug interaction

data source (DrugBank) and therefore the drugs are returned as answers. Using our

approach, the returned answers receive varying scores, and the scores are less than

one, indicating the possibility that they might interact with Paroxetine. Additionally,

the two drugs that do not interact with Paroxetine according to our external data

sources are ranked at the first place and the third place in our result list. This exam-

ple demonstrates that by taking into account the likelihood of edges, our system is

more informative and can help users to discover the drugs that fit their requirements

better.

In the next two examples, we illustrate how the answers are personalized according

to a given patient profile. We use the query: [Query 3] “Find a drug for schizophrenia

without the side effect of cardiac arrest.” We compare the top 15 results obtained

when a user profile is not given and when the user profile is specified as {female,

elder} in Table 4.6. When the user profile is given, three of the drugs, which are

Methotrimeprazine, Haloperidol, and Asenapine, are removed from the list. These

three drugs were reported (via the FDA drug adverse event reporting system) as

potential causes of cardiac arrest in elder female patients, and our approach takes into

account this fact and adjusts the scores of the drugs accordingly. Another example is

114

Table 4.5: Results for Query 2.

(a) Exact match only

Rank Drug Score
1 Trifluoperazine 1
2 Carbamazepine 1
3 Perphenazine 1
4 Fluphenazine 1
5 Ziprasidone 1
6 Olanzapine 1
7 Haloperidol 1
8 Reserpine 1
9 Clozapine 1
10 Molindone 1
11 Cyproheptadine 1
12 Aripiprazole 1
13 Deserpidine 1

(b) our approach

Rank Drug Score
1 Deserpidine 0.98
2 Cyproheptadine 0.96
3 Reserpine 0.95
4 Molindone 0.94
5 Carbamazepine 0.93
6 Fluphenazine 0.86
7 Trifluoperazine 0.84
8 Paliperidone 0.79
9 Haloperidol 0.78
10 Perphenazine 0.77
11 Ropinirole 0.76
12 Promazine 0.69
13 Aripiprazole 0.65

[Query 4] “Find a drug for malaria falciparum without the side effect of hemolysis.”

We compare the top 5 results obtained for a normal patient and a patient with G6PD

deficiency7 in Table 4.7. It can be seen that the drug Primaquine is replaced by

Pyrimethamine when a patient has G6PD deficiency. This is because it has high risk

of causing hemolysis in such patients.

Finally, we show an example of a query that asks for multiple drugs as follows:

[Query 5] “Find a set of drugs for Parkinson’s disease (d1), myositis (d2), and

depression (d3), that do not interact with one another.” If a traditional exact match

approach is used, more than one thousand drug sets would be returned for this query,

which can make it difficult for users to select the best answer. In Table 4.7, we show

the top 10 results obtained from our approach. Using our approach, some of the drug

sets receive lower scores because of their potential interactions. Upon verifying the

drug interactions manually on Drugs.com, we found that there are no evidence of

7a genetic disorder characterized by abnormally low levels of the enzyme G6PD

115

Table 4.6: Results for Query 3.

(a) Without profile

Rank Drug Score
1 Deserpidine 0.97
2 Mesoridazine 0.95
3 Reserpine 0.93
4 Molindone 0.92
5 Methotrimeprazine 0.87
6 Cyproheptadine 0.87
7 Chlorpromazine 0.84
8 Haloperidol 0.80
9 Promazine 0.71
10 Asenapine 0.68

(b) For an elder female.

Rank Drug Score
1 Deserpidine 0.97
2 Mesoridazine 0.95
3 Reserpine 0.93
4 Molindone 0.92
5 Cyproheptadine 0.87
6 Chlorpromazine 0.84
7 Promazine 0.71
8 Cabergoline 0.53
9 Loxapine 0.53
10 Apomorphine 0.53

Table 4.7: Results for Query 4.

(a) Without G6PD deficiency.

Rank Drug Score
1 Proguanil 0.99
2 Sulfadoxine 0.99
3 Quinine 0.99
4 Quinacrine 0.99
5 Primaquine 0.99

(b) With G6PD deficiency.

Rank Drug Score
1 Proguanil 0.99
2 Sulfadoxine 0.99
3 Quinine 0.99
4 Quinacrine 0.99
5 Pyrimethamine 0.99

116

Table 4.8: Results for Query 5.

Rank Drug1 (d1) Drug2 (d2) Drug3 (d3) Answer Quality
1 Carbidopa Chlorzoxazone Isoflurane No interactions
2 Carbidopa Orphenadrine Isoflurane No interactions
3 Amantadine Chlorzoxazone Isoflurane No interactions
4 Amantadine Chlorzoxazone Methylphenidate No interactions
5 Ropinirole Chlorzoxazone Isoflurane d1 ↔ d2

6 Pramipexole Chlorzoxazone Isoflurane d1 ↔ d3

7 Ropinirole Chlorzoxazone Ropinirole d1, d3 ↔ d2

8 Carbidopa Chlorzoxazone Temazepam d2 ↔ d3

9 Carbidopa Chlorzoxazone Lorazepam d2 ↔ d3

10 Biperiden Chlorzoxazone Isoflurane d1 ↔ d2

interactions among drugs in the top four drug sets. For the drug sets in the lower

ranks, each of them contains a drug pair that may interact with each other, as shown

in Table 4.7.

4.7 Related Work

Currently, there are multiple drug information databases available for public ac-

cess, such as DrugBank [74], KEGG DRUG [65], and PharmGKB [96]. Our work

leverages these existing databases in order to provide a decision support tool for

medical practitioners and drug consumers. There are a few studies that aim to an-

swer medical questions, including drug-related questions, and provide decision sup-

port on drug prescription [19, 38, 40]. These works model drug information as an

RDF (Resource Description Framework) knowledge base and focus on the problem of

how to convert raw data into RDF triplets and how to translate questions in natural

languages to SPARQL, a query language for RDF.

There exists clinical decision support systems that assist physicians in drug pre-

scription. These existing systems can provide alerts on potential drug adverse events,

such as drug interactions and drug allergy, and provide recommendations of drugs

and dosing based on clinical data and available evidence [14,68]. Our work is orthog-

117

onal to the aforementioned existing works. We focus on providing high quality and

useful answers to users despite the incompleteness and noisiness of available data.

Our approach can be used together with the techniques proposed in existing works

to achieve a complete query system.

There are recent works on predicting novel drug properties (including drug tar-

gets, indications, and adverse effects), which are related to our problem of quantifying

the likelihood of associations between drugs and drug properties. Methods that pre-

dict drug properties based on chemical structures [21,58,93,100] have been proposed.

Some approaches analyze the correlation between drug targets, their corresponding

biological pathways, adverse effects, and indications to perform prediction [49, 62].

These existing works suggest that various types of data are potentially useful in pre-

dicting drug properties. Network-based approaches have been proposed to discover

novel drug-target interactions [29, 103, 104], drug-drug interactions [30, 61, 105], and

drug adverse reactions [116]. In these approaches, networks containing drugs and

drug property entities are created, and the network features, such as common neigh-

bors or the number of paths, are used to predict drug properties. These existing

studies have demonstrated that network structures can be used to effectively predict

drug properties. However, in these approaches, the networks usually contain limited

types of drug property entities. Inspired by these early works, in our work, the likeli-

hood of drug properties is quantified based on the structure of a heterogeneous drug

information network, which contains various types of drug property entities, includ-

ing targets, pathways, side effects, indications, and drug interactions. Our approach

is also extensible to include other types of drug properties as more information is

available.

118

4.8 Conclusion

In this chapter we propose an approach for answering drug queries to support drug

prescription. To cope with incomplete and noisy data, we allow both exact and close

matches when answering queries. The answers are ranked by utilizing the structure

of a drug information network to quantify the likelihood of associations between drug

and drug properties in the case that the associations are missing or unknown. We also

present an intuitive approach to display answers to users, which aims to help users to

understand the ranked results and possibly refine their queries. We demonstrate how

our approach could assist practitioners to make informed decision when prescribing

drugs through several examples.

While the work presented in this chapter mainly addresses how to handle data

incompleteness and noisiness, it is also important to be able to answer a drug query

quickly. There are several drug data sources that could be leveraged to enrich the drug

graph, in addition to those we have used in our evaluation, such as drug information

extracted from online social media websites. This could lead to a graph that is very

large in size. Towards this end, the techniques presented in Chapter 3, which include

using score bounds to derive the top-k answer quickly and adopting a distributed

computation system, could be applied to speed up the query computation and support

a large drug information graph.

119

CHAPTER 5

CONCLUSION

In this chapter, we first present a summary of the contributions of this thesis, which

includes applications of relational data in three domains, improving service quality

of online video sharing websites, finding highly relevant items, and supporting drug

prescription. In the later part of the chapter, we discuss possible extensions and open

questions for future research.

5.1 Summary

This dissertation explores applications of relational data with the aim to improve

business operations and profits, consumer experiences, and our life. Three novel

applications of relational data are proposed, along with algorithms and techniques to

make the applications practical in real life.

First, we propose utilizing video relationships data to improve service quality of

online video sharing websites. Our approach allows videos to be delivered to users

quickly and smoothly by prefetching videos from the video providers before they are

requested by users and storing them in a location near users. The key to achieving

great performance in our approach is to be able to accurately predict the videos

that will be requested by users. Towards that end, we leverage video relationships

extracted from video recommendations provided by video sharing websites. The video

recommendation relationships are used to approximate video relatedness, which are

then used in our video selection algorithm. Our evaluation based on actual network

traces shows that out approach can achieve a hit ratio of up to 81%.

120

Second, we propose an efficient approach to answer top-k relevance queries, which

ask for the top-k items that are the most relevant to a given query item set, based

on path-based relevance metrics. Our approach obtains the answers quickly by using

score bounds to derive the top-k items instead of computing exact scores. We propose

three novel bounds for path-based metrics. Considering that for different applications,

different path-based metrics may be used, we present our bounds in a generalized

form, which allows them to be applied to multiple path-based metrics. To support

very large input data, typically found in today’s applications, we provide a distributed

solution based on our approach. Our experiments show that our approach can offer

a significant speedup over the baseline and state-of-the-art approaches. Furthermore,

our approach can scale well in terms of the size of the input as well as the number of

workers being used.

Finally, we propose a drug query system that utilizes drug relational data to

support drug prescription. The drug query system allows users to query for drugs

that satisfy a set of conditions based on drug properties, such as drug indications,

side effects, and drug interactions. Our approach can provide useful answers to users

despite the incompleteness and noisiness of data by considering both the answers

that exactly match the query and those that closely match the query. We propose

a score function for evaluating the quality of answers which takes into account the

possibility of missing data. The score function relies on our novel network-based

approach for quantifying edge likelihood. Our evaluation shows that for quantifying

the edge likelihood, our network-based approach can improve the AUROC by up

to 37%, comparing to a baseline approach. A prototype of our query system was

developed, and we demonstrate its benefits through several query examples.

121

5.2 Future Work

With the three applications presented in this work, we demonstrate how rela-

tional data can be used to benefit our life in several aspects, including entertainment,

business, and healthcare. Here we discuss possible directions for future work.

For improving the service quality of video streaming from video sharing websites,

we have discussed the basic idea of dynamically adjusting the prefetch prefixed size by

considering the current network condition, video properties, and video popularity. A

more thorough study could be done to derive algorithms that determine the optimal

prefix size based on these factors. Additionally, strategies that effectively combine

caching and prefetching should be studied. Such algorithms and strategies should

take into account the interplay between storage requirement, traffic overhead, and hit

ratios to find solutions that are cost-effective.

In recent years, heterogeneous graphs, or graphs containing several nodes types,

like our drug information graph, have become more prevalent. The path-based metrics

we have considered in answering relevance queries treat the nodes in the item graphs

equivalently. However, for heterogeneous graphs, taking into account the types of

nodes could be helpful, as we have shown in the drug query application. A possible

future direction is to study how the bound-based approach could be adopted to allow

for efficient query processing on heterogeneous graphs, where the relevance metrics

may distinguish different node types and path types, similar to those used in our drug

query system. This will require deriving the bounds and efficient bound computation

for such metrics.

For supporting drug prescription, several improvements could be done to lead

us towards a complete and practical prescription supporting system. First, there

are several additional factors that are important in prescribing drugs, for example,

contraindications, biomarkers, and drug allergy. Our approach could be extended to

support these additional factors. Additionally, we have mentioned that online social

122

networks and communities have emerged as rich data sources for mining personalized

drug information, for example, how lifestyles of patients affect drug effectiveness and

side effects. Work could be done to mine such personalized drug information and

incorporate them in the drug query system. Furthermore, as multiple facets of drug

information are added to the drug graph, the size of the drug graphs could become

enormous. It is important to develop a technique that would allow answering queries

in a timely manner, such as adopting the bound-based approach with distributed

computation or using indexing techniques.

In a broader perspective, the solutions proposed in this work illustrate how to

cope with the scale of the data and its noisy and incomplete nature. The core ideas

of the solutions are to use known facts or relations to infer unknown relations, to

eliminate redundant computation by utilizing the score bounds, and to leverage the

power of distributed computation systems. The challenges we addressed are faced not

only in the applications we present but also when applying relational data in other

domains. We believe that the ideas presented may be applied or combined to open

up and facilitate the use of relational data in other domains.

123

BIBLIOGRAPHY

[1] DrugBank. http://www.drugbank.ca/.

[2] Drugs.com. http://www.drugs.com/.

[3] Endace DAG Network Monitoring Interface. http://www.endace.com/.

[4] KEGG Drug. http://www.genome.jp/kegg/drug/.

[5] Maiter: A message-passing distributed framework for accumulative iterative
computation. http://rio.ecs.umass.edu/~yzhang/maiter-full.pdf.

[6] Medicalook. http://www.medicalook.com/.

[7] Pharmacy and drugs. http://www.pharmacy-and-drugs.com/.

[8] RxList: The Internet Drug Index. http://www.rxlist.com/.

[9] SIDER2. http://sideeffects.embl.de/.

[10] Wireshark. http://www.wireshark.org/.

[11] YouTube Data API. http://code.google.com/apis/youtube/overview.

html.

[12] Agirre, E., and Soroa, A. Personalizing pagerank for word sense disambigua-
tion. In Proceedings of the 12th Conference of the European Chapter of the
Association for Computational Linguistics (2009), pp. 33–41.

[13] Allen, G Donald. Lectures on linear algebra and matrices. Texas A&M Uni-
versity. URL: http://www. math. tamu. edu/˜ dallen/m640 03c/readings. htm,
31 (2012).

[14] Ammenwerth, Elske, Schnell-Inderst, Petra, Machan, Christof, and Siebert,
Uwe. The effect of electronic prescribing on medication errors and adverse
drug events: a systematic review. Journal of the American Medical Informatics
Association 15, 5 (2008), 585–600.

[15] Andersen, Reid, Borgs, Christian, et al. Local computation of pagerank contri-
butions. In Algorithms and Models for the Web-Graph. Springer, 2007, pp. 150–
165.

124

[16] Backstrom, Lars, Huttenlocher, Dan, Kleinberg, Jon, and Lan, Xiangyang.
Group formation in large social networks: membership, growth, and evolu-
tion. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining (New York, NY, USA, 2006), KDD ’06,
ACM, pp. 44–54.

[17] Bahmani, B., Chowdhury, A., and Goel, A. Fast incremental and personalized
pagerank. Proceedings of the VLDB Endowment 4, 3 (2010), 173–184.

[18] Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichan-
dran, D., and Aly, M. Video suggestion and discovery for youtube: taking
random walks through the view graph. In Proceedings of the 17th international
conference on World Wide Web (2008), ACM, pp. 895–904.

[19] Ben Abacha, Asma, and Zweigenbaum, Pierre. Medical question answering:
translating medical questions into sparql queries. In Proceedings of the 2nd ACM
SIGHIT International Health Informatics Symposium (2012), ACM, pp. 41–50.

[20] Benczur, Andras A, Csalogany, Karoly, Sarlos, Tamas, and Uher, Mate.
Spamrank–fully automatic link spam detection work in progress. In Proceedings
of the first international workshop on adversarial information retrieval on the
web (2005).

[21] Bender, Andreas, Scheiber, Josef, Glick, Meir, et al. Analysis of pharmacology
data and the prediction of adverse drug reactions and off-target effects from
chemical structure. ChemMedChem 2, 6 (2007), 861–873.

[22] Bian, Jiang, Topaloglu, Umit, and Yu, Fan. Towards large-scale twitter min-
ing for drug-related adverse events. In Proceedings of the 2012 international
workshop on Smart health and wellbeing (2012), ACM, pp. 25–32.

[23] Bodenreider, Olivier. The unified medical language system (umls): integrating
biomedical terminology. Nucleic acids research 32, suppl 1 (2004), D267–D270.

[24] Boldi, Paolo, and Vigna, Sebastiano. The WebGraph framework I: Compres-
sion techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004) (Manhattan, USA, 2004), ACM Press, pp. 595–601.

[25] Bu, Y., Howe, B., Balazinska, M., and Ernst, M.D. Haloop: Efficient iterative
data processing on large clusters. Proceedings of the VLDB Endowment 3, 1-2
(2010), 285–296.

[26] Cao, Liangliang, Cho, Brian, Kim, Hyun Duk, Li, Zhen, Tsai, Min-Hsuan,
and Gupta, Indranil. Delta-simrank computing on mapreduce. In Proceedings
of the 1st International Workshop on Big Data, Streams and Heterogeneous
Source Mining: Algorithms, Systems, Programming Models and Applications
(2012), ACM, pp. 28–35.

125

[27] Cha, Meeyoung, Kwak, Haewon, Rodriguez, Pablo, Ahn, Yongyeol, and Moon,
Sue. I Tube, You Tube, Everybody Tubes: Analyzing the World’s Largest User
Generated Content Video System. In Proceedings of ACM Internet measure-
ment Conference(IMC), San Diego, CA, USA (Oct. 2007).

[28] Chen, S., Shen, B., Wee, S., and Zhang, X. Adaptive and Lazy segmentation
based proxy caching for streaming media delivery. In Proceedings of the 13th
international workshop on Network and Operating Systems Support for Digital
Audio and Video (2003), ACM, pp. 22–31.

[29] Cheng, Feixiong, Li, Weihua, Wu, Zengrui, Wang, Xichuan, Zhang, Chen, Li,
Jie, Liu, Guixia, and Tang, Yun. Prediction of polypharmacological profiles of
drugs by the integration of chemical, side effect, and therapeutic space. Journal
of chemical information and modeling 53, 4 (2013), 753–762.

[30] Cheng, Feixiong, and Zhao, Zhongming. Machine learning-based prediction of
drug-drug interactions by integrating drug phenotypic, therapeutic, chemical,
and genomic properties. Journal of the American Medical Informatics Associ-
ation (2014).

[31] Cheng, Xu, Dale, Cameron, and Liu, Jiangchuan. Statistics and social network
of youtube videos. In IWQoS (2008), Hans van den Berg and Gunnar Karlsson,
Eds., IEEE, pp. 229–238.

[32] Cheng, Xu, and Liu, Jiangchuan. Nettube: Exploring social networks for peer-
to-peer short video sharing. In Proceedings of IEEE INFOCOM (2009).

[33] Cheng, Xu, Liu, Jiangchuan, and Wang, Haiyang. Accelerating youtube with
video correlation. In WSM ’09: Proceedings of the first SIGMM workshop on
Social media (New York, NY, USA, 2009), ACM, pp. 49–56.

[34] Clausen, Jens. Branch and bound algorithms-principles and examples. Depart-
ment of Computer Science, University of Copenhagen (1999), 1–30.

[35] Cunha, Carlos R., and Jaccoud, Carlos F. B. Determining www user’s next
access and its application to pre-fetching. In Proceedings of ISCC’97: The
second IEEE Symposium on Computers and Communications (1997), pp. 6–11.

[36] Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta,
S., He, Y., Lambert, M., Livingston, B., et al. The YouTube Video Recommen-
dation System. In Proceedings of the fourth ACM conference on Recommender
Systems (2010), ACM, pp. 293–296.

[37] Domenech, J., Gil, J.A., Sahuquillo, J., and Pont, A. Using Current Web
Page Structure to Improve Prefetching Performance. Computer Networks 54, 9
(2010), 1404–1417.

[38] Doulaverakis, Charalamos, et al. Panacea, a semantic-enabled drug recommen-
dations discovery framework. J. Biomed. Semant. 5 (2014), 13.

126

[39] Doulaverakis, Charalampos, Nikolaidis, George, Kleontas, Athanasios, and
Kompatsiaris, Ioannis. Panacea, a semantic-enabled drug recommendations
discovery framework. In VDOS+ DO@ ICBO (2013).

[40] Dumontier, Michel, and Villanueva-Rosales, Natalia. Towards pharmacoge-
nomics knowledge discovery with the semantic web. Briefings in bioinformatics
10, 2 (2009), 153–163.

[41] Fan, Li, Jacobson, Quinn, Cao, Pei, and Lin, Wei. Web prefetching between
low-bandwidth clients and proxies: Potential and performance. In Proceedings
of the SIGMETRICS ’99 Conference (May 1999).

[42] Fang, Yuan, Chang, Kevin C-C, and LAUW, Hady Wirawan. Roundtriprank:
Graph-based proximity with importance and specificity. IEEE International
Conference on Data Engineering (ICDE).

[43] Fawcett, Tom. An introduction to roc analysis. Pattern recognition letters 27,
8 (2006), 861–874.

[44] Fogaras, D., Rácz, B., Csalogány, K., and Sarlós, T. Towards scaling fully
personalized pagerank: Algorithms, lower bounds, and experiments. Internet
Mathematics 2, 3 (2005), 333–358.

[45] Freifeld, Clark C, Brownstein, John S, Menone, Christopher M, Bao, Wenjie,
Filice, Ross, Kass-Hout, Taha, and Dasgupta, Nabarun. Digital drug safety
surveillance: monitoring pharmaceutical products in twitter. Drug Safety 37, 5
(2014), 343–350.

[46] Fujiwara, Yasuhiro, Nakatsuji, Makoto, Onizuka, Makoto, and Kitsuregawa,
Masaru. Fast and exact top-k search for random walk with restart. Proc.
VLDB Endow. 5, 5 (Jan. 2012), 442–453.

[47] Fujiwara, Yasuhiro, Nakatsuji, Makoto, Shiokawa, Hiroaki, Mishima, Takeshi,
and Onizuka, Makoto. Efficient ad-hoc search for personalized pagerank. In
SIGMOD (2013), ACM, pp. 445–456.

[48] Fujiwara, Yasuhiro, Nakatsuji, Makoto, Yamamuro, Takeshi, Shiokawa, Hiroaki,
and Onizuka, Makoto. Efficient personalized pagerank with accuracy assurance.
In Proceedings of the 18th ACM SIGKDD international conference on Knowl-
edge discovery and data mining (New York, NY, USA, 2012), KDD ’12, ACM,
pp. 15–23.

[49] Fukuzaki, Mutsumi, Seki, Mio, Kashima, Hisashi, and Sese, Jun. Side effect
prediction using cooperative pathways. In Bioinformatics and Biomedicine,
2009. BIBM’09. IEEE International Conference on (2009), IEEE, pp. 142–147.

[50] Genentech USA. Tamiflu (oseltamivir phosphate) Prescribing Information.
http://www.tamiflu.com/hcp/prescribing/hcp_prescribe.jsp.

127

[51] Gill, Phillipa, Arlitt, Martin, Li, Zongpeng, and Mahanti, Anirban. YouTube
Traffic Characterization: A View From the Edge. In Proceedings of ACM In-
ternet measurement Conference(IMC), San Diego, CA, USA (Oct. 2007).

[52] Gill, Phillipa, Li, Zongpeng, Arlitt, Martin, and Mahanti, Anirban. Charac-
terizing Users Sessions on YouTube. In Proceedings of SPIE/ACM Conference
on Multimedia Computing and Networking (MMCN), Santa Clara, USA (Jan.
2008).

[53] Ginn, R, Pimpalkhute, P, Nikfarjam, A, Patki, A, OConnor, K, Sarker, A, and
Gonzalez, G. Mining twitter for adverse drug reaction mentions: a corpus and
classification benchmark. In Proceedings of the fourth workshop on building and
evaluating resources for health and biomedical text processing (2014).

[54] Gori, M., and Pucci, A. Itemrank: a random-walk based scoring algorithm for
recommender engines. In Proceedings of the 20th international joint conference
on Artifical intelligence (2007), Morgan Kaufmann Publishers Inc., pp. 2766–
2771.

[55] Guan, Ziyu, Wu, Jian, Zhang, Qing, Singh, Ambuj, and Yan, Xifeng. Assess-
ing and ranking structural correlations in graphs. In SIGMOD (2011), ACM,
pp. 937–948.

[56] Gupta, M., Pathak, A., and Chakrabarti, S. Fast algorithms for topk person-
alized pagerank queries. In Proceeding of the 17th international conference on
World Wide Web (2008), ACM, pp. 1225–1226.

[57] Gyongyi, Zoltan, Berkhin, Pavel, Garcia-Molina, Hector, and Pedersen, Jan.
Link spam detection based on mass estimation. In VLDB (2006), VLDB En-
dowment, pp. 439–450.

[58] Hammann, F, Gutmann, H, Vogt, N, Helma, C, and Drewe, J. Prediction of
adverse drug reactions using decision tree modeling. Clinical Pharmacology &
Therapeutics 88, 1 (2010), 52–59.

[59] Haveliwala, T.H. Topic-sensitive pagerank: A context-sensitive ranking algo-
rithm for web search. Knowledge and Data Engineering, IEEE Transactions on
15, 4 (2003), 784–796.

[60] Huang, Chung-Ming, Hsu, Tz-Heng, and Chang, Chi-Kuang. A proxy-based
adaptive flow control scheme for media streaming. In SAC ’02: Proceedings of
the 2002 ACM symposium on Applied computing (New York, NY, USA, 2002),
ACM, pp. 750–754.

[61] Huang, Jialiang, Niu, Chaoqun, Green, Christopher D, Yang, Lun, Mei,
Hongkang, and Han, Jing-Dong J. Systematic prediction of pharmacodynamic
drug-drug interactions through protein-protein-interaction network. PLoS com-
putational biology 9, 3 (2013), e1002998.

128

[62] Huang, Liang-Chin, Wu, Xiaogang, and Chen, Jake Y. Predicting adverse side
effects of drugs. BMC genomics 12, Suppl 5 (2011), S11.

[63] Jeh, G., and Widom, J. Scaling personalized web search. In Proceedings of the
12th international conference on World Wide Web (2003), ACM, pp. 271–279.

[64] Jeh, Glen, and Widom, Jennifer. Simrank: a measure of structural-context
similarity. In SIGKDD (2002), ACM, pp. 538–543.

[65] Kanehisa, Minoru, and Goto, Susumu. Kegg: kyoto encyclopedia of genes and
genomes. Nucleic acids research 28, 1 (2000), 27–30.

[66] Kanehisa, Minoru, Goto, Susumu, Sato, Yoko, Furumichi, Miho, and Tanabe,
Mao. Kegg for integration and interpretation of large-scale molecular data sets.
Nucleic acids research (2011), gkr988.

[67] Katz, L. A new status index derived from sociometric analysis. Psychometrika
18, 1 (1953), 39–43.

[68] Kaushal, Rainu, Shojania, Kaveh G, and Bates, David W. Effects of computer-
ized physician order entry and clinical decision support systems on medication
safety: a systematic review. Archives of internal medicine 163, 12 (2003), 1409–
1416.

[69] Khemmarat, Samamon, and Gao, Lixin. Fast top-k path-based relevance query
on massive graphs. In Data Engineering (ICDE), 2014 IEEE 30th International
Conference on (2014), IEEE, pp. 316–327.

[70] Khemmarat, Samamon, and Gao, Lixin. Fast top-k path-based relevance query
on massive graphs. In Data Engineering (ICDE), 2014 IEEE 30th International
Conference on (2014), IEEE, pp. 316–327.

[71] Khemmarat, Samamon, and Gao, Lixin. Supporting drug prescription via pre-
dictive and personalized query system. In Proceedings of the 9th International
Conference on Pervasive Computing Technologies for Healthcare (2015), IEEE.

[72] Khemmarat, Samamon, Zhou, Renjie, Gao, Lixin, and Zink, Michael. Watching
user generated videos with prefetching. In Proceedings of the Second Annual
ACM Conference on Multimedia Systems (New York, NY, USA, 2011), MMSys
’11, ACM, pp. 187–198.

[73] Khemmarat, Samamon, Zhou, Renjie, Krishnappa, Dilip Kumar, Gao, Lixin,
and Zink, Michael. Watching user generated videos with prefetching. Signal
Processing: Image Communication 27, 4 (2012), 343–359.

[74] Knox, Craig, Law, Vivian, Jewison, Timothy, Liu, Philip, Ly, Son, Frolkis,
Alex, Pon, Allison, Banco, Kelly, Mak, Christine, Neveu, Vanessa, et al. Drug-
bank 3.0: a comprehensive resource for omics research on drugs. Nucleic acids
research 39, suppl 1 (2011), D1035–D1041.

129

[75] Konstas, Ioannis, Stathopoulos, Vassilios, and Jose, Joemon M. On social
networks and collaborative recommendation. In Proceedings of the 32nd inter-
national ACM SIGIR conference on Research and development in information
retrieval (New York, NY, USA, 2009), SIGIR ’09, ACM, pp. 195–202.

[76] Krishnappa, D., Khemmarat, S., Gao, L., and Zink, M. On the Feasibility of
Prefetching and Caching for Online TV Services: A Measurement Study on
Hulu. In Passive and Active Measurement (2011), Springer, pp. 72–80.

[77] Kuhn, Michael, et al. A side effect resource to capture phenotypic effects of
drugs. Molecular systems biology 6, 1 (2010), 343.

[78] Leaman, Robert, Wojtulewicz, Laura, Sullivan, Ryan, Skariah, Annie, Yang,
Jian, and Gonzalez, Graciela. Towards internet-age pharmacovigilance: extract-
ing adverse drug reactions from user posts to health-related social networks. In
Proceedings of the 2010 workshop on biomedical natural language processing
(2010), Association for Computational Linguistics, pp. 117–125.

[79] Leskovec, Jure, Adamic, Lada A., and Huberman, Bernardo A. The dynamics
of viral marketing. ACM Trans. Web 1, 1 (May 2007).

[80] Leskovec, Jure, and Faloutsos, Christos. Sampling from large graphs. In Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge dis-
covery and data mining (2006), ACM, pp. 631–636.

[81] Leskovec, Jure, Kleinberg, Jon, and Faloutsos, Christos. Graph evolution: Den-
sification and shrinking diameters. ACM Transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2.

[82] Leskovec, Jure, Lang, Kevin J., Dasgupta, Anirban, and Mahoney, Michael W.
Community structure in large networks: Natural cluster sizes and the absence
of large well-defined clusters. CoRR abs/0810.1355 (2008).

[83] Liben-Nowell, D., and Kleinberg, J. The link-prediction problem for social net-
works. Journal of the American society for information science and technology
58, 7 (2007), 1019–1031.

[84] Liu, Mei, Wu, Yonghui, Chen, Yukun, Sun, Jingchun, Zhao, Zhongming, Chen,
Xue-wen, Matheny, Michael Edwin, and Xu, Hua. Large-scale prediction of
adverse drug reactions using chemical, biological, and phenotypic properties of
drugs. Journal of the American Medical Informatics Association 19, e1 (2012),
e28–e35.

[85] Liu, Xiao, and Chen, Hsinchun. Azdrugminer: an information extraction system
for mining patient-reported adverse drug events in online patient forums. In
Smart Health. Springer, 2013, pp. 134–150.

130

[86] Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., and Hellerstein,
J.M. Distributed graphlab: a framework for machine learning and data mining
in the cloud. Proceedings of the VLDB Endowment 5, 8 (2012), 716–727.

[87] Maehara, Takanori, Akiba, Takuya, Iwata, Yoichi, and Kawarabayashi, Ken-
ichi. Computing personalized pagerank quickly by exploiting graph structures.
Proceedings of the VLDB Endowment 7, 12 (2014), 1023–1034.

[88] Menascé, Daniel A., Almeida, Virgilio A. F., Fonseca, Rodrigo, and Mendes,
Marco A. A methodology for workload characterization of e-commerce sites.

[89] Nikfarjam, Azadeh, Sarker, Abeed, OConnor, Karen, Ginn, Rachel, and Gon-
zalez, Graciela. Pharmacovigilance from social media: mining adverse drug re-
action mentions using sequence labeling with word embedding cluster features.
Journal of the American Medical Informatics Association (2015), ocu041.

[90] Padmanabhan, Venkata N., and Mogul, Jeffrey C. Using predictive prefetching
to improve World-Wide Web latency. In Proceedings of the ACM SIGCOMM
’96 Conference (Stanford University, CA, July 1996).

[91] Pallis, G., Vakali, A., and Pokorny, J. A Clustering-based Prefetching Scheme
on a Web Cache Environment. Computers & Electrical Engineering 34, 4 (2008),
309–323.

[92] Patki, Apurv, Sarker, Abeed, Pimpalkhute, Pranoti, Nikfarjam, Azadeh, Ginn,
Rachel, OConnor, Karen, Smith, Karen, and Gonzalez, Graciela. Mining ad-
verse drug reaction signals from social media: going beyond extraction. Pro-
ceedings of BioLinkSig 2014 (2014).

[93] Pauwels, Edouard, Stoven, Véronique, and Yamanishi, Yoshihiro. Predicting
drug side-effect profiles: a chemical fragment-based approach. BMC bioinfor-
matics 12, 1 (2011), 169.

[94] Rejaie, Reza, and Kangasharju, Jussi. Mocha: a quality adaptive multimedia
proxy cache for internet streaming. In NOSSDAV ’01: Proceedings of the 11th
international workshop on Network and operating systems support for digital
audio and video (New York, NY, USA, 2001), ACM, pp. 3–10.

[95] Rejaie, Reza, Yu, Haobo, Handley, Mark, and Estrin, Deborah. Multimedia
proxy caching mechanism for quality adaptive streaming applications in the
internet. In Proceedings of the 2000 IEEE Computer and Communications So-
cieties Conference on Computer Communications (INFOCOM-00) (Los Alami-
tos, Mar. 26–30 2000), IEEE, pp. 980–989.

[96] Sangkuhl, Katrin, Berlin, Dorit S, Altman, Russ B, and Klein, Teri E. Phar-
mgkb: understanding the effects of individual genetic variants. Drug metabolism
reviews 40, 4 (2008), 539–551.

131

[97] Sarker, Abeed, and Gonzalez, Graciela. Portable automatic text classifica-
tion for adverse drug reaction detection via multi-corpus training. Journal of
biomedical informatics (2014).

[98] Sarukkai, R.R. Link Prediction and Path Analysis using Markov Chains. Com-
puter Networks 33, 1-6 (2000), 377–386.

[99] Saxena, Mohit, Sharang, Uman, and Fahmy, Sonia. Analyzing video services in
web 2.0: A global perspective. In Proceedings of NOSSDAV 2008 (2008).

[100] Scheiber, Josef, Jenkins, Jeremy L, Sukuru, Sai Chetan K, et al. Mapping
adverse drug reactions in chemical space. Journal of medicinal chemistry 52, 9
(2009), 3103–3107.

[101] Sen, S., Rexford, J., and Towsley, D. Proxy prefix caching for multimedia
streams. In Proceedings of IEEE Infocom (1999).

[102] Sun, Jimeng, Qu, Huiming, Chakrabarti, D., and Faloutsos, C. Neighborhood
formation and anomaly detection in bipartite graphs. In Data Mining, Fifth
IEEE International Conference on (nov. 2005), p. 8 pp.

[103] Sun, Jingchun, Huang, Liang-Chin, Xu, Hua, and Zhao, Zhongming. Network-
assisted prediction of potential drugs for addiction. BioMed research interna-
tional 2014 (2014).

[104] Sun, Jingchun, Xu, Hua, and Zhao, Zhongming. Network-assisted investigation
of antipsychotic drugs and their targets. Chemistry & biodiversity 9, 5 (2012),
900–910.

[105] Sun, Jingchun, Zhao, Min, Fanous, Ayman H, and Zhao, Zhongming. Char-
acterization of schizophrenia adverse drug interactions through a network ap-
proach and drug classification. BioMed research international 2013 (2013).

[106] Takac, Lubos, and Zabovsky, Michal. Data analysis in public social networks.
In International Scientific Conference and International Workshop Present Day
Trends of Innovations (2012), pp. 1–6.

[107] Tong, Hanghang, Faloutsos, Christos, and Pan, Jia-Yu. Fast random walk with
restart and its applications. In Proceedings of the Sixth International Conference
on Data Mining (Washington, DC, USA, 2006), ICDM ’06, IEEE Computer
Society, pp. 613–622.

[108] Tuarob, Suppawong, Tucker, Conrad S, Salathe, Marcel, and Ram, Nilam.
An ensemble heterogeneous classification methodology for discovering health-
related knowledge in social media messages. Journal of biomedical informatics
49 (2014), 255–268.

[109] Venkataramani, Arun, Kokku, Ravi, and Dahlin, Mike. Tcp nice: a mechanism
for background transfers. SIGOPS Oper. Syst. Rev. 36, SI (2002), 329–343.

132

[110] Wang, Fei, Zhang, Ping, Cao, Nan, Hu, Jianying, and Sorrentino, Robert. Ex-
ploring the associations between drug side-effects and therapeutic indications.
Journal of biomedical informatics 51 (2014), 15–23.

[111] Wu, Kun-Lung, Yu, Philip S., and Wolf, Joel L. Segment-based proxy caching
of multimedia streams. In WWW ’01: Proceedings of the 10th international
conference on World Wide Web (New York, NY, USA, 2001), ACM, pp. 36–44.

[112] Yin, Z., Gupta, M., Weninger, T., and Han, J. A unified framework for link
recommendation using random walks. In Advances in Social Networks Analy-
sis and Mining (ASONAM), 2010 International Conference on (2010), IEEE,
pp. 152–159.

[113] Zhang, Y., Gao, Q., Gao, L., and Wang, C. Priter: a distributed framework for
prioritized iterative computations. In Proceedings of the 2nd ACM Symposium
on Cloud Computing (2011), ACM, p. 13.

[114] Zhang, Y., Gao, Q., Gao, L., and Wang, C. Accelerate large-scale iterative
computation through asynchronous accumulative updates. In Proceedings of
the 3rd workshop on Scientific Cloud Computing Date (2012), ACM, pp. 13–22.

[115] Zhang, Z.L., Wang, Y., Du, D.H.C., and Su, D. Video Staging: a Proxy-
server-based Approach to End-to-end Video Delivery over Wide-area Networks.
Networking, IEEE/ACM Transactions on 8, 4 (2000), 429–442.

[116] Zheng, Huiru, Wang, Haiying, Xu, Hua, Wu, Yonghui, Zhao, Zhongming, and
Azuaje, Francisco. Linking biochemical pathways and networks to adverse drug
reactions. NanoBioscience, IEEE Transactions on 13, 2 (2014), 131–137.

[117] Zink, Michael, Suh, Kyoungwon, Gu, Yu, and Kurose, Jim. Watch Global,
Cache Local: YouTube Network Traffic at a Campus Network - Measurements
and Implications. In Proceedings of SPIE/ACM Conference on Multimedia
Computing and Networking (MMCN), Santa Clara, USA (Jan. 2008).

133

	On Applications of Relational Data
	Recommended Citation

	tmp.1440999215.pdf.I2Uf9

