473,050 research outputs found

    Automated end user-centred adaptation of web components through automated description logic-based reasoning

    Get PDF
    Context: This paper addresses one of the major end-user development (EUD) challenges, namely, how to pack today?s EUD support tools with composable elements. This would give end users better access to more components which they can use to build a solution tailored to their own needs. The success of later end-user software engineering (EUSE) activities largely depends on how many components each tool has and how adaptable components are to multiple problem domains. Objective: A system for automatically adapting heterogeneous components to a common development environment would offer a sizeable saving of time and resources within the EUD support tool construction process. This paper presents an automated adaptation system for transforming EUD components to a standard format. Method: This system is based on the use of description logic. Based on a generic UML2 data model, this description logic is able to check whether an end-user component can be transformed to this modeling language through subsumption or as an instance of the UML2 model. Besides it automatically finds a consistent, non-ambiguous and finite set of XSLT mappings to automatically prepare data in order to leverage the component as part of a tool that conforms to the target UML2 component model. Results: The proposed system has been successfully applied to components from four prominent EUD tools. These components were automatically converted to a standard format. In order to validate the proposed system, rich internet applications (RIA) used as an operational support system for operators at a large services company were developed using automatically adapted standard format components. These RIAs would be impossible to develop using each EUD tool separately. Conclusion: The positive results of applying our system for automatically adapting components from current tool catalogues are indicative of the system?s effectiveness. Use of this system could foster the growth of web EUD component catalogues, leveraging a vast ecosystem of user-centred SaaS to further current EUSE trends

    A mobile-based solution for supporting end-users in the composition of services

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-016-3910-4Currently, technologies and applications evolve to create eco-systems made up of a myriad of heterogeneous and distributed services that are accessible anytime and anywhere. Even though these services can be used individually, it is their coordinated and combined usage what provide an added value to end-users. In addition, user¿s wide adoption of mobile devices for daily activities have fostered a shift in the role played by end-users towards Internet data and services. However, existing solutions to service composition are not targeted to ordinary end-users. More easy-to-use tools have to be offered to end-users to make sure that they are successfully accepted and used by them. To this end, the work presented in this paper supports end-users in the creation of service compositions by using mobile devices. We present a Domain Specific Visual Language (DSVL) for end-users that allows them to create service compositions. A tool specifically designed for mobile devices supports this DSVL.This work has been developed with the support of MINECO under the project SMART ADAPT TIN2013-42981-P and co-financed with ERDF.Valderas Aranda, PJ.; Torres Bosch, MV.; Mansanet Benavent, I.; Pelechano Ferragud, V. (2016). A mobile-based solution for supporting end-users in the composition of services. Multimedia Tools and Applications. 1-31. https://doi.org/10.1007/s11042-016-3910-4S131Athreya B, Bahmani F, Diede A, Scaffidi C (2012) End-user programmers on the loose: a study of programming on the phone for the phone. In IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Innsbruck, Austria, pp. 75–82Atoma (2015) Atoomam, a touch of magic. Accesible at: https://www.atooma.com/ . Last time accessed: December 2015Ayora C, Torres V, Weber B, Reichert M, Pelechano V (2013) Enhancing modeling and change support for process families through change patterns. In: Enterprise, business-process and information systems modeling. Springer, Berlin, pp. 246–260Boehm B, Abts C, Brown A, Chulani S, Clark B, Horowitz E, Madchy R, Reifer D, Steece B (2000) Software Cost Estimation with COCOMOII. Upper Saddle River: Prentice HallBPDM (2014) Business Process Defintion Metamodel, volume ii: Process Definitions. http://www.omg.org/spec/BPDM/1.0/volume2/PDFCasati F (1998) Models, semantics, and formal methods for the design of workflows and their exceptions. PhD thesis, MilanoCouper MP, Tourangeau R, Conrad FG, Crawford SD (2004) What they see is what we get: response options for web surveys. Soc Sci Comput Rev 22(1):111–127Cuccurullo S, Francese R, Risi M, Tortora G (2011) MicroApps development on mobile phones. In: End-user development. Springer, Berlin, pp. 289–294Dadam P, Reichert M (2009) The ADEPT project: a decade of research and development for robust and flexible process support. Comput Sci - R&D 23:81–97Danado J, Paternò F (2014) Puzzle: a mobile application development environment using a jigsaw metaphor. J Vis Lang Comput 25(4):297–315Danado J, Davies M, Ricca P, Fensel A (2010) An authoring tool for user generated mobile services. In: Future internet-FIS 2010. Springer, Berlin, pp. 118–127Dey AK, Sohn T, Streng S, Kodama J (2006) iCAP: interactive prototyping of context-aware applications. In: Pervasive computing. Springer, Berlin, pp. 254–271Engeström Y, Miettinen R, Punamäki RL (1999) Perspectives on activity theory. Cambridge University Press, CambridgeGalitz WO (2002) The essential guide to user interface design: an introduction to GUI. In: Design principles and techniques. Wiley, New YorkGil M, Serral E, Valderas P, Pelechano V (2013) Designing for user attention: a method for supporting unobtrusive routine tasks. Sci Comput Program 78(10):1987–2008Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29(7):1645–1660Haines W, Gervasio M, Spaulding A, Peintner B (2010) Recommendations for end-user development. In ACM Workshop on User-Centric Evaluation of Recommender Systems and their Interfaces, Barcelona, Spain, pp. 42-49Häkkilä J, Korpipää P, Ronkainen S, Tuomela U (2005) Interaction and end-user programming with a context-aware mobile application. In: Human-computer interaction-INTERACT 2005. Springer, Berlin, pp. 927–937ICIS (2015) Internet Computing in the Internet of Services. Summer School. Department of Informatics Engineering of the University of Coimbra. Available at: http://icis.uc.pt/ . Last time accessed: December 2015Ifttt (2015) Ifttt, If This Then That. Accesible at: https://ifttt.com/ . Last time accessed: December 2015Larman C, Basili VR (2003) Iterative and incremental development: a brief history. Computer 6:47–56Lewis JR (1995) IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int J Hum Comput Interact 7(1):57–78Liberman H, Paternò F, Klann M, Wulf V (2006) End user development. In: Liberman H, Paternò F, Wulf V (eds) End-user development: an emerging paradigm, vol 9, pp. 427–457Locale (2015) Accesible at: http://www.twofortyfouram.com . Last time accessed: December 2015Lucci G, Paternò F (2014) Understanding end-user development of context-dependent applications in smartphones. In: Human-centered software engineering. Springer, Berlin, pp. 182–198Mansanet I, Torres V, Valderas P, Pelechano V (2014) A Mobile End-Use Tool for service Compositions. X Jornadas de Ciencia e Ingeniería de Servicios (JCIS 2014), 25–35Mansanet I, Torres V, Valderas P, Pelechano V (2015) IoT Compositions by and for the Crowd. XI Jornadas de Ciencia e Ingeniería de Servicios (JCIS 2015)Neil T (2014) Mobile design pattern gallery: UI patterns for smartphone apps. “O’Reilly Media, Inc.”, SebastopolNielsen J (2005) Ten usability heuristics. https://www.nngroup.com/articles/ten-usability-heuristics . Last time accessed: February 2016Renger M, Kolfschoten GL, de Vreede GJ (2008) Challenges in collaborative modeling: A literature review. In Advances in enterprise engineering I, held at CAiSE 2008, Montpellier, 10. 61–77Repenning A, Ioannidou A (2006) What makes end-user development tick? 13 design guidelines. End user development, Human-Computer Interaction Series, vol 9, pp. 51–85Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software engineering. Empir Softw Eng 14(2):131–164Segal J (2005) Two principles of end-user software engineering research, In ACM SIGSOFT software engineering notes (Vol. 30, No. 4, pp. 1–5). ACM, New YorkSerral E, Valderas P, Pelechano V (2013) Context-adaptive coordination of pervasive services by interpreting models during runtime†. Comput J 56(1):87–114Tasker (2015) Tasker, Total Automation for Android. Accesible at: http://tasker.dinglisch.net/ . Last time accessed: December 2015.Uden L, Valderas P, Pastor O (2008) An activity-theory-based model to analyse Web application requirements. Inf Res 13(2):1Valderas P, Pelechano V, Pastor O (2006) A transformational approach to produce web application prototypes from a web requirements model. Int J Web Eng Technol 3(1):4–42Van Deursen A, Klint P, Visser J (2000) Domain-specific languages: an annotated bibliography. Sigplan Notices 35(6):26–36Van Welie M, Trætteberg H (2000) Interaction patterns in user interfaces. In 7th. Pattern Languages of Programs Conference (pp. 13–16)Weber B, Reichert M, Rinderle S (2008) Change patterns and change support features - enhancing flexibility in process-aware information systems. Data Knowl Eng 66:438–466Yu J, Sheng QZ, Han J, Wu Y, Liu C (2012) A semantically enhanced service repository for user-centric service discovery and management. Data Knowl Eng 72:202–21

    A Field Study of End User Camputing Findings and Issues

    Get PDF
    In order to assess the state and direction of end user computing in the St. Louis corporate environment, nineteen IS directors or managers and sixty-seven end users in twenty separate locations were interviewed from December 1982 to March 1983. The end users interviewed represented al 1 level s of corporate management and fifteen different departmental environments. However, fully forty percent of them were from the area of finance and accounting. The end users were fairly evenly divided between those using mainframe resources and those using microcomputers. The findings of the study can be described in the following categories: Historv and Growth Patterns Though end user computing for other than scientific and engineering applications was in its infancy, there were signs of growth. This growth was both speeded up and complicated by the introduction of microcomputers. Apol ications -- Those using mainframe software primarily used appl ications rel ating to data capture, query, and retrieval, while those using micros primarily did analytical applications such as Proj ecti ons, model s, and other \u27what if\u27 procedures. Micro users tended to devel op almost twice the appl ications of mai nframe users. Microcomputer Cost Justi fication Micro users were able to demonstrate some dramatic productivity increases and cost savings. Perceived Problems End users were loath to document, backup, and provide adequate security for the applications they devel oped. Few of them had become programmers but some of them feared that being identified as a computer user could damage their careers. Support and Training Most of the companies had or were developing significant support and training for mainframe oriented end users. But a lack of coherent policy concerning micros meant that little if any support or training was avail abl e for those using them. While .most of those using mainframe resources had significant training, well over twothi rds of micro users were essentially self trained. The end users suggested a wide variety of needed training. For themsel ves they sought advanced skills in appl ication development as well as orientation to the use and selection· of software and training in database and communications technol ogy. They al so sought tral ni ng for other managers, especially top management, in the capabilities, limitations, and importance of computer technology. Five critical issues in the development of end user computing were identified: 1) How can the security of corporate data and the integrity of computer reports be protected in an end user environment without stifling the benefits? 2) How and in what ci rcumstances can and shoul d corporate databases be made accessi bl e to microcomputer users? 3) What kind of educati on do end users need and who will provide it? 4) What is the role of information services in a growing end user environment? 5) How will top management be enabled and encouraged to make those decisions needed to ensure that the new and powerful tool s now avail able and coming quickly over the horizon will be used to revolutionize the productivity and not the stability of the corporation

    CliRtheRoads: An Integrated Approach to Landslide Risk Management on Roads in Serbia

    Get PDF
    In the framework of the project “Mainstreaming Climate Resilience in the Road Transportation Management in Serbia (CliRtheRoads)”, a complex mapping tool was developed to support the Government of Serbia and Public Enterprise Roads of Serbia in climate change adaptation planning and management. The software solution comprises of: a web portal for data entry and management for authorised users; a publicly available web-GIS application; a mobile GIS application; and a back-end database. This paper briefly overviews the system, focusing on the landslide data model. Therein, the main system and software solution breakthrough is automatizing the estimation of investment costs of engineering and non-engineering measures recommended at affected locations along the road network. A retrospective on its applicability and user feedback is also included. The objective was to facilitate seamless road management by providing necessary data in a simple, understandable fashion, indicating which locations on the road network have higher priority. The introduced level of automation allows easier decision-making and investment planning

    Towards the Composition of Services by End-Users: A Mobile-Based Solution

    Full text link
    [EN] Nowadays, we live surrounded by heterogeneous and distributed services that are available to people anytime and anywhere. Even though these services can be used individually, it is through their synchronized and combined usage that end-users are provided with added value. However, existing solutions to service composition are not targeted at ordinary end-users. In fact, these solutions require technical knowledge to deal with the technological heterogeneity in which they are offered to the market. To this end, the paper presents a tool-supported platform that is aided by: (1) EUCalipTool, an end-user mobile tool that implements a Domain Specific Visual Language, which has been specifically designed to compose services on mobile devices; (2) a Faceted Service Registry, which plays the role of gateway between service implementations and end-users, hiding technological issues from the latter when including services in a composition; and (3) a Generation Module, which transforms end-user descriptions into BPMN specification that are interpreted by an execution infrastructure developed for that purpose.This work has been developed with the financial support of the Spanish State Research Agency under the project TIN2017-84094-R and co-financed with ERDF.Valderas, P.; Torres Bosch, MV.; Pelechano Ferragud, V. (2020). Towards the Composition of Services by End-Users: A Mobile-Based Solution. Business & Information Systems Engineering. 62(4):305-321. https://doi.org/10.1007/s12599-019-00617-zS305321624Amir R, Zeid A (2004) A UML profile for service-oriented architectures. In: Companion to the 19th annual ACM SIGPLAN conference on object-oriented programming systems, languages, and applications, Vancouver. ACM, New York, pp 192–193Athreya B, Bahmani F, Diede A, Scaffidi C (2012) End-user programmers on the loose: a study of programming on the phone for the phone. In: IEEE symposium on visual languages and human-centric computing, Innsbruck. IEEE, pp 75–82Atooma (2015) Atooma, a touch of magic. https://www.atooma.com/ . Accessed 1 Oct 2018Ayora C, Torres V, Weber B, Reichert M, Pelechano V (2013) Enhancing modeling and change support for process families through change patterns. In: Nurcan S et al (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS 2013, EMMSAD 2013, vol 147. Lecture Notes in Business Information Processing. Berlin, Heidelberg, pp 246–260Benedek J, Miner T (2002) Measuring desirability: new methods for evaluating desirability in a usability lab setting. In: Proceedings from the Usability’s Professionals Association (UPA)Broke J (1996) SUS. A “quick and dirty” usability scale. In: Jordan P et al (eds) Usability evaluation in industry. Taylor & Francis, London, pp 189–194Cuccurullo S, Francese R, Risi M, Tortora G (2011) MicroApps development on mobile phones. In: Costabile MF, Dittrich Y, Fischer G, Piccinno A (eds) End-User Development. IS-EUD 2011, vol 6654. Lecture Notes in Computer Science. Berlin, Heidelberg, pp 289–294Danado J, Paternò F (2014) Puzzle: a mobile application development environment using a jigsaw metaphor. J Vis Lang Comput 25(4):297–315Danado J, Davies M, Ricca P, Fensel A (2010) An authoring tool for user generated mobile services. In: Berre AJ, Gómez-Pérez A, Tutschku K, Fensel D (eds) Future internet—FIS 2010. FIS 2010, vol 6369. Lecture Notes in Computer Science. Berlin, Heidelberg, pp 118–127Dey AK, Sohn T, Streng S, Kodama J (2006) iCAP: interactive prototyping of context-aware applications. In: Fishkin KP, Schiele B, Nixon P, Quigley A (eds) Pervasive Computing. Pervasive 2006, vol 3968. Lecture Notes in Computer Science. Berlin, Heidelberg, pp 254–271Engeström Y, Miettinen R, Punamäki RL (1999) Perspectives on activity theory. Cambridge University Press, CambridgeErmagan V, Krüger IH (2007) A UML2 profile for service modeling. In: Engels G, Opdyke B, Schmidt DC, Weil F (eds) Model Driven Engineering Languages and Systems. MODELS 2007, vol 4735. Lecture Notes in Computer Science. Berlin, Heidelberg, pp 360–374Galitz WO (2002) The essential guide to user interface design: an introduction to GUI. Design principles and techniques. Wiley, New YorkGuillen J, Miranda J, Berrocal J, Garcia-Alonso J, Murillo JM, Canal C (2014) People as a service: a mobile-centric model for providing collective sociological profiles. IEEE Softw 31(2):48–53Häkkilä J, Korpipää P, Ronkainen S, Tuomela U (2005) Interaction and end-user programming with a context-aware mobile application. In: Costabile MF, Paternò F (eds) Human-Computer Interaction—INTERACT 2005, Lecture Notes in Computer Science, vol 3585. Berlin, Heidelberg, pp 927–937IFTTT (2015) IFTTT, if this then that. https://IFTTT.com/ . Accessed 1 Oct 2018Klusch M, Sycara K (2001) Brokering and matchmaking for coordination of agent societies: a survey. In: Omicini A, Zambonelli F, Klusch M, Tolksdorf R (eds) Coordination of Internet Agents. Springer, Berlin, Heidelberg, pp 197–224Locale (2015). http://www.twofortyfouram.com . Accessed 1 Oct 2018Lucci G, Paternò F (2014) Understanding end-user development of context-dependent applications in smartphones. In: Sauer S, Bogdan C, Forbrig P, Bernhaupt R, Winckler M (eds) Human-Centered Software Engineering. HCSE 2014, Lecture Notes in Computer Science, vol 8742. Berlin, Heidelberg, pp 182–198Paolucci M, Kawamura T, Payne TR, Sycara K (2002) Semantic matching of web services capabilities. In: Horrocks I, Hendler J (eds) The Semantic Web—ISWC 2002, Lecture Notes in Computer Science, vol 2342. Berlin, Heidelberg, pp 333–347Renger M, Kolfschoten GL, de Vreede GJ (2008) Challenges in collaborative modeling: a literature review. In: Advances in enterprise engineering I, vol 10, Montpellier, pp 61–77Repenning A, Ioannidou A (2006) What makes end-user development tick? 13 design guidelines. In: End user development. Human-computer interaction series, vol 9. Springer, Berlin, pp 51–85Rumbaugh J, Jacobson I, Booch G (2004) The unified modeling language reference manual. Pearson, LondonSegal J (2005) Two principles of end-user software engineering research. ACM SIGSOFT Softw Eng Notes 30(4):1–5Serral E, Valderas P, Pelechano V (2013) Context-adaptive coordination of pervasive services by interpreting models during runtime. Comput J 56(1):87–114Tasker (2015) Tasker, total automation for Android. http://tasker.dinglisch.net/ . Accessed 1 Oct 2018Uden L, Valderas P, Pastor O (2008) An activity-theory-based model to analyse web application requirements. Inf Res 13(2):1Valderas P, Pelechano V, Pastor O (2006) A transformational approach to produce web application prototypes from a web requirements model. Int J Web Eng Technol 3(1):4–42Valderas P, Torres V, Mansanet I, Pelechano V (2017) A mobile-based solution for supporting end-users in the composition of services. Multimed Tools Appl 76(15):16315–16345Workflow.is (2018) Workflow. Spend less taps, get more done. https://workflow.is/ . Accessed 1 Oct 2018Yu J, Sheng QZ, Han J, Wu Y, Liu C (2012) A semantically enhanced service repository for user-centric service discovery and management. Data Knowl Eng 72:202–21

    Requirements Engineering in the Context of Big Data Software Applications

    Get PDF
    Big Data applications, like traditional applications, serve end-user needs except that underlying the software system is Big Data which the system operates upon to improve or provide different end-user experience with the application. In comparison to traditional software development where the development processes are usually well-established, the development of Big Data applications is - to our knowledge - not explored to any significant degree. With Big Data, characterised by the well-known V attributes, questions arise as to how to elicit, specify, analyse, and document system requirements. While requirements engineering (RE) has long been recognised as critical for downstream development of computer systems, the field is currently passive about how to deal with characteristics of data in the RE process in the development of Big Data software applications. This problem is compounded by the fact that the RE field had no domain model (until recently) for Big Data systems depicting the various artefacts, activities, and relationships amongst them that, in turn, can be used to support RE specifications, product design, project decisions, and maintenance. In this thesis research, we investigated empirically a number of issues in RE involving Big Data applications, leading to the following research contributions: (i) knowledge concerning (a) the state of RE research involving Big Data applications, and (b) RE practices on real-world Big Data applications projects; (ii) a set of RE challenges in creating Big Data applications; (iii) a meta-model depicting the various RE artefacts and their inter-relationships in the context of Big Data software development projects; (iv) a goal-oriented approach (composed of a systematic process, requirements logging templates, checklists, and a requirements language) for modelling quality requirements for Big Data applications; and (v) a prototype tool that implements the proposed Big Data goal-oriented requirements language. These results lay a foundation in RE research involving Big Data applications development with anticipated impact in real-world projects and in RE research

    A social network for supporting end-users in the composition of services: definition and proof of concept

    Full text link
    [EN] Nowadays, end users are surrounded by plenty of services that are somehow supporting their daily routines and activities. Involving end users into the process of service creation can allow end users to benefit from a cheaper, faster, and better service provisioning. Even though we can already find tools that face this challenge, they consider end users as isolate individuals. In this paper, we investigate how social networks can be used to improve the composition of services by end users. To do so, we propose a graph-based definition of a social structure, and analyse how social connections can be exploited to both facilitate end users to discover services through browsing these connections, and recommend services to end users during the composition activity. As proof of concept, we implement and evaluate the proposed social network in the context of EUCalipTool, a mobile end-user environment for composing services.This work has been developed with the financial support of the Spanish State Research Agency under the Project TIN2017-84094-R and co-financed with ERDF.Valderas, P.; Torres Bosch, MV.; Pelechano Ferragud, V. (2020). A social network for supporting end-users in the composition of services: definition and proof of concept. Computing. 102(8):1909-1940. https://doi.org/10.1007/s00607-020-00796-8S190919401028Yu J, Sheng QZ, Han J, Wu Y, Liu C (2012) A semantically enhanced service repository for user-centric service discovery and management. Data Knowl Eng 72:202–218Daniel F, Casati F, Benatallah B, Shan M-C (2009) Hosted universal composition: models, languages and infrastructure in mashart. In: International conference on conceptual modeling. Springer, pp 428–443Danado J, Paternò F (2014) Puzzle: a mobile application development environment using a jigsaw metaphor. J Vis Lang Comput 25(4):297–315Aghaee S, Pautasso C (2014) End-user development of mashups with naturalmash. J Vis Lang Comput 25(4):414–432Valderas P, Torres V, Mansanet I, Pelechano V (2017) A mobile-based solution for supporting end-users in the composition of services. Multimed Tools Appl 76(15):16315–16345Al-Masri E, Mahmoud QH (2007) Wsce: a crawler engine for large-scale discovery of web services. In: IEEE international conference on web services (ICWS 2007). IEEE, pp 1104–1111Santanche A, Nath S, Liu J, Priyantha B, Zhao F (2006) Senseweb: browsing the physical world in real time. Demo Abstract, ACM/IEEE IPSN06. Nashville, TN, pp 1–2Nielsen J (2015) Tops of 2015: digital, media and entertainment. http://www.nielsen.com/us/en/insights/news/2015/tops-of-2015-digital.html, 2015. Accessed Jan 2019IFTTT, If this then that. https://ifttt.com/, 2015. Accessed Jan 2019Dlvr.it, Social media auto posting & scheduling tool. https://dlvrit.com/, 2018. Accessed: Jan 2020Zapier, Connect your apps and automate workflows. https://zapier.com/, 2018. Accessed Jan 2019Node-RED, Flow-based programming for the internet of things. https://nodered.org/, 2017. Accessed Jan 2019Maaradji A, Hacid H, Daigremont J, Crespi N (2010) Towards a social network based approach for services composition. In: 2010 IEEE international conference on communications. IEEE, pp 1–5Soriano J, Lizcano D, Hierro JJ, Reyes M, Schroth C, Janner T (2008) Enhancing user-service interaction through a global user-centric approach to SOA. In: 4th international conference on networking and services (ICNS 2008). IEEE, pp 194–203Jiang P, Ding K, Leng J (2016) Towards a cyber-physical-social-connected and service-oriented manufacturing paradigm: social manufacturing. Manuf Lett 7:15–21Tamburri DA, Lago P, Vliet Hv (2013) Service networks for development communities. In: Proceedings of the 2013 international conference on software engineering. IEEE Press, pp 1253–1256Maamar Z, Wives LK, Badr Y, Elnaffar S (2009) Even web services can socialize: a new service-oriented social networking model. In: 2009 international conference on intelligent networking and collaborative systems. IEEE, pp 24–30Yu S, Woodard CJ (2008) Innovation in the programmable web: characterizing the mashup ecosystem. In International conference on service-oriented computing. Springer, pp 136–147Chen W, Paik I, Hung PC (2013) Constructing a global social service network for better quality of web service discovery. IEEE Trans Serv Comput 8(2):284–298Ren M, Ren L, Jain H (2018) Manufacturing service composition model based on synergy effect: a social network analysis approach. Appl Soft Comput 70:288–300Kranz M, Roalter L, Michahelles F (2010) Things that twitter: social networks and the internet of things. In: What can the internet of things do for the citizen (CIoT) workshop at the 8th international conference on pervasive computing (Pervasive 2010), pp 1–10Bleecker J (2006) A manifesto for networked objects—cohabiting with pigeons, ARPHIDS and AIBOS in the internet of things. In: Proceedings of the 13th international conference on human–computer interaction with mobile devices and services, MobileHCI, pp 1–17Atzori L, Iera A, Morabito G (2011) Siot: giving a social structure to the internet of things. IEEE Commun Lett 15(11):1193–1195Guinard D, Fischer M, Trifa V (2010) Sharing using social networks in a composable web of things. In: PerCom workshops, pp 702–707Meissa M, Benharzallah S, Kahloul L (2017) Service composition based on the social relations in the internet of things. In: The 18th international Arab conference on information technology (ACIT’2017)Wang S, Zhou A, Yang M, Sun L, Hsu C-H, Yang F (2017) Service composition in cyber-physical-social systems. IEEE Transactions on Emerging Topics in Computing. IEEE, pp 1–1. https://doi.org/10.1109/TETC.2017.2675479Reuter C, Kaufhold M-A, Ludwig T (2017) End-user development and social big data–towards tailorable situation assessment with social media. In: New perspectives in end-user development. Springer, pp 307–332Massa D, Spano L (2016) Facemashup: an end-user development tool for social network data. Future Internet 8(2):10Boyd DM, Ellison NB (2007) Social network sites: definition, history, and scholarship. J Comput Mediat Commun 13(1):210–230Hung PC, Li H, Jeng J-J (2004) Ws-negotiation: an overview of research issues. In: Proceedings of the 37th annual Hawaii international conference on system sciences, 2004. IEEE, p 10Ding Z, Xiao L, Hu J (2008) Performance analysis of service composition using ordinary differential equations. In 2008 12th IEEE international workshop on future trends of distributed computing systems. IEEE, pp 30–36Milanovic N, Malek M (2004) Current solutions for web service composition. IEEE Internet Comput 8(6):51–59Lieberman H, Paternò F, Klann M, Wulf V (2006) End-user development: an emerging paradigm. In: End user development. Springer, pp 1–8Segal J (2005) Two principles of end-user software engineering research. ACM SIGSOFT Softw Eng Not 30(4):1–5Workflow.is, Workflow. spend less taps, get more done. https://workflow.is/, 2018. Accessed Jan 2019Dey AK (2001) Understanding and using context. Pers Ubiquit Comput 5(1):4–7Steinbock D (2005) The mobile revolution: the making of mobile services worldwide. Kogan Page Publishers, LondonSnoonian D (2003) Smart buildings. IEEE Spectr 40(8):18–23Milicevic AK, Nanopoulos A, Ivanovic M (2010) Social tagging in recommender systems: a survey of the state-of-the-art and possible extensions. Artif Intell Rev 33(3):187–209Ermagan V, Krüger IH (2007) A UML2 profile for service modeling. In: International conference on model driven engineering languages and systems. Springer, pp 360–374Amir R, Zeid A (2004) A UML profile for service oriented architectures. In: Companion to the 19th annual ACM SIGPLAN conference on object-oriented programming systems, languages, and applications. ACM, pp 192–193Paolucci M, Kawamura T, Payne TR, Sycara K (2002) Semantic matching of web services capabilities. In: The semantic web—ISWC 2002, (Berlin, Heidelberg). Springer, Berlin, pp 333–347Klusch M, Sycara K (2001) Brokering and matchmaking for coordination of agent societies: a survey. In: Coordination of internet agents. Springer, pp 197–224Wellman B, Berkowitz SD (1988) Social structures: a network approach. CUP ArchiveEhrig H, Mahr B (2012) Fundamentals of algebraic specification 1: equations and initial semantics, vol 6. Springer, Berlinde Lara J, Bardohl R, Ehrig H, Ehrig K, Prange U, Taentzer G (2007) Attributed graph transformation with node type inheritance. Theor Comput Sci 376(3):139–163Valderas P, Torres V, Pelechano V (2019) A graph-based definition of a social network for the composition of services by end-users. Technical report pros-tr-2019-01. tech rep, Universitat Politècnica de València. Accessed Oct 2019Valderas P, Torres V, Pelechano V (2019) Towards the composition of services by end-users. In: Business & information systems engineering, pp 1–17Benedek J, Miner T (2002) Measuring desirability: new methods for evaluating desirability in a usability lab setting. Proc Usability Prof Assoc 2003(8–12):57Smith C (2018) Interesting IFTTT statistics and facts. https://expandedramblings.com/index.php/ifttt-statistics-and-facts/. Accessed Oct 2019Ryan M (2016). The average twitter user now has 707 followers. https://kickfactory.com/blog/average-twitter-followers-updated-2016/. Accessed Jan 2020Segal J (2003) The nature of evidence in empirical software engineering. In: 11th annual international workshop on software technology and engineering practice. IEEE, pp 40–47Burnett M, Cook C, Rothermel G (2004) End-user software engineering. Commun ACM 47(9):53–58Schuler D, Namioka A (1993) Participatory design: principles and practices. CRC Press, Boca RatonFischer G, Giaccardi E, Ye Y, Sutcliffe AG, Mehandjiev N (2004) Meta-design: a manifesto for end-user development. Commun ACM 47(9):33–37Bouvin NO (1999) Unifying strategies for web augmentation. In: Proceedings of the 10th ACM conference on hypertext and hypermedia: returning to our diverse roots: returning to our diverse roots. Citeseer, pp 91–100Firmenich D, Firmenich S, Rivero JM, Antonelli L, Rossi G (2018) Crowdmock: an approach for defining and evolving web augmentation requirements. Requir Eng 23(1):33–61Gil M, Serral E, Valderas P, Pelechano V (2013) Designing for user attention: a method for supporting unobtrusive routine tasks. Sci Comput Program 78(10):1987–200

    Designing AI Experiences: Boundary Representations, Collaborative Processes, and Data Tools

    Full text link
    Artificial Intelligence (AI) has transformed our everyday interactions with technology through automation, intelligence augmentation, and human-machine partnership. Nevertheless, we regularly encounter undesirable and often frustrating experiences due to AI. A fundamental challenge is that existing software practices for coordinating system and experience designs fall short when creating AI for diverse human needs, i.e., ``human-centered AI'' or HAI. ``AI-first'' development workflows allow engineers to first develop the AI components, and then user experience (UX) designers create end-user experiences around the AI's capabilities. Consequently, engineers encounter end-user blindness when making critical decisions about AI training data needs, implementation logic, behavior, and evaluation. In the conventional ``UX-first'' process, UX designers lack the needed technical understanding of AI capabilities (technological blindness) that limits their ability to shape system design from the ground up. Human-AI design guidelines have been offered to help but neither describe nor prescribe ways to bridge the gaps in needed expertise in creating HAI. In this dissertation, I investigate collaboration approaches between designers and engineers to operationalize the vision for HAI as technology inspired by human intelligence that augments human abilities while addressing societal needs. In a series of studies combining technical HCI research with qualitative studies of AI production in practice, I contribute (1) an approach to software development that blurs rigid design-engineering boundaries, (2) a process model for co-designing AI experiences, and (3) new methods and tools to empower designers by making AI accessible to UX designers. Key findings from interviews with industry practitioners include the need for ``leaky'' abstractions shared between UX and AI designers. Because modular development and separation of concerns fail with HAI design, leaky abstractions afford collaboration across expertise boundaries and support human-centered design solutions through vertical prototyping and constant evaluation. Further, by observing how designers and engineers collaborate on HAI design in an in-lab study, I highlight the role of design `probes' with user data to establish common ground between AI system and UX design specifications, providing a critical tool for shaping HAI design. Finally, I offer two design methods and tool implementations --- Data-Assisted Affinity Diagramming and Model Informed Prototyping --- for incorporating end-user data into HAI design. HAI is necessarily a multidisciplinary endeavor, and human data (in multiple forms) is the backbone of AI systems. My dissertation contributions inform how stakeholders with differing expertise can collaboratively design AI experiences by reducing friction across expertise boundaries and maintaining agency within team roles. The data-driven methods and tools I created provide direct support for software teams to tackle the novel challenges of designing with data. Finally, this dissertation offers guidance for imagining future design tools for human-centered systems that are accessible to diverse stakeholders.PHDInformationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169917/1/harihars_1.pd

    Unleashing the Effectiveness of Process-oriented Information Systems: Problem Analysis, Critical Success Factors, Implications

    Get PDF
    Process-oriented information systems (IS) aim at the computerized support of business processes. So far, contemporary IS have often fail to meet this goal. To better understand this drawback, to systematically identify its rationales, and to derive critical success factors for business process support, we conducted three empirical studies: an exploratory case study in the automotive domain, an online survey among 79 IT professionals, and another online survey among 70 business process management (BPM) experts. This paper summarizes the findings of these studies, puts them in relation with each other, and uses them to show that "process-orientation" is scarce and "process-awareness" is needed in IS engineering

    CitySim Guide : Urban Energy Modelling

    Get PDF
    The proposed work is a dynamic guide, particularly designed for students, researchers and planners, to the tool CitySim. CitySim is an urban energy modelling tool, which belongs to the energy simulation software family. Its peculiar feature is to consider the simulation scene as a complex urban environment, where the energy fluxes interact with each other. Currently, several works (peer reviewed journals and conferences articles) were already performed in order to present the main features of the tool, as well as the physical model behind it, but a complete guide, able to fully describe the tool, is currently missed. Due to the rising interest on the urban energy modelling domain, and its enormous potential as political instrument to manage the energy fluxes within the urban environment, the proposed work represents an essential instrument of support for researchers, students and planners. The proposed book, named “CitySim Guide. Urban energy modelling” is a guide to the software CitySim, able to explain, step by step, how to use this software. The guide presents both the software CitySim, as well as the user graphical interface CitySim Pro. This work is subdivided into three main parts: i) an introduction, with the input data and tools required to create the CitySim model, ii) the physical models behind the tool, the graphical user interface, and iii) a real case study in the city of Torino (Italy). In the introduction, all the required input data to create the CitySim model are presented, as well as the software tools that will be used, showing their role and the way they are integrated within the CitySim features. When introducing the tools, the downloading and installation procedure will be also shown. In the second part, the description of core of the tool are explained, from the buildings features (e.g. the physical properties of the envelope, the renewable energy systems, the occupants behaviors, etc.) to the outdoor surfaces properties (e.g. albedo, thermal conductivity, evapotranspiration, etc.). In the end, a detailed description of the results is reported. In the third part, the case study of a district in the city of Turin (Italy) is described from the processing of input data, to the final phase of the results. The last part is quite important in order to understand the tool: the set-up of the model, as well as the results are presented in detail, providing an important instrument to the users, which are able to reproduce the exercise. The proposed work is an important instrument for the teaching activities: it will be used both in the Politecnico of Torino, as well as in the EPFL of Lausanne, as support to the courses in the Bachelor and Master level of Architecture, Civil and Environmental Engineering, Territorial, Urban, Environmental and Landscape Planning, as well as for the Master Thesis and the semester projects. Additionally, as evident from the references provided in the end of the work, CitySim is an important instrument, well used in the academic world. Consequently, the guide has a strong potential to be used worldwide, by researchers in the field of the urban energy modelling
    corecore