
Automated end user-centred adaptation of web components through automated

description logic-based reasoning
David Lizcano a, , Fernando Alonso b, Javier Soriano b, Genoveva López b

a Open University of Madrid, UDIMA, School of Computer Science, Collado Villalba 28400, Madrid, Spain
b Universidad Politécnica de Madrid, School of Computer Engineering, Campus de Montegancedo, s/n, Boadilla del Monte 28660, Madrid, Spain

a b s t r a c t

Context: This paper addresses one of t h e major end-user deve lopment (EUD) challenges, namely, h o w to pack today’s EUD suppor t tools wi th
composable e lements . This would give end users be t te r access to m o r e componen t s which they can use t o build a solut ion tailored to their o w n needs .
The success of later end-user software engineering (EUSE) activities largely depends on h o w m a n y componen t s each tool has and h o w adaptable
componen t s a re t o mult iple problem domains .

Objective: A sys tem for automatical ly adapt ing he terogeneous componen t s t o a c o m m o n development envi ronment would offer a sizeable saving of
t ime and resources wi th in t h e EUD suppor t tool construc-t ion process. This paper presents an au tomated adapta t ion sys tem for transforming EUD
componen t s to a s tandard format.

Method: This sys tem is based on t h e use of description logic. Based on a generic UML2 data model , th is description logic is able to check whe the r a n end-
user componen t can b e t ransformed t o th i s modell ing language through subsumpt ion or a s a n instance of t h e UML2 model . Besides it automatically finds a
con-sistent, non-ambiguous and finite set of XSLT mappings t o automatically prepare da ta in order t o leverage t h e componen t as pa r t of a tool t ha t
conforms to t h e target UML2 componen t model .

Results: The proposed sys tem h a s been successfully applied t o componen t s from four p rominen t EUD tools. These componen t s were automatical ly
converted t o a s tandard format. In order t o validate t h e pro-posed system, rich in ternet applications (RIA) used as an operat ional suppor t sys tem for
opera tors a t a large services company w e r e developed using automatically adap ted s tandard format components . These RIAs would b e impossible t o
develop using each EUD tool separately.

Conclusion: The positive resul ts of applying our sys tem for automatically adapt ing componen t s from cur- rent tool catalogues a re indicative of t h e
system’s effectiveness. Use of this sys tem could foster t h e g rowth of w e b EUD componen t catalogues, leveraging a vast ecosystem of user-centred
SaaS t o further current EUSE t rends .

1. In t roduc t ion

Interest and investment in end-user development (EUD) are

mount ing all the t ime, and the impact of EUD [17] looks set to out ­

strip forecasts made by Christopher Scaffidi, Brad Myers and Mary

Shaw back in 2005 [33], predicting that over 55 million end users

(users without programming skills) would be developing their

own applications by the end of 2013. There are many EUD tools

for this purpose, such as spreadsheets, web-based mashup devel­

opment environments, e-mail or database data filtering tools,

Corresponding author. Tel.: +34 918 56 16 99; fax: +34 918 56 16 97.

E-mail address: : david.lizcano@udima.es (D. Lizcano).

which help millions of end users to personally develop software

solutions to mee t their own particular needs.

Within the w e b environment, many software suppliers, includ­

ing Microsoft, Apple, IBM, Yahoo!, Oracle, etc., have developed

their own support tools to help end users develop applications,

particularly rich internet applications (RIAs) built from software

components, offering DIY (do-it-yourself) guidance on evolving

end-user developments to mee t end-user demands and require­

ment s [20], like [11] (now part of Chrome Productivity Tools),

Yahoo! Pipes and Dapper [44,43], Microsoft Popfly [29], Open

[16], JackBe [14], AMICO [2], Marmite [28] or EzWeb [7].

These solutions are based on the visual connection of compo­

nents of different levels of abstraction within a graphical user

interface (GUI). End users can use these components to access

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.05.021&domain=pdf
mailto:david.lizcano@udima.es

and leverage all sorts of services and resources to meet their needs.
Although these tools have major weaknesses and do not always fit
the EUD bill [20,17], they do offer a number of EUD functionalities
that are useful for building end-user solutions. Apart from the
visual development interface that they offer end users, their other
key distinctive feature is the type of components that they each
provide. The components that they each offer are useful for build­
ing web solutions with very limited functionality. For example,
iGoogle is useful for creating a personal web portal, Yahoo! Pipes
and Dapper are useful for mixing heterogeneous plain or rich text
sources to create a new RSS feed, and Open Kapow is useful for cre­
ating a web portal built with screen scrapings from heterogeneous
sites. The tool component catalogues limit the type of problems
that they can address. Combining their catalogues would consti­
tute a major qualitative leap in terms of the type and complexity
of the solutions that could be produced. But to date each tool uses
a different component model which rules out their joint use.

Then again, a new composite development model for EUD tools
[19] is emerging. However, it has not been specified or structured
yet. As far as we know, no detailed study has been conducted of
tool components and success factors and generated products. The
pressure to compete in an ever more globalized EUD solution eco­
system has driven developers (Google, Yahoo!, Microsoft, Amazon,
Apple, Sun, IBM, etc.) to develop and optimize their own tools
without specifying an underlying common component model.
The result is that each tool offers its own component or component
catalogue, and the components used in some tools are not usable in
others.

Taking into account that EUD development is a visual compo­
nent-based composition process as part of which data flows are
created among components, two fundamental conclusions have
emerged over the last few years in the field of web EUD. First, there
must be a common web component model for all tools and, second,
EUD success is closely related to the number and variety of web
components available to users [20]. Now, most end users do not
know how to program, and the only option that they have for
developing a solution to their problem is to use components avail­
able in their work tool catalogue. But end users will not be able do
this if their catalogue does not contain a component capable of per­
forming the computation or accessing the data or operation/func­
tion that they require to solve the problem at hand. The above
tools have actually been more or less successful depending on
the wealth, variety and number of available components in their
catalogues. We often find that one particular catalogue contains
some components but not others, which are, on the other hand,
available in other tools.

The challenge, then, is to come up with a system that is capable
of adapting the components of these tools to a universal web com­
ponent catalogue including parts of as many tools as possible and
giving users access to a comprehensive component ecosystem [27].
As far as we know, there is no such system to date. On this ground,
we have defined and specified a EUD web component model. Based
on this model, we propose an automated system for translating
web components existing in current tool catalogues and defined
in XML to this model. This system is able to feed a catalogue that
conforms to this model by automatically adapting heterogeneous
components. This system is a new and original contribution to
the EUD field.

The underlying component model was presented in [22]. The
proposed component model is grounded on the success factors of
other analysed EUD tools, as described in [23]. Our previous statis­
tical studies with end users have demonstrated its effectiveness
and usefulness [24]. We have also built an EUD environment that
instantiates this component model, called EzWeb [8]. This environ­
ment was first reported in [20]. This tool was built as part of the
Networked European Software and Service Initiative (NESSI)

strategic research project. EzWeb is now being used as part of
two European 7th Framework Programmes that we are partnering:
as part of the Mashup-as-a-Service solution of 4CaaSt (building the
Platform as-a-Service of the Future) [1], and as part of the applica­
tions and services ecosystem and delivery framework generic ena-
blers for end users to build application mashups of FI-WARE
(building the Future Internet Core Platform) [9]. Thanks to the
experience that we have gathered over the last five years, part of
which is accessible at the web site [26], we have found that a good
end user-centred development environment and a good compo­
nent model is insufficient for non-programmer users to efficiently
build their own composite applications to meet particular require­
ments. In order to achieve this goal, it is necessary, on the one
hand, to provide a wizard to translate requirements to intercon-
nectable components, as reported in [25], and, on the other, to
heavily populate a component catalogue. This research is part of
this line, which we have not addressed so far. A system for auto­
matically adapting heterogeneous components of several EUD
tools would make it possible to create an enormous ecosystem of
components that are compatible with each other and with a con­
sistent EUD development environment.

This article presents a system capable of automatically translat­
ing and adapting heterogeneous components with XML templates,
created by manufacturers like Yahoo!, Google or Open Kapow, to
the common components model that we propose. Thus, compo­
nents by any manufacturer can be imported to the common stan­
dard component catalogue, which component model compliant
development tools, like EzWeb, can use. This is a key step towards
standardizing web components for web application EUD.

The proposed automated adaptation system is a method of
adapting EUD web components (respectively denoted by their
manufacturers as pipes, operators, gadgets, widgets, etc.) with
the potential for adapting external components to any EUD tool.
Besides, the system is potentially applicable in other computing
fields requiring the adaptation of an XML file to another schema
or template, defined according to its XSD.

The research questions addressed in this paper are:

• RQ1: Is the proposed system for automatically adapting EUD
components capable of adapting any XML EUD component to
a standard format?

• RQ2: Are the automatically adapted components as efficient as
the original components?

• RQ3: What does component adaptation time depend on?
• RQ4: How efficient is the automatic EUD adaptation system in

terms of time and resources taken to adapt each component
compared with manual component adaptation?

The remainder of the article is structured as follows. Section 2
details work related to this article. First, we explain what compo­
nents are like today, what format they use and why heterogeneity
is a handicap. Then we present earlier research concerned with
automated reasoning on software component models and UML to
clarify the elements that have been used in this paper and why
none of the existing proposals is valid for achieving our aim. Sec­
tion 3 details the designed automated adaptation model, its archi­
tecture, how it works, the description logic-based mathematical
groundwork used to support the mapping and an example of the
automated adaptation of a component to the standard format. Sec­
tion 4 reports an analysis of the automated component adaptation
system applied to different EUD tool components and responds to
each of the stated research questions. Section 5 reports an experi­
ment as part of a project partnered by one of the world’s largest
companies. This scenario was useful for examining the potential
of the proposed system and specifying the real saving in end-user
time and effort. Section 6 discusses the threats to validity of the

analysis and the experiment reported. Finally, Section 7 outlines
some conclusions, highlighting the contributions of this research
and how the technology can be transferred to other branches of
knowledge. Additionally, it illustrates future research lines.

2. Related work

This section details work related to our proposal. The idea
behind the proposal is to apply existing notions of automated rea­
soning on UML models researched in diverse fields of knowledge
engineering to automatically adapt components to a target meta-
model (and its component format). The adapted components
would be added to a universal components catalogue for use by
EUD tools that conform to the metamodel.

2.1. EUD components: format, heterogeneity and importance

EUD web tools offer end users the opportunity to develop com­
posite web applications by visually composing components linked
by data flows and events. For these tools to be successful, they
need to cater for end user needs. For example, they need to match
the level of abstraction at which end users devise and analyse solu­
tions by breaking down problems into easier-to-solve parts, some­
thing which very few tools manage to do [32]. Development will be
unsuccessful, however, if the tool is missing any component
required to perform the target functionality at any stage of the
development of the solution that they have devised. Therefore, a
well-fed catalogue of components is a necessary, albeit not suffi­
cient, condition for achieving success among end users.

All EUD tool manufacturers, including Yahoo!, Google, Micro­
soft, Apple, Open Kapow, Presto, have made it their business to
build a host of components for their tools. They provide the best
possible support (in the shape of public and documented APIs,
component development environments, well-defined templates,
etc.) to enable users with some programming knowledge to build
their own components. However, providers have not yet negoti­
ated a standard component format, metadata and wrappings
required for component integration with tool APIs and runtime
engines. All providers have adopted their own formats and compo­
nent models. They make sure that their components are used for
their own platform only (often because they have expended sub­
stantial resources on their construction) because it is the number
of available components that will set their platform apart from
others. The race to build a catalogue containing more components
than competitor tools has precluded the search for solutions for
integrating components of one platform into another. Although
components are public and can be replicated, adapted or even used
commercially under licence (as some portals like Programmable
Web actually do), providers do not encourage such activities, nor
do they publish enough documentation, IDEs or APIs for managing
the components outside the context of the tool for which they
were built. This does not really benefit end users, whose main con­
cern is to gain access to the largest possible ecosystem of compo­
nents for developing their solution, irrespective of who supplied
each component.

Even so, all the tools use the XML language to define compo­
nents, their operation and their visual appearance, integrated with
tool-dependent HTML, JSP, SOAP, JavaScript, scripting PHP ele­
ments, etc. Additionally, they define an XSD/XML template for
components that are valid for their tool. Throughout the article,
we will give examples of tool components and their templates to
illustrate these formats.

Some initiatives, such as UWA (Universal Widget API) led by
Netvibes [30], or attempts by WAI (Web Accessibility Initiative),
the Web API Working Group and WAF (Web Application Format)

set up within W3C [41,40,39], aimed to create a common web
component implementation format. They have all failed so far
because manufacturers are reluctant to negotiate and agree on a
common component model. Manufacturers are more concerned
about expanding their own catalogue than the potential benefits
of a common model and format for the EUD field.

As manufacturers are extremely unlikely to commit to a com­
mon specification of components and their formats, our proposal
is to automatically map components to a common model that is
accessible for existing tools. These components could be used as
part of a common catalogue irrespective of their source. All tools
that conform to the common component model, like EzWeb, could
use this universal catalogue. In order to put together such a cata­
logue we have built an automated component transformation sys­
tem, which extracts the XSD (equivalent to a UML2 model) from the
component XML and then uses description logic to map the original
UML to the target common model. There are similar proposals in
other fields, which are reviewed and documented in Section 2.2.

2.2. Automated reasoning and mapping on UML models

There are many proposals and papers based on the application
of description logic and inference systems for automated reasoning
on data and component models. One of the earliest proposals in
this field was reported in [5] and put forward a system of auto­
mated reasoning on UML based on description logics. The aim of
the system was to provide computer-aided support during the
application design phase in order to automatically detect relevant
properties, such as inconsistencies and redundancies in UML dia­
grams. This proposal maps the UML model to basic DLR-type
description logic. Although unable to infer changes to such models,
it is capable of reasoning and discovering if any data model
includes any omissible loops, interdependencies or relationships.
This reasoning system was applied to a great many data models
during software maturity improvement processes at Telecom Italia
in order to support company data warehousing. The proposal has
been further evolved to increase its potential, as described in [4].

Automated reasoning concepts were applied to structurally
complex datasets and components for the first time in [36]. They
introduced data metamodelling to automate data changes in order
to homogenize the data structure. In this case, the data all came
from the same problem domains, but it was the first time this type
of reasoning was used to make changes to data schemas and syn­
tax, although the proposal was confined to changes to their phys­
ical format in a database. Haarslev and Möller were the first to
document the benefits of a DL Reasoner (RACER) as a tool for this
type of automated reasoning [37].

Sattler [35] suggested how to describe terminological knowl­
edge based on description logic in order to transform entity-rela­
tionship models built in the software engineering design phases
to refined models based on design patterns. This was later used
in several domains for mapping general-purpose UML models to
other models with different features [15,38]. In both cases, UML
models and metamodels were transformed as part of model-driven
software engineering (model-driven approaches or MDA). Trans­
formations like these were also applied in [10], where the MOFLON
tool was used to propose, by means of inference rules, changes to
the software models for developing goal-driven applications. These
proposals are the seed for the automated adaptation proposed in
this research, although none are directly applicable to the problem,
as EUD components and their XML templates are unlike the basic
UML models on which the above proposals operate.

With the Internet and XML boom, a host of proposals emerged,
such as [6], which paved the way for applying all possible auto­
mated transformations and checks on UML enabled by description
logic to data sources modelled by their XSD/XML schema.

Most description logic applications in software engineering
have targeted the UML-based analysis and design phases. How­
ever, very little research has focused on expediting or supporting
software development as such. There are, however, several model
reasoning and mapping systems applicable to the automated adap­
tation of heterogeneous data sources, which could be suited for
component and component template adaptation. One example is
[42]. They proposed a DLRDM description logic for automated rea­
soning and mapping of metadata accompanying the data mining-
based KDD process, whose expressive richness is very similar to
the logic proposed in this paper. To do this, they used a reasoning
model based on AR-DMM (Automatic Reasoning in Data Mining
Modeling) to automate data pre-processing and check data consis­
tency. Noteworthy in the field of heterogeneous data source adap­
tation is research by Vavliakis et al. [18] proposing a framework for
unifying and transforming heterogeneous data sources for query,
processing and reasoning in a relational database. They proposed
a description logic for transforming relational databases into ontol­
ogies for semantic reasoning, which, however, is unable to homog­
enize the data syntax. Hence it is not applicable to the adaptation
of software components. Another noteworthy proposal is [31], pro­
posing plausibility description logic (DLP) for handling information
sources with heterogeneous data representation formats. They
proposed a system that generates a common data model from dif­
ferent data sources, all of which it subsumes. This is useful for
semantic web modelling, but is not valid if the generated final
model is to be used to perform automated tasks, like adapting syn­
tax to a known API, as its syntax and structure is completely
unknown.

The use of description logics for mapping data sources in order
to homogenize their structure and syntax is the key to understand­
ing our proposal, which aims to leverage the success of such pro­
posals in the field of knowledge engineering in order to adapt
software components to support EUSE.

As far as we know, there are no proposals exploiting the proven
advantages and applications of description logic for mapping UML
or XSD models to other compatible models. These transformations
are able to map heterogeneous software components from differ­
ent domains and adapt them to a predefined universal schema.
This shift can be used to adapt a software component to more than
one end-user software development environment. This is the aim
of the research reported here.

3. System for automated EUD component adaptation based on
the use of description logic

This article reports an automated adaptation system (AAS)
which we built from scratch. The AAS uses description logic to
adapt heterogeneous web components to a known template. Based
on a generic UML2 data model that we propose in this paper, it is
able to check whether an XML EUD component is a non-ambiguous
instance consistent with the above model and automatically finds
a finite set of XSLT mappings to adapt the original component to
the target model. This section describes our contributions to this
problem domain: the underlying generic component model, the
architecture on which our automated component adaptation pro­
posal is based, the mathematical description logic-based specifica­
tion of the generic UML2 component model. It concludes with an
example illustrating the automatic adaptation of a component to
standard format.

3.1. Component model

The first step in the application of the proposed automated
adaptation system is to define a EUD universal component concep-

tual model in UML2. This model specifies what a EUD component is
generally like. This model was published in [25] but, for clarity’s
sake, is briefly described here. The proposed model (Fig. 1) sub­
sumes existing EUD tools and is able to describe any end-user
web component.

We employ a UML2 class diagram, following the UML2 super­
structure specification defined in ISO/IEC DIS 19505-2, in order to
specify the component model. To complete this diagram, we use
MOF (meta-object facility) [OMG, 06]. MOF is a facility defined
and used in ISO/IEC 19502:2005. ISO/IEC 19502:2005 describes
its importance and applicability in model-driven engineering,
enabling the creation of a strict level-3 meta-modelling schema
[34], and offering the possibility of running or checking schema
instances or subsumptions in UML notation (descending to model­
ling level 2).

As shown in Fig. 1, the design element is the basic component of
the component model. This element is composed of a user-centred
visual interface for accessing a wrapped resource. Any component
will be linked in the final solution with other components through
pre- and post-conditions based on facts that guide the dataflow,
where a fact is an information item composed of a datum and its
associated lightweight semantics. The development environment
suggests components and compositions to users at design time
based on their current dataflow and lightweight semantic annota­
tions by other users. The most abstract elements will be the full
EUD solutions, previously generated by another end user; this
solution is composed of a mashup of several design elements,
and has several workspaces. Workspaces are visual spaces all dis­
played at the same time by a composite interface that aims to
tackle part of the problem. These workspaces include several inter­
connected gadgets, where a gadget is a visual element that man­
ages user interaction with a particular remote resource. This
gadget may render a single view or a screen flow (such as a survey
composed of several forms) for the user to interact with the remote
resource or resources associated with the gadget. Each of these
visual interaction items is termed resource representation. A
resource representation is composed of the view and the back­
end resource. The back-end resource is composed of operators
and service wrappings.

The end-user components will be published in a business mar­
ketplace-style collaborative and federated catalogue. It is this cat­
alogue that the proposed AAS should automatically populate. Any
user will be able to search the catalogue for new components
and compose solutions sourced from other user recommendations
about the data managed by the partially designed solution, etc.

So, our goal is to offer a system capable of assembling compo­
nents from multiple catalogues to form a larger and stratified com­
ponent catalogue in order to help end users find the component
that best fits their problem. On this ground, there is a full-blown
hierarchy of design elements devised to fit the level of abstraction
required by users for different development process workflows.
These levels of abstraction include anything from full solutions to
back-end resources (simple data operators, like filters, concatena-
tors, etc., or wrapped services). Each element in this hierarchy is
adapted to a different level of abstraction, so that users can find
and focus on the detail level they would like to find and with which
they feel confident: the full solution (or RIA) fits the systemic view
that the user envisages for tackling the problem.

The proposed model also enables end users to establish a data­
flow among visual elements where a new data item in one compo­
nent leads all the collaborative interfaces to take a computational
step. This is a spreadsheet-like approach, save that each element
displays a richer visual interface and invokes particular remote ser­
vices, resources or distributed data as wrapped services.

Service wrappings are the atomic design elements of our com­
ponent model; they are the smallest pieces that an end user can

Fig. 1. UML EUD component model.

handle and understand. These elements, composed of an API and
some inputs and outputs , are especially abundant on the Internet
as part of web services ecosystems, as web services are really easy
to transform into wrapped service components . It is these w e b ser­
vices that implement the business logic of each component .
Because the component is really a more or less complex wrapping
that ultimately invokes a remote web service and the back-end is
not really executed on the component EUD platform, a tool compo­
nent can be translated to t he syntax of another tool wrapping com­
ponent wi thout the executable source code or alike having to be
transformed. Ultimately, most components serve to wrap SOAP
messages, and it is their templates that do the wrapping and gen­
erate data flows. Converting one tool component into a valid com­
ponent for another tool is just a mat ter of substituting one
template for another.

3.2. Proposed architecture for automating component adaptation

The next s tep is to design an architecture for automatically
transforming the components of any manufacturer to a known for-

ma t wi th which the catalogue and EUD runt ime platforms can
operate. The framework architecture that w e created is based on
two existing external tools, HermiT and MOFLON. The architecture
uses the component model that w e proposed in Section 3.1,
encoded in the description logic that w e devised, which is
described in Section 3.3. Fig. 2 illustrates the architecture support­
ing t he AAS.

Fig. 2 shows that the proposed UML2 model (a) is mapped to
SROIQ description logic (b) by means of a series of mappings that
are described in Section 3.3. We use a tool called MOFLON to au to­
matically build a rule box called ABox, ‘‘Assertion Component’’ (c)
from the output description logic. The description logic is also used
to build a te rms box, called TBox, ‘‘Terminological Component’’ (d),
which contains a description of the te rms used (solution, mashup,
gadget, precondition, postcondition, etc.). These two components
are offered as inputs for HermiT (e), an existing reasoning tool,
which has another two inputs : a particular EUD component, for­
mat ted in XML (f) and its respective XSD schema (g). HermiT out­
puts two Boolean values:Subsumption and Instance, and a new
ABox, ABox’. Subsumption indicates whether the input component

Fig. 2. Proposed system architecture.

model is a subsumption of t he generic model ; instance indicates
whether the component syntax is an instance of the generic model.
The ABox’ component, annotated wi th constraints, is a new con­
straint-based rule box that can be translated to a series of XSLT
mappings using constraint programming (h). As they are applied
to the initial XML data of t he component and its XSD schema,
the XSLT mappings transform the component into another equiva­
lent component structured to conform to the proposed generic
UML2 model (i). This transformed component and its automat i ­
cally generated schema can be stored in the universal catalogue
of end-user components and is ready for use by any tool that con­
forms to the component model, like EzWeb. Note that the s tep
from (f) to (g) is instantaneous thanks to the many open source
tools that can infer an XSD from a component’s XML data.

Sections 3.3 and 3.4 explain how to m a p our generic UML2
model to SROIQ description logic, and w e present the potential
au tomated reasoning services offered by the automated generation
of t he ABox’ component (using the MOFLON tool and HermiT rea-
soner) composed of a finite set of XSLT mappings that are useful for
converting the EUD tool components into other equivalent compo­
nents that can used on a universal target EUD platform.

3.3. Mathematical formulation of the UML2 model of EUD components
through description logic

As discussed above, the HermiT tool, used in conjunction with
MOFLON, is able to validate the UML models, and their respective
XSD schema, used by different component providers [12]. This val­
idation is useful for checking whether t he components of one pro­
vider would be valid for the proposed component model and is also
able identify the XSLT mappings necessary for adapting such com­
ponents to a catalogue and runt ime platform that conforms to the
above model. HermiT works with mathematical descriptions based
on description logic, which it uses to operate on the UML2 meta-
model, performing subsumption and instance checking operations
on new components and their schema [4]. The kernel theory of our
research is t he mathematical formulation presented in this section,
which w e built from scratch in order to transform EUD compo­
nents from a source to a target format. Table 1 lists the concept
and role constructors used to develop the proposed mapping in

order to define a sufficiently expressive type of description logic.
Additionally, it indicates the computational complexity associated
with the two fundamental operations targeted by mathematical
reasoning: subsumption (NC c D) and instance checking (NC(i)).
As many model mappings as necessary will be implemented until
the UML model converges on a valid instance or subsumption,
identifying breakpoints detected for isolation during the compo­
nent adaptation process.

Table 1 shows that, according to the naming scheme defined by
Baader et al. [3], we use SROIQ description logic, an extension of
the description logic underlying OWL-DL, SHOIN, with a number
of expressive resources that are useful for our purpose [13]. SROIQ
uses expressive resources that were suggested by ontology develop­
ers as useful additions to OWL-DL, and which, additionally, do not
affect DL decidability and practicability. SROIQ uses complex role
inclusion axioms of the form R o S c RorSoR c Rto express prop­
agation of one property along another one, which has proven useful
in UML terminologies. Furthermore, it includes reflexive, antisym­
metric, and irreflexive roles, disjoint roles, a universal role, and
BR.Self constructs, which are useful for defining concepts such as
component bindings to input/output messages. Finally, it uses
negated role assertions in ABoxes and qualified number restrictions.

SROIQ is a trade-off between the expressiveness of the language
used to construct the terminological information and the complex­
ity associated with the reasoning processes on both terminological
and assertive model information [3,4]. In this respect, the trade-off
for using other types of logic, such as the family of description log­
ics derived from DLR logic that remove the binary role constraint
and introduce n-ary role constructors, which would have enabled
a more straightforward mapping than proposed in this paper,
would be a much greater computational cost. Note that tools like
HermiT have been unable to classify a UML2 model expressed in
DLRreg, that is, the DLR logic extension with union, composition
and transitive closure of binary role constructors as a projection
of n-ary roles on two of its components.

Apart from the traditional conceptual subsumption (C c D) and
equivalence (C = D) axioms, constrained in the sense that only D
can be an expression of concept (and therefore C must be an atomic
concept), the subsumption axiom has also been used in order to
create role hierarchies in relationships among web components,

Table 1
Constructors of concepts and roles used in the proposed mapping.

Constructor Syntax Semantics Logic type Compl. N C L D Compl.NC(i)

Atomic concept

Domain

Empty
Conjunction
Universal

Existential
Atomic negation
Qualified existential

Negation

Enumeration

Disjunction
Cardinality

Qualified cardinality

Selection
Transit. roles

Inverse roles
Role composition

A

T

1
C n D
VR.C

3R.T
-A
3R.C

-.C
a1... an

C u D
PnR

<nR

=nR
PnR.C

<nR.C

=nR.C

f: C
R+

R—
RoS

A c D?
D?
0
CJ f] DJ

{x Vy: R,7(x,y) -> CJ (y)}

{x|3y: R'^x,y)}

DJ\AJ

{x|3y: R'^(x,y) A CJ (y)}
D ^ C 7

a f . . . a ng
CJ u DJ

{x #{yR,7(x,y)} P n}

{x # {y\RJ(x,y)} < n}
{x # {y\RJ(x,y)} = n}

{x # {y R,7(x,y) A CJ (y)} P n}

{x # {y R,7(x,y) A CJ (y)} < n}

{x # {y R,7(x,y) A CJ (y)} = n}
{xG Dom (fJ) CJ (fJ (x))}
i i /R J\n

{(y,x) G D^x D? R,7(a,b)}
R?oSJ = {(x,z) Bye D?

R^(x,y) A SJ (y,z)}

FCo

FC~
AC

s

C

C

U

M

Q

RF

()+

()R-

()R°

P

P
P
NP PSPACE
PSPACE PSPACE

PSPACE PSPACE

EXP EXP

hence subindex H. The aim of the construction- and axiom-level
SROIQ mapping is to specify how this description logic captures
the semantics of mapped design elements.

The formal semantics of the UML2 model mapped to SROIQ is
based on a model theory where I = (D, • I) is an interpretation, and:

• D ¥= 0 represents a domain or universe of discourse such that
D =]T uT with T = UiL1^Di, YDi f| YDj = 0 and 2 fl Y = 0 , and
]T is the domain of managed components and TDl is the set of
values associated with each basic data type D, supported by
UML2 (highlighting the free type any, although other types,
such as integer, string, etc. can be specified)

• •' is the projected interpretation function:
- D J = TD l .
- C| C £ .
- Aj C Yy x Y.
- Rjc]Tx. . .x]T = YT.

To illustrate the proposed mapping, Table 2 describes the pro­
cess of translating the UML2 component model to the proposed
description logic.

For a more detailed description of the proposed mapping, see
[21], which confirms that all the EUD web component tools con­
form to the specified EUD component model. In this research the
mapping is the starting point for automatically adapting multiplat-
form components.

3.4. XSLT mappings on heterogeneous components for adaptation to
the UML2 model

The UML2-SROIQ mapping is a semantic specification of our
UML2 component modelling conceptualizations for running auto­
mated reasoning services. Such services include checking that a
component XSD schema or template is an instance or subsumption
of the proposed universal EUD component model or deciding which
linear XSLT mapping should be applied to the XSD template to

match its syntax to the proposed model. The knowledge base
semantics is equivalent to a set of first-order predicate logic axioms.
Like any other set of axioms, it contains implicit knowledge that can
be specified through logical inference. The fundamental inference
service is consistency checking for assertion knowledge bases
(ABox). This service discovers the mapping rules that should be
applied recursively to originate that consistency (ABox’). The map­
ping of the UML2 model to a terminological knowledge base (TBox)
leads to the construction of a terminology T. As we build the UML2
model, we have to check whether each new class makes sense. If it
contradicts the remainder of the model, it will never be able to be
instantiated consistently. From the logical viewpoint, a new con­
cept C makes sense if there is at least one interpretation I that sat­
isfies the axioms of T and for which the concept denotes a non­
empty set. This interpretation is called model and is written T N C.
This property C with respect to T is called satisfiability. The reason­
ing services offered by the description logic subsystem of any mod­
elling tool (e.g., HermiT) can be applied to the UML2 model
designed in description logic to verify that an XML component con­
forms to the expected syntax of the proposed EUD component
model or transform this component to match the syntax. All the
reasoning services are based on the following prototype services:

• Satisfiability: A concept C is satisfiable with respect to a termi­
nology T if there is a model I of T such that C' ¥= 0 . It is written
TNC The satisfiability of T is expressed as Tk

• Subsumption: A concept C is subsumed by a concept D with
respect to T if C' c D' for any model I of T. It is written
T N C c D. Subsumption can be expressed in terms of satisfiabil­
ity as T N C c D <s> T f C n-i D. Similarly, satisfiability can be
expressed in terms of subsumption a s T ^ C # T N C c i .

• Equivalence: A concept C is equivalent to a concept D with
respect to T if C' = D' for any model I of T. It is written
TNC equiv D. Equivalence can be expressed in terms of satisfi­
ability as TNC = D<sT^Cn- .D and T ^ C n D and in terms
of subsumption as T N C = D <s>T N C c D and T N D c D .

Table 2
UML2 to SROIQ Mapping.

UML2 Element New concepts and roles New DL axioms

Class C
Attribute a of C with type T
Attribute a of C acting as keyword
Attribute a of C with type T[]
Attribute a with associated card. (ni..nj)
Dependency A

n-Ary association with multiplicity

Binary association with multiplicity

Non-disjoint partial inheritance relation
Disjoint partial inheritance relation

Non-disjoint total inheritance relation

Disjoint total inheritance relation

Concept C
Binary role a
Binary role a
Binary role a
Binary role a
Binary role A roles R1 and R2

Concept A roles Ar, R1. ..Rn

Concept A roles Ar, R1. ..Rn

CX (=1a) n 3 a.T
CX (=1A) n 3 A.D n (<1A~)
CX (P1a)n Va.T
CX (P nja) n «n,-a) n Va.T

TXVA.C2n VA".C1
C1 L VA.C2 n [P njA] n [<n/A]
C2EVA".C1n [PmjA-] n [<m,A~]
A L R1, R1 L A , A " L R2, R2 L A~
A L BR1.C1 n . . . n 3Rn.Cn n
«1R 1 >n. . .n<<1R„>
C c VR .̂A n< PnjR,") n {<n,-R,~)
i = 1,.. .,n
A L BR1.C1 n 3R2.C2

n«1R1>n«1R 2 >
C1LV R .̂A n (PmjR^) n «m,-R7)
C 2 LV R-.A n {PnjR2) n «n,-R^)
A r = R 1 0 R 2

C1LV Ar.C2 n <PmjAr) n «m,-Ar)
C2£VA~.C2n (PmjA^) n <<m,-Ar)

C L C, i = 1,.. .,n
C L C, i = 1,.. .,n
C L -.C, for all i ^ j
C L C, i = 1,.. .,n

CE U"=1Ci
C c C, i = 1,.. .,n
C E ->C, for all i ^ j

CEUIL1C

• Disjointness: Two concepts C and D are disjoint with respect to
T if CIn DI = 0 for any model I of T. Disjointness can be expressed
in terms of satisfiability as T ¥= C n D and in terms of subsump-
tion as T N C n D c 1.

There follows a representative snippet of our UML2-SR0IQ
mapping. The UML2-SR0IQ mapping is the core of the proposed
system, forms the reasoning TBox and is the input used by the
MOFLON tool to generate the ABox which is used in the HermiT
tool:

composedofRole=composedof_Group-ocomposedof_Part
CataloguecClassrQ (DesignElementl,DesignElementn)n

VpublishedinRole.DesignElement n
Vpublishedin_Group-.publishedin

Thanks to this mapping and to the reasoning services it is pos­
sible to adapt a component described in XML, find the XSD tem­
plate or schema used by its source EUD tool, check whether the
schema is an instance of the general XSD schema of the proposed
EUD component model, and find a set of mappings to translate
the component using a generic and uniform syntax for publishing
and using the component in the proposed EUD component model.
ABox’ contains constraints that can be mapped into XSL annota­
tions using a supporting ontology and thesaurus of EUD compo­
nents [21] that we developed to operate on the constraint-based
programming framework of HermiT, as illustrated in the example
given in Section 3.5.

3.5. Example of automated adaptation of a component to the standard
format

We selected the Yahoo! Pipes component as an example to
illustrate adaptation because it had an especially complex struc­
ture. Fig. 3 illustrates a source code snippet of a Yahoo! Pipes com­
ponent designed to display a table with FlickR web service images
based on a string entered as input data.

These data conform to an XML format shared by all EUD tools
and obey a specialized Yahoo! Pipes syntax. Accordingly, special

XML labels are used to write component inputs, calls to external
web services and outputs, etc. Yahoo! Pipes components are gener­
ally represented by flat text, although they can be exported and
automatically converted to XML files.

The XSD schema of the components of a particular EUD tool can
be automatically identified from the component XML thanks to
programs such as XSD Generator. XSD Generator instantiates the
schema, also known as template, to which the components of this
tool should conform. Providers sometimes publish these templates
for use by programmers/users to craft their own components that
conform to the syntax required by the tool. On other occasions, the
provider may even omit the template altogether in order to protect

DesignElementcClassn3Any.Descriptionn(sglDescription)n
VRoleComposition.DesignElementn
Vgroup_Composition-.DesignElementn
Vpart_Composition-.DesignElementn
Vpublishedin_Part-.publishedinn
VpublishedinRole-.Cataloguer!
VcomposedoLGroup-.composedofn
BcomposedofRole.AbstractGUIDEn
{sgl composedofRole.AbstractGUIDE) n
BcomposedofRole.ResourceWrappern
(sglcomposedofRole.ResourceWrapper)n
3composedofRole.Preconditionn{=lcomposedofRole.Precondition)n
3composedofRole.Postconditionn(=lcomposedofRole.Postcondition)

compositioncAggregationn3group_Composition.DesignElementn
3part_Composition.DesignElementn
{sg 1group_Composition) n {sg 1part_Composition)

roleComposition=group_Composition-opart_Composition

publishedincAggregationrQpublishedin_Group.Cataloguen
{sgl publishedin_Group) n
{sgl publishedin_Part) n
3publishedin_Part.DesignElement

publishedinRole=publishedin_Group-opublishedin_Part

composedofcAggregationrQcomposedof_Group.DesignElementn
{sglcomposedof_Group)n{sglcomposedof_Part)n
3composedof_Part.Preconditionn{ =lcomposedof_Part.Precondition)n
3composedof_Part.Postconditionn{ =lcomposedof_Part.Postcondition)n
3composedof_Part.AbstractGUIDEn(sglcomposedof_Part.AbstractGUIDE)n
3composedof_Part.ResourceWrappern

(sglcomposedoLPart.ResourceWrapper)

flickr.auth.getFrob" />

<?xml version="1.0" encoding="UTF-8" ?>
// https="true" ensures that only HTTPs connections are allowed
<table xmlns="http://query.yahooapis.com/vl/schema/table.xsd" https="true":
<meta>
<sampleQuery> select " from {table}</sampleQuery>

</meta>
<bindings>
<select itemPath-"rsp" produces-"XHL">
<urls>
<url>http://api.flickr.com/services/rest/</url>

</urls>
<inputs>
<key id='method' type='xs:st ring' paramType='va riable'
<key id='api key' type='xs:string' paramType='variable'
<key id='secref type='xs:string" paramType='variable"

</inputs>
<execute><![CDATA[

y.include("http://www.yqlblog.net/samples/flickr.js");
// GET the flickr result using a signed url
var fs = new flickrsigner(api key,secret);
response.object = y. rest (fs.createuTl({method:method, format:"'"})) .get(). responseO ;]]>

</execute>
</select>

</bindings>
</table> |

Fig. 3. Source code snippet of a Yahoo! Pipes component.

const="true" default=
required="true" />

required="true" />

the intellectual property of their own components. Our system is
geared up for this possibility, as it is able to deduce the XSD
schema used as a template of a subset of tool components that con­
form to the schema. Fig. 4 shows the schema for Yahoo! Pipes
components.

If the input for our automated components adaptation system
were a Yahoo!Pipes component in XML format, with the respective
component XSD schema, the system would perform a finite num­
ber of mappings to adapt the component to the proposed EUD
component model with the valid syntax for compliant tools, such
as EzWeb. As a result, it would be possible to publish the compo­
nent in a universal catalogue, receive updates of the respective
component published by the original supplier or use the EUD

component on platforms other than Yahoo! Pipes. Fig. 5 illustrates
a snippet of the XLST mappings required to adapt the source file of
any Yahoo! Pipes component compliant with the schema illus­
trated in Fig. 4. The mappings are inferred by HermiT from the
ABox generated for this component type.

4. Analysis of the automated component adaptation system
applied to the different components of EUD tools

In order to analyse the proposed automated component adapta­
tion system, we applied the system to heterogeneous components
from four completely different EUD tools, namely, Yahoo! Pipes, Open
Kapow, JackBe, and Marmite. We transformed the components

<?xml version="1.0" encoding="IS0-8859-l" ?>
<xs:schema x«lns:xs="http://www.w3.org/2001/XMLSchema">

<xsd:annotation>
<xsd:documentation x»l:lang="en">Yahoo!Pipes Schema</xsd:documentation>

</xsd:annotation>
<xsd:element name="YahooPiping">

<xsd:complexType>

<xsd:sequence>
<xsd:elenent name="mashup" type="Mashup" »inOccurs='0"

maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>

< xsd:unique name="mashupIdKey">
<xsd:selector xpath="mashupld" />
<xsd:filed xpath=*mashupld" />

</xsd:unique>

</xsd:element>
<xsd:complexType name="Mashup" stereotype=:*RIA'>

•xsd: sequence>
<xsd:element name="Pipe" type="xsd:pipe" />
<xsd:element name="date" type='xsd:date'' />
<xsd:element name="AuthorHame" type="xsd:string" />
<xsd:element name="AuthorRank" type="xsd:unsignedlnt" />

</xsd:sequence>
</xsd:co«plexType>

<xsd:complexType name="Pipe" stereotype="RIA">
<xsd:sequence>

<xsd:element name^Module" type="xsd :module" />
</xsd:sequence>

</xsd:co«plexType>
<xsd:complexType name="Module" stereotype="RIA">

<xsd:sequence>
<xsd:element name="Layout" type="xsd:image" />
<xsd:element name="backend" type="WS*" minOccurs=*0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:conplexType>
<xsd:complexType name="Backend" stereotype="RIA">

<xsd:sequence>
<xsd:element name="Operator" type="xsd:L-FOLD" />
<xsd:element name="RSS_ticker" type="feed_rss" url="xsd:u^l•

data="xsd rstring" />
</xsd:sequence ?

</xsd:co«plexType>
</xs:schema>

Fig. 4. XSD schema for Yahoo! Pipes components.

http://query.yahooapis.com/vl/schema/table.xsd
http://api.flickr.com/services/rest/%3c/url
http://www.yqlblog.net/samples/flickr.js
http://www.w3.org/2001/XMLSchema

<?xml version="1.9" standalone='yes" encoding="IS0-88S9-l'?»
-:xsl:stylesheet version*"]..6" XBlns:xsl='http://ww.w3.org/1999/XSL/Transfonn">
'xsl:template match="/">
'KDD_Prepared Data>

<RIA:-~
•*ey> YahooPiping -:/Key>
•:Description>

•:Ha5hup>
'Key:- nashupIdKey -:/Key>
'Value* 'xsl:value-of select='YahooPiping/Mashup/»ashupIdKey"/:• '/

Value*
•:Key> AuthorNane *:/Key>
-•-Value* -:xsl:value-of select="YahooPiping/Mashup/AuthorNan>e"/:- -:/Value>

•:/Mashup>
•:/WorkSpace>

'Key> Date -:/Key>
-:Value> -:xsl:value-of select="YahooPiping/Mashup/date"/> -:/Value>
•:Key> AuthorRank *:/Key>
<Value> -:xsl:value-of select=*'YahooPiping/Hashup/AuthorRank"/> -:/Value>

•:/WorkSpace>

•:Gadget>

Descr ipt ion"/* </Value>

Layout "/> -:/Value>

'Key> Pipe '/Key>
-:Description>

•:Key> Description -:/Key>
-:Value> <xslrvalue-of select="YahooPiping/Mashup/Pipe/

-:/Description>
'Key> Module --/Key--
•:Description>

•:Key> Layout -:/Key>
•:Value> <xslrvalue-of select='YahooPiping/Mashup/Pipe/Module/

•:I-nage:-
-*ey> Layout '/Key>
'Type*

<Key> Image -:/Key>
rvalue:- -:xsl: value-of selects' YahooPiping/

Hashup/Pipe/Hodule/Layout/src"/> '/Value>
'/Type>

-:/Image*
-:Key> BackEnd'/Stab-TS.-
'Operator--

<Key:- List_Operator -:/Key>
-Operator* -:xsl:value-of select="YahooPiping/Hashup/

Pipe/Hodule/Operator/L-FOLD'/> '/Operator:-
</Operator>
-:Wrapped_Service>

-qnode:- REST architecture -:/node>
<url> <xsl:value-of select=*YahooPiping/Hashup/Pipe/

Hodule/BackEnd/RSS_ticker/urlV> < /u r l *
<Oata* -:xsl:value-of select="YahooPiping/Hashup/Pipe/

Hodule/BackEnd/RSS_ticker/data'/> ' / da ta *

-:/Wrapped_Service>
' /Descript ion:-

•:/6adget:-
' /Descr ip t ion*

' /RIA*
•:/Generic_EUD_Prepared_Co«ponent:-
-:/xsl:te«plate:-
• : /xs l : stylesheet:-

Fig. 5. XSLT mapping schema generated automatically by the automated component adaptation system for Yahoo! Pipes.

of the above tools and checked that the structure transformed t o t h e
proposed standard model operated in exactly the same way as
the original s tructure in their native environment. The component
templates of the EUD tools are completely different, their XMLs
adhere to heterogeneous rules, as well as syntax and complex
structures that contain single-valued data and complex operating
functions wi th lists and operators. Therefore, it would suffice to test
the effectiveness of the proposed system. It would require a
huge workload, and programming knowledge, to adapt these
components to a specific EUD tool, as each particular component
would have to be individually crafted to adapt their source features
to the target platform conditions.

Yahoo! Pipes, Open Kapow, JackBe and Marmite are very suc­
cessful tools today and all have a similar architecture. The RIAs that
they are used to create have one or more mashups of visual ele­
men t s of different types. Each mashup is further composed of
one or more dashboards, whose mission is to offer users different
runt ime workspaces in the shape of separate sets of widgets. Each
dashboard is composed of one or more interlinkable widgets,

although widgets from different dashboards cannot be intercon­
nected. A widget is t he basic visual element of which the final solu­
tions built using Open Kapow will be composed, and no knowledge
of w e b technologies is required for management . Each widget is
implemented by one or more robots cooperating with each other,
and the management , operation and configuration of such robots
does require some w e b components programming knowledge. An
Open Kapow robot is a functional part tha t performs a specific
computational task. It is composed of an interface (which may be
hidden and not be displayed at runt ime) and by back-end
resources that implement the workflows of the final solution wi th­
out the user perceiving all the implementat ion details. These
resources can perform arithmetic, functional or list handling oper­
ations on data or invoke remote w e b services through their special­
ized API. A robot can only invoke a service if it has been
implemented to include specific details about how to manage the
service API (the syntax and technology used) and how to manage
sent and received data. Therefore, a user will never be able to
modify the robot to manage any new web services required. Our

http://ww.w3.org/1999/XSL/Transfonn

automated adaptat ion system generates XSLT mappings from
these components . These XSLT transformations convert dash­
boards into workspaces, widgets into gadgets and robots into
wrapped services invoked using REST or SOAP syntax depending
on whether the components are from Open Kapow, JackBe (which
use REST or POX-RPC calls wi th URLs and string data types) or Mar-
mi te (which uses a SOAP envelope syntax and integer or string data
types).

The first research question to be considered i s :
RQ1: Is the proposed system for automatically adapting EUD

components capable of adapting any XML EUD component to a
s tandard format?

Table 3 summarizes the adaptat ions of the components of the
four analysed EUD tools. A total of 740 components were au tomat ­
ically adapted, using approximately 185 components from each
analysed EUD tool. A specialized XSLT mapping schema had to be
built for each of the four EUD tools. We converted different compo­
nent types for each tool in order to analyse whether component
class had any impact on the results of the automated adaptation
process.

After automatically adapting the tool components, w e checked
whether the resulting components were valid and operated prop­
erly on EzWeb, which is different from the original tool. White-
box and black-box tests were conducted on the adapted compo­
nents within the EzWeb platform, and integration tests based on
input and output data were run to test any components that had
been successfully integrated into complex RIAs [26]. The system
correctly adapted 730 out of the 740 components, failing to gener­
a te XML files adapted to the generic schema for 10 components .
W e considered an adaptation to be satisfactory if, after whi te-
and black-box testing wi th the component in its source environ­
men t and after adaptation to EzWeb, we found tha t : (a) the com­
ponent conformed to the necessary template for execution in
EzWeb; (b) the component correctly generated the target outputs
in response to input data using random test values; (c) the struc­
ture and internal architecture was t he same (which was tested
automatically using the ALTOVA UModel). The error rate for EUD
tool component adaptation ranged from 0.52% to 2.15%. The com­
ponent adaptat ion success rate was around 98%, which is rather
good for an automated end-user software component adaptation
method.

We analysed the components that were not successfully
adapted for use in EzWeb and found that at t he root of t he problem
were missing values within the XML source files for certain fields
of t he component provider templates, causing errors in their three
structures. The component source code contained XML errors wi th

Table 3
Results of automated EUD component adaptation system.

Source EUD tool

Yahoo! Pipes
Open Kapow
JackBe
Marmite

N samples

190
180
186
184

Poorly adapted
components

1
2
4
3

Adaptation error
rate (%)

0.52
1.11
2.15
1.63

respect to the domain XSD schema data. A possible future line of
research would be to build mechanisms capable of detecting and
processing such missing values into our automated adaptation sys­
tem in order to adapt the component source code to the target
DOM structure (Document Object Model, an API that provides a
standard set of objects for representing HTML documents and
XML), even if the XML file does not include all the leaves or
branches.

The second research question to be addressed is:
RQ2: Are the automatically adapted components as efficient as

the original components?
We randomly selected a significant sample of 40 out of the 730

correctly adapted components, 10 for each of the different EUD
source tools, and checked that the adapted components run on
EzWeb were equally efficient as their respective source compo­
nents run on the tool for which they were developed. Table 4
shows the selected tool components, the number of machine code
instructions (in millions of machine instructions, mi) for the com­
ponent running on the original tool and on EzWeb, and execution
time (in milliseconds, ms) of the original and adapted components.
Execution times exclude the time difference between client and
server request and response for each EUD tool.

We found that the number of instructions that the server will
have to execute using the EUD tool is more or less equal before
and after mapping, and again there are no major differences with
respect to execution time. Besides, the small time variations are
due to the HTTP/XML and/or SOAP transfer of networked requests
among servers, which are unrelated to the actual component and
depend on network traffic, server overload, etc.

Furthermore, we published and used the automatically adapted
components with the EzWeb tool to check that the components
work properly. The EzWeb tool used has been reported elsewhere
[20,22,23]. Whereas earlier studies examined components created
ad hoc for EzWeb, this research looks at the automated adaptation
of external components for use with this tool without the need for
expert intervention.

The third research question to be answered is:
RQ3: What does component adaptation time depend on?
Table 5 shows how long it took the system to extract and apply

the XSLT file for each of the EUD tools. It specifies the mean size in
bytes for each component type, the mean number of lines of XML
in the component source files, the number of lines of XSD in the
schema for the original EUD tool, the time taken to extract the XSLT
for the original EUD tool (an operation run just once at the start of
the preparation process), mean time to apply the XSLT to each spe­
cific tool and, finally, the total adaptation time for all components
of each EUD tool, which covers both the extraction of the XSLT and
its application to all the analysed components. As Table 5 shows,
we found that the time taken to create and correctly apply the nec­
essary XSLT mappings increases in proportion to component com­
plexity (indicated by the component bytes, lines of XML and lines
of XSD).

We analysed these results to ascertain whether there was any
correlation between either the time taken in the different phases
of the automated component adaptation system with either the
component size in terms of bytes or lines of XML, or the number

Table 4
Automated component adaptation system performance.

Data domain

Yahoo! Pipes
Open Kapow
JackBe
Marmite

N samples

10
10
10
10

Machine code instructions
for source tool

15,421 mi
56,325 mi
39,599 mi
21,492 mi

Machine code instructions
for EzWeb

15,430 mi
56,312 mi
39,472 mi
21,530 mi

Mean execution time for
standard data

1247.35 ms
5813.12 ms
4921.87 ms
3031.69 ms

on source tool
Mean execution time for
standard data on EzWeb

1249.67 ms
5624.12 ms
5000.18 ms
3030.78 ms

Table 5
Automated component adaptation system performance.

Data domain

Yahoo! Pipes
Open Kapow
JackBe
Marmite

N samples

190
180
186
184

Mean component
size (bytes)

42487.00
9924.07

15381.61
12395.67

Mean number of XML
lines per component

68910.50
17227.96
31305.91
29530.11

Lines
of XSD

1728
412
942
536

Time to extract
XSLT (mseg)

34.56
1.95

10.21
3.30

Mean time to apply XSLT
(mseg/component)

5.76
1.47
2.67
2.52

Total adaptation
time (mseg)

1128.96
266.55
506.83
466.98

of lines of the XSD modelling the XML file of the respective compo­
nent . This yields an objective measure of t he structural component
complexity beyond the size of their source code. Table 6 shows the
correlations of t imes wi th respect to these explanatory variables.

We found that the performance of the automated adaptation
system is not directly correlated wi th t he size of the source files
of the components measured in bytes (values are not close to 1).
However, Table 6 highlights two logically very strong correlations,
close to the maximum value equal to 1. There is statistical evidence
that the t ime taken to extract the XSLT depends directly on the
number of lines of the respective EUD tool XSD (that is, template
complexity), whereas the t ime to apply XSLT depends not on the

Table 6
Correlations between times taken and data features.

Correlation matrix

Mean component size (bytes)
Mean number of lines

of XML per component
Lines of tool XSD

Time taken to
extract XSLT

0.2123
0.478

0.996

Mean time taken to apply
XSLT per component

0.3211
0.997

0.562

XSD schema, but on the number of lines of XML in the component
source code.

We analysed how the XSLT extraction t ime varied depending on
the number of lines of the EUD tool XSD schema (template com­
plexity) and how the XSLT application t ime evolved depending
on the number of lines of the XML source files. Fig. 6 shows these
variations.

The t ime taken to extract the XSLT file of an EUD tool varies
quadratically wi th respect to tool template complexity (the n u m ­
ber of lines of their XSD), whereas XSLT application varies linearly
depending on the number of lines of component XML source code.
We confirmed these results statistically fitting an ANCOVA (analy­
sis of covariance) linear and nonlinear regression model to both
t ime variables under study. Tables 7 and 8 shows the model fits
for the XSLT extraction t ime and XML-dependent application t ime,
respectively.

The values R2 and adjusted R2, which are equal to 1, indicate
that the explanatory variables used (number of lines of the XSD
template and of XML, respectively) fully explain the observed t ime
variables, which statistically corroborates the identified relation­
ships be tween the variables. The equations governing the two
models are as follows:

Fig. 6. Performance data depending on component features.

Table 7
Nonlinear adjustment of XSLT extraction time.

Coefficients of adjustment of XSLT application time with respect to lines of XSD
R (correlation coefficient)
R2 (coefficient of determination)
SCR

Observations Weights X Y Y (Model) Residues

1.000
1.000
0.000

Standardized residues

Predictions and residues

Obs1
Obs3
Obs5
Obs7

1728.000
412.000
942.000
536.000

34.560
1.950

10.210
3.300

34.560
1.953

10.211
3.296

0.000
-0.003
-0.001

0.004

0.038
-0.547
-0.280

0.788

Table 8
Linear adjustment of XSLT application time.

Coefficients of adjustment of XSLT application time with respect to lines of XML
R (correlation coefficient) 1.000
R2 (coefficientofdetermination) 1.000
R2aj. (adjusted coefficientofdetermination) 1.000
SCR 0.002

Source GDL Sum of squares Mean square Fisher’s F Pr>F

Evaluation of the value of the information originated by the variables
(H0 = Y = Moy (Y))

Model 1 20.750 20.750 59529.845 <0.0001
Residues 7 0.002 0.000
Total 8 20.752

TextractionXSLT = 7.3066E - 02 - 2.5742E - 04 * NlinesXSD

+ 1 . 1 6 9 8 E - 0 5 * N2
lines XSD (1)

TapplicationXSLT = 6.6139E - 02 + 8.2612E - 05 * Nl i ne sXML (2)

The computational complexity of the automated adaptation
algorithm is a square function of the respective tool template
complexity for the operation of extracting the XSLT mapping from
any EUD tool, but linear for the operation of applying the
mappings to the actual components. The biggest cost in terms
of time is when the framework is applied to a new EUD tool.
However, this operation is only performed once for each tool
(and there are fewer than twenty really relevant tools on the
market), and, at less than 35 ms for all the analysed tools, this
is an acceptable cost (see Table 4). Finally, the computational cost
of applying the automated adaptation system to any component
obeys the following equation:

T preparation_components ~ T extraction_XSLT T Ncomponents

* T application_XSLT V J

The processing time taken to apply the AAS to a single compo­
nent or sole source file will largely depend on the template com­
plexity of the EUD tool for which it was programmed, whereas
the impact of the size of the XML will be negligible.

The fourth research question to be answered is:
RQ4: How efficient is the automatic EUD adaptation system in

terms of time and resources taken to adapt each component com­
pared with manual component adaptation?

Although the data indicate that the AAS adapts a set of compo­
nents in hardly any time at all, the system’s real merit is only fully
appreciable considering just how time and resource consuming it
is to adapt these components by hand. This is illustrated in the
experiment reported in Section 5. Based on the experience gath­
ered as part of 7th European Union Framework Programme
research and the development projects, like EzWeb and FAST (tar­
geting the construction of a development environment for new
EUD components by end users that require such components)
and other similar projects [1,9], we estimate that the effort
required to populate a component catalogue of a new EUD tool
containing from 80 to 100 general-purpose components (opera­
tors, data source managers, BPM abstractions, data visualizers,
etc.) by manually adapting components from other commercial
components usually accounts for 50% of the total programming
effort for setting up the EUD support environment of the new tool.
The time taken to adapt these components using the AAS system
(of the order of seconds) would drastically reduce the total pro­
gramming workload for building the above EUD environment.

Because, as shown in the experiment described below, end user
success at developing applications hinges on the size of the compo­
nent catalogue, we consider that an automated adaptation system

for heterogeneous web components, like AAS, which is able to
adapt existing components automatically and save time and
resources, is a major advance in the EUD field.

5. Experiment: AAS efficiency compared to manual component
adaptation

It now remains to test how much time and resources the system
saves compared with manual component adaptation. To do this,
following the guidelines for software engineering experiments
and case studies published by Runeson and Höst [45], AAS was
applied at a corporation using an EUD tool as a development envi­
ronment for users without programming skills. To do this, we con­
ducted an experiment in partnership with Telefónica I + D, a
subsidiary of a Spanish broadband and telecommunications pro­
vider which is the fifth largest mobile network provider in the
world.

The experiment was based on the design of a web portal. The
web portal was to function as an operational support system
(OSS) for Telefónica employees with different roles, traits, knowl­
edge and needs and operate as a dispatching and trouble-ticketing
system to support their routine work. Such systems are the key
component of software systems for processing user queries and
claims at Telefónica. They are essentially general-purpose systems,
and are therefore applicable to a broad-spectrum of possible sce­
narios, ranging from electronic dispatching of administrative
records within the public administrations to the management of
incidents and claims by business service end users.

An OSS has to be configured and personalized by end users
within the company to adapt the web portal to their personal
needs. A commercial agent has need of tools for consulting the con­
tact information of customers in an area, the availability of special
offers, a log of communications with customers, former customers
and potential new users, etc. A technical assistance agent has need
of tools specifying the state of the telephone network in an area,
the location of the nearest optical multiplexor to a customer’s
home, the simple network management protocol (SNMP) elements
for network resources, etc. Therefore, an OSS is a perfect scenario
for EUD: it would be great to have a EUD tool that had a catalogue
of components for this problem domain large enough for all end
users to each be able compose a RIA operating as their personal
OSS by interconnecting these components. We found, as noted
below, that none of the existing EUD tools has all the components
that would be needed to create an OSS of this sort.

In a pilot study, we split 28 end users with different positions
and corporate profiles at Telefónica, none of whom had program­
ming skills, into four groups. We supervised these work groups
along with a company computing engineer. Each group of seven
users analysed a tool: Yahoo! Pipes and Dapper, Open Kapow,
JackBe and Marmite. They reported that none of the tools were
of any use for building a multifunctional OSS adaptable to more
than one business role, because components were missing.
Some tools provided support for one task type but were missing
components for others:

• The Yahoo tools are unable to manage synchronous/asynchro­
nous communication systems between operator/customer or
among internal system users. Additionally, they cannot invoke
back-end services based on SOAP or POX-RPC. But they do have
access to components for managing geolocation tasks, finding
contact details and building to-do lists.

• Open Kapow is useful for building small visual interfaces based
on pre-existing web portals, but offers no mechanisms for cre­
ating visual components that are able to find addresses, invoke
back-end Telefónica services or create automated interactions

among different components (such as select a customer from
the database and display a situation map or log of messages
sent/received by the user).

• Marmite is able to manage communication, messaging and
geolocation systems, as well as invoking services using HTTP
and XML, but cannot administer complex data sources, manage
to-do lists, set up front-ends to manage network services or
complex protocols like SOAP, SNMP, etc.

The results of this pilot study suggested that the set problem
would not be able to be solved without components from more
than one tool, and a qualitative leap in the type of solutions that
end users would be able to build could be achieved using more
than one catalogue and approach.

Therefore, the construction of a multifunctional OSS, similar to
the example illustrated in Fig. 7, would require a catalogue con­
taining a set of components offered by all the analysed tools.
According to the pilot study conducted by the above workgroups,
the catalogue would have to be populated by 80 a priori heteroge­
neous components from different catalogues and thus conform to
different coding standards.

The zoomed screenshot in Fig. 7 illustrates a simple scenario
extracted from a Telefónica core OSS environment created using
EzWeb and a universal catalogue containing elements from differ­
ent EUD tools, built as explained later using our AAS system. The
zoomed section, which is part of a more general OSS now deployed
at Telefónica as a fully operational environment, connects four
components: a to-do list listing customer complaints, a customer
data viewer, a Google map and a network status map. None of
the analysed tools (Yahoo!, Open Kapow, JackBe or Marmite) has
all of these components, although they each have some. This fully

functional environment was built by visually linking components
from a universal catalogue to each other and to the enterprise
back-end: a user selects a given task from the to-do list, the direc­
tory gadget will display customer details and have a customer/task
selection option, the network map will represent the selected cus­
tomer’s network status and the Google map gadget will display the
selected customer’s address on a map. None of the existing EUD
tools have all the components that end users need to build this
application. The required components, totalling, as mentioned
above, 80 were identified by the work groups and are defined in
Table 9.

Table 9 shows how many and what type of components were
identified as necessary for building the OSS. Column N shows the
number of components that the four work groups participating
in the pilot study identified as necessary, whereas the other col­
umns show how many such components, which could be used
as-is for the specified purpose if transformed to the standard for­
mat, the respective EUD tools provide. Clearly, existing tools have
some but not all of the necessary components. Together, however,
the tools provide 100% of the necessary components. Some compo­
nents by different tools serve the same purpose, in which case the
components with the smallest template were selected for map­
ping, as such components are easier to adapt. In order to provide
end users with a wider range of components from which to select
whichever better fits their needs, a universal catalogue may con­
tain several equivalent components, which differ merely as to their
visual appearance. For this experiment, however, we selected the
simplest components to adapt the minimum necessary set.

Because none of the catalogues include all the components (the
most useful catalogue would be Yahoo containing 22 out of the 80
necessary components, less than 28%) and since the respective

Fig. 7. Example of an OSS built using a EUD tool that has a universal component catalogue.

Table 9
Components identified as necessary for building a valid catalogue for building the OSS by EUD at Telefónica I + D.

Necessary Components Yahoo! Pipes and Dapper Open Kapow JackBe Marmite Components available across all tools

RSS data handling components
SNMP management components
Geolocation components
User-system communication components
BPM management components
Data viewer components
Ticketing components
Basic data operators
Component connectors

7
5
4

14
11
12
8
9

10

5
1
1
0
1
1
3
4
6

0
1
1
2
0
7
2
3
0

1
3
1
0
6
2
2
2
4

1
0
1

12
4
2
1
0
0

100%
100%
100%
100%
100%
100%
100%
100%

Table 10
Description of the workload for building a universal catalogue.

Work Imported Created Technology Mean adaptation time per Mean creation time per Total time taken Total time taken by
group components components training time component component per person project group

A
B

75
80

5
0

2 h
4 h

2.810 h
0.022 h

4.600 h 23.57 h
5.76 h

235.75 h
5.76 h

tools are proprietary software for which new components cannot
be easily created, it was decided to create a new universal cata­
logue that would contain the 80 necessary components for an open
software tool like EzWeb.

Two work groups were set up: (a) Group A was composed of 10
web programmers from Telefónica I + D, acquainted with the nec­
essary technologies (like PHP, Python, XHTML, JavaScript, etc.) and
assigned the task of creating a catalogue of the components neces­
sary for the OSS application and for use by the EzWeb open source
tool, by either adapting or creating components; (b) Group B, com­
posed of a single external programmer, instructed in the use of our
automated adaptation system, who received the same assignment,
save that he was not to program or adapt the components by hand
but using the AAS system reported in this paper. The goal was to
build a universal catalogue containing the 80 identified compo­
nents in the shortest possible time.

The ten programmers in Group A opted to reuse 75 components
provided by existing tools. They built five for EzWeb from scratch,
one of which was a component for graphically displaying numeri­
cal data and the other four for processing RSS data produced by
invoking SOAP-based back-end services, necessary to perform
BPM (Business Process Management) tasks. Group A decided to
build these five components from scratch because they thought
that this would be easier and faster than adapting their very com­
plex Yahoo! Pipes components (as indicated by the number of lines
of XSD).

The lone programmer in Group B used the AAS automated sys­
tem to correctly transform all 80 components from the catalogues
of the other tools. The time taken (in hours) to complete the above
assignment is shown in Table 10.

These data provide a better picture of the real benefit of the pro­
posed system within a real-world business environment in a sce­
nario requiring a specialized catalogue of components designed
for a particular problem domain. It took a coordinated group of
10 programmers three full work days to adapt the components
provided by the other tools to a common standard catalogue. It
took the whole work group almost half a work day to complete
each component. It would have taken a single programmer around
a month to complete the assignment, whereas the lone program­
mer using the AAS automated adaptor did the job in just 5 h and
45 min, plus another four hours that were spent teaching the per­
son to use the HermiT reasoner, extract the XML-format compo­
nents, automate their XSD extraction and publish the result in
the shared catalogue. It took the programmer just over 1 min and
19 s to translate each component to the proposed standard lan­
guage and publish it in the universal EzWeb catalogue.

The catalogues created by the two groups are absolutely equiv­
alent and were used to build the OSS required by the Telefónica
I + D company that directed the experiment. How end users used
the EzWeb EUD tool to build the OSS program based on this univer­
sal catalogue is beyond the scope of this paper but has been pub­
lished elsewhere [24,25].

6. Discussion on threats to validity

This discussion on threats to the validity of the above analysis
and experiment addresses to four aspects of validity, which can
be summarized as follows:

Construct validity: This aspect of validity refers to the extent to
which the analysed operational measures really represent what
the researcher has in mind and what is being investigated
according to the research questions:
• RQ1: According to the statistics posted on their web portals,

this paper has examined the four tools with the largest num­
ber of users. All 730 correctly adapted components have
been measured through white- and black-box tests run on
185 components sampled from their component catalogues
to check the result of the adaptation process. This threat
could have been reduced by choosing more tools and more
components of each tool. But we consider that the analysed
study adequately analyses this research question, and dem­
onstrates the utility of the proposal.

• RQ2: In order to check the effectiveness of the adapted with
respect to the original components, we analysed two mea­
sures before and after the conversion: machine code instruc­
tions and mean execution time on the same hardware. These
labour-intensive tests were conducted for a total sample of
40 components, 10 for each of the different EUD source tools,
picked at random from the 730 correctly adapted compo­
nents. We used common measures for this type of research
question. Although we might have analysed more compo­
nents, the similarity of the resulting data suggests that this
threat is not relevant to either the number of instructions
generated by the adapted component or the execution time
with respect to the original component.

• RQ3: The component adaptation time (function of the num­
ber of XML lines of the component and number of XSD lines
of the schema) does not pose relevant threats, as the compo­
nent is only adapted once. In response to this research ques­
tion, we studied correlations and analysed covariances
between the explained variable ‘‘adaptation time’’ and all
the possible descriptive variables of the 730 analysed com­
ponents: provider, host type, processed data type, URLs,
component internal architecture, lines of source code, lines
of component template, etc. This study (based on linear
and non-linear regression models) is often used to address
this type of questions.

• RQ4: The study of AAS efficiency in terms of the time taken
and resources consumed in component adaptation com­
pared with manual adaptation was conducted on a real sce­
nario using an explanatory, quantitative and controlled
experiment. The objective quantitative measure used is the
total project development time, but it would be worthwhile
conducting other studies (like case studies in real compa­
nies) that can help to better quantify the benefits of using
the system. The experiment clearly illustrates that system
use really does generate a tangible and significant benefit,
and there is no threat in this respect.

Internal validity: This aspect of validity is of concern when cau­
sal relations are examined. When the researcher is investigating
whether one factor affects an investigated factor there is a risk
that the investigated factor is also affected by a third factor. If
the researcher is not aware of the third factor and/or does not
know to what extent it affects the investigated factor, there is
a threat to the internal validity. These threats only apply to
research questions 2, 3 and 4:

• In RQ2, the adapted component execution environment
compared to its unadapted source environment is the only
factor that has a causal relation in the study. Analysing per­
formance quantitatively without establishing causal rela­
tions in both cases should eliminate this threat.

• In RQ3, we established that the number of lines of XML and
the number of lines of the XSD schema variables affect the
time taken by the system to adapt the component. We used
regression models to analyse many other qualitative and
quantitative variables that describe each component, and
no other correlations were found.

• In RQ4, two teams A and B (one composed of 10 web pro­
grammers who imported components or built non-existent
components and another composed of a single external pro­
grammer who used the AAS system) performed a controlled
and predesigned experiment in order to check the results of
using and not using the adaptation system. In this case, the
threat is that another team A might have been more efficient
than the team A participating in the experiment. However,
as the programmers were selected at random and there is
an impressive difference between the total time taken by
teams A and B to develop the project, this is not a feasible
threat.

- External validity: This aspect of validity is concerned with the
extent to which it is possible to generalize the findings and
the findings are of interest to other people outside the investi­
gated case.
In the conducted study, the findings for the studied tools, which
are the most successful on the market today, can be generalized
to the subset of EUD tools, whose components use XML and XSD
as serialization and internal codification instruments. This adds
value to the research conducted in the field of WEUD (web end
user development). However, the results are not applicable to
other EUD tools that are of no use for building web applications
(such as spreadsheets or desktop visual coding programs). We
are working on applying the proposed system to other totally
different domains, like automatic XML data source preprocess­
ing for enacting KDD processes with excellent preliminary
results. This gives a flavour of the multidisciplinary potential
of the proposal in other domains.

- Reliability: This aspect is concerned with the extent to which the
data and the analysis are dependent on specific researchers.
Hypothetically, if another researcher conducted the same study
later on, the result should be the same.

- Save the experiment conducted, where there is a dependency of
the results on the selected sample of users, the analyses and
measurements conducted in remainder of the research were
automated and are completely repeatable by external research­
ers. The experiment quantifies the benefit of applying against
not applying the proposed system, but the time difference mea­
sured in each case should be considered as indicative and can
vary in each new conducted experiment.

7. Conclusions and Future Work

We believe that the development of an automated component
adaptation system such as the proposed AAS, which processes
and converts any web component to a standard format provided
that the component conforms to a standard template, is a major
advance in the EUD field. Our proposal is based on the use of
description logic. Based on a generic UML2 component model, it
is able to check whether a particular component in XML can be
unambiguously and consistently mapped to this model. It is able
to automatically find a finite set of XSLT mappings to adapt the
component so that it can be used by a different EUD tool to the
one for which it was developed.

Our automated web components adaptation system has been
tested on components from four very different existing EUD tools
with satisfactory results. In all cases, the proposed notation was
applied to structurally complex components which we managed
to adapt to a general-purpose EUD tool, governed by a UML2 com­
ponent model that we defined here. The sound results of applying
this proposal on components from several such complex and differ­
ent EUD tools confirm its merit. This system enables end users to
develop complex applications, sharply increasing the potential of
EUD development and improving the EUD paradigm’s options of
evolving successfully. On other hand, it offers a sizeable saving of
time and resources within the component cataloguing process.

The proposed system is easily generalizable for automatically
adapting any XML-based file to a target XSD schema in such a
manner that the structure but not the content of the information
is modified, irrespectiveofwhether this informationisadata source
or the source codeofaweb componentorresource. Additionally, the
proposed mapping can be applied with slight changes to any other
UML2. This means that our research is usable in any branch of
knowledge where XML data have to be prepared and adapted to a
XSD schema other than the one towhich they already conform, such
as the adaptation of heterogeneous data sources, and the prepara­
tion of complex data for knowledge discovery processes (KDD).

Regarding the limitations of the research, the system has to
extract the XSD schema modelling the original data source and is
prone to error if any values of those data are missing. Additionally,
the system is only applicable to information in XML format and is
not applicable to formats like JSON or unlabelled plain text files.

The next logical step in this line of research is to develop the
automated component adaptation system to process possible miss­
ing values in components. Another research line would be to apply
the proposed system to other software engineering fields, such as
the automated preprocessing of XML-based structurally complex
data, the automated adaptation of components in component-
based software engineering and generally any field where it is nec­
essary to process, fit or map heterogeneous sources of labelled data
in order to apply inference or automated processing techniques.

References

[1] 4CAAST PROJECT, Official Web Site, 2012. <http://4caast.morfeo-project.org>.
[2] AMICO, AMICO Web Platform, 2012. <http://amico.sourceforge.net>.
[3] F. Baader, D. Calvanese, D. Mcguinness, D. Nardi, P. Patel-schneider, The

Description Logic Handbook: Theory, Implementation and Applications,
University Press, Cambridge, UK, 2003.

[4] Andrea Cal̀ ı, Diego Calvanese, Giuseppe DeGiacomo, Maurizio Lenzerini, A
formal framework for reasoning on UML class diagrams, Foundations of
Intelligent Systems, Lecture Notes in Computer Science, vol. 2366, Springer,
Berlin/Heidelberg, 2002, pp. 423–427.

[5] Daniela Berardi, Diego Calvanese, Reasoning on UML class diagrams using
description logic based systems, in: Workshop on Applications of Description
Logics, 2001.

[6] Diego Calvanese, Maurizio Lenzerini, Representing and reasoning on XML
documents: a description logic approach, J. Logic Comput. (1999) 295–318.

[7] EZWEB, EzWeb Web Platform, 2012. <http://conwet.fi.upm.es/morfeo-project/
ezweb_blog/?lng=en>.

[8] EZWEB PROJECT, Official Demo Web Site, 2011. <http://demo.ezweb.morfeo-
project.org>.

[9] FI-WARE PROJECT, Official Web Site, 2012. <http://www.fi-ware.eu>.
[10] Franklin Ramalho, Jacques Robin, Mapping UML class diagrams to object-

oriented logic programs for formal model-driven development, in: 3rd UML
Workshop in Software Model Engineering, 2004.

[11] GOOGLE, iGoogle Web Platform, 2012. <http://www.google.com/ig>.
[12] V. Haarslev, R. Möller, Racer System Description, Springer-Verlag, Germany,

2001. pp. 701–705.
[13] I. Horrocks, O. Kutz, U. Sattler, The Even More Irresistible SROIQ, American

Association for Artificial Intelligence, 2006.
[14] JACKBE, JackBe Presto Cloud Web Platform, 2012. <http://

prestocloud.jackbe.com/>.
[15] Jocelyn Simmonds, Cecilia M. Bastarrica, A tool for automatic UML model

consistency checking, in: Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’05), ACM, New York, NY,
USA, 2005, pp. 431–432.

http://4caast.morfeo-project.org
http://amico.sourceforge.net
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0150
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0150
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0150
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0155
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0155
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0155
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0155
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0155
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0160
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0160
http://conwet.fi.upm.es/morfeo-project/ezweb_blog/?lng=en
http://conwet.fi.upm.es/morfeo-project/ezweb_blog/?lng=en
http://demo.ezweb.morfeo-project.org
http://demo.ezweb.morfeo-project.org
http://www.fi-ware.eu
http://www.google.com/ig
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0165
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0165
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0170
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0170
http://prestocloud.jackbe.com/
http://prestocloud.jackbe.com/
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0175
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0175
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0175
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0175

[16] KAPOW SOFTWARE, Open Kapow and Kapow Katalyst Web Platform, 2012.
<www.kapowsoftware.com>.

[17] A.J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaffidi,
J. Lawrance, H. Lieberman, B. Myers, M.B. Rosson, G. Rothermel, M. Shaw, S.
Wiedenbeck, The state of the art in end-user software engineering, J. ACM
Comput. Surv. 43 (3) (2011) (Article 21).

[18] Konstantinos N. Vavliakis, Andreas L. Symeonidis, Georgios T. Karagiannis,
Pericles A. Mitkas, An integrated framework for enhancing the semantic
transformation, editing and querying of relational databases, Exp. Syst. Appl.
38 (4) (2011) 3844-3856. http://dx.doi.org/10.1016/j.eswa.2010.09.045. ISSN
0957-4174.

[19] H. Lieberman, F. Paterno, V. Wulf, End-User Development, Kluwer Springer
Academic Publishers, Dordrecht, The Netherlands, 2006.

[20] D. Lizcano, F. Alonso, J. Soriano, G. Lopez, A user-centric approach for
developing and deploying service front-ends in the future internet of
services, Int. J. Web Grid Serv. 5 (2) (2009) 155-191.

[21] D. Lizcano, Formalization of the Emerging End-User Programming Paradigm,
Ph. D, Thesis Published by Universidad Politécnica de Madrid, Fundación
General UPM Publishers, Spain, December 2010.

[22] D. Lizcano, F. Alonso, J. Soriano, G. Lopez, A new end-user composition model
to empower knowledge workers to develop rich Internet applications, J. Web
Eng. 3 (10) (2011) 197-233.

[23] D. Lizcano, F. Alonso, J. Soriano, G. Lopez, End-user development success
factors and their application to composite web development environments, in:
Proceedings of the Sixth International Conference on Systems, ICONS, vol. 11,
2011, pp. 99-108.

[24] D. Lizcano, F. Alonso, J. Soriano, G. Lopez, Supporting end-user development
through a new composition model: an empirical study, J. Univ. Comput. Sci. 18
(2) (2012) 143-176.

[25] D. Lizcano, F. Alonso, J. Soriano, G. Lopez, A web-centered approach to end-user
software engineering, ACM Trans. Softw. Eng. Methodol. 22 (4) (2013) 29,
http://dx.doi.org/10.1145/2522920.2522929.

[26] D. Lizcano, End-User Development Web Site, Statistical Survey of the End-User
Development Paradigm, 2013. <http://apolo.ls.fi.upm.es/eud/>.

[27] J.A. Macías, F. Paternò, Customization of web applications through an
intelligent environment exploiting logical interface descriptions, J. Interact.
Comput. 20 (1) (2008) 29-47.

[28] MARMITE, Marmite Web Platform, 2012. <http://www.cs.cmu.edu/~jasonh/
projects/marmite/>.

[29] MICROSOFT, Microsoft Popfly Web Platform, 2012. <http://www.popfly.com>.
[30] Netvibes UWA Specification. <http://dev.netvibes.com/doc/uwa/

documentation> (accessed 24.09.07).
[31] Luigi Palopoli, Giorgio Terracina, Domenico Ursino, A plausibility description

logic for handling information sources with heterogeneous data
representation formats, Ann. Math. Artifi. Intell., vol. 39, Springer,
Netherlands, 2003, pp. 385–430.

[32] J. Rode, Y. Bhardwaj, M.A. Perez-quinones, M.B. Rosson, J. Howarth, As easy as
‘‘Click’’: end-user web engineering, in: Proceedings of the 2005 International
Conference on Web Engineering, 2005, pp. 478–488.

[33] C. Scaffidi, M. Shaw, B. Myers, The ‘‘55M End User Programmers’’ Estimate
Revisited, Technical Report CMU-ISRI-05-100, Carnegie Mellon University,
2005.

[34] R. Sobek, Official MOF Specification from OMG, Technical Report, Object
Management Group, Inc., USA, 2005.

[35] U. Sattler, Terminological Knowledge Representation Systems in a Process
Engineering Application, PhD Thesis, LuFG Theoretical Computer Science,
RWTHAachen,1998.

[36] V. Haarslev, R. Möller, RACER system description and its applications, in: Proc.
of IJCAR, 2001.

[37] V. Haarslev, R. Möller, High Performance Reasoning with Very Large
Knowledge, 2001.

[38] Ragnhild Van Der Straeten, Tom Simmonds Mens, Jonckers Jocelyn, Stevens
Viviane, Whittle Perdita, Using description logic to maintain consistency
between UML models, in: The Unified Modeling Language. Modeling
Languages and Applications, Lecture Notes in Computer Science, vol. 286,
Springer, Berlin/Heidelberg, 2003, pp. 326–340.

[39] W3C Web Accessibility Initiative, 2012. <http://www.w3.org/WAI/>.
[40] W3C Web API Working Group, 2012. <http://www.w3.org/2008/webapps/>.
[41] W3CWebApplicationFormats,2008.<http://www.w3.org/2006/appformats/>.
[42] Xiaodong Zhu, Hengshan Wang, Hongcheng Gan, Chunchang Gao,

Construction and management of automatical reasoning supported data
mining metadata, in: The International Conference on Business Management
and Electronic Information (BMEI), 2011, pp. 205–210.

[43] YAHOO!, Yahoo! Pipes Web Platform, 2012b. <http://pipes.yahoo.com/>.
[44] YAHOO!, Yahoo! Dapper Web Platform, 2012a. <http://open.dapper.net>.
[45] Per Runeson, Martin Höst, Guidelines for conducting and reporting case study

research in software engineering, Empirical Softw. Eng. 14 (2) (2009) 131–164,
http://dx.doi.org/10.1007/s10664-008-9102-8.

http://www.kapowsoftware.com
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0180
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0180
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0180
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0180
http://dx.doi.org/10.1016/j.eswa.2010.09.045
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0190
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0190
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0195
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0195
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0195
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0200
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0200
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0200
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0205
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0205
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0205
http://dx.doi.org/10.1145/2522920.2522929
http://apolo.ls.fi.upm.es/eud/
http://refhub.elsevier.com/S0950-5849(14)00138-4/h9210
http://refhub.elsevier.com/S0950-5849(14)00138-4/h9210
http://refhub.elsevier.com/S0950-5849(14)00138-4/h9210
http://www.cs.cmu.edu/~jasonh/projects/marmite/
http://www.cs.cmu.edu/~jasonh/
http://www.cs.cmu.edu/~jasonh/projects/marmite/
http://www.cs.cmu.edu/~jasonh/projects/marmite/
http://www.popfly.com
http://dev.netvibes.com/doc/uwa/documentation
http://dev.netvibes.com/doc/uwa/documentation
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0215
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0215
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0215
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0215
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0220
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0220
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0220
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0220
http://refhub.elsevier.com/S0950-5849(14)00138-4/h0220
http://www.w3.org/WAI/
http://www.w3.org/2008/webapps/
http://www.w3.org/2006/appformats/
http://pipes.yahoo.com/
http://open.dapper.net
http://dx.doi.org/10.1007/s10664-008-9102-8

