2,481 research outputs found

    On Region Algebras, XML Databases, and Information Retrieval

    Get PDF
    This paper describes some new ideas on developing a logical algebra for databases that manage textual data and support information retrieval functionality. We describe a first prototype of such a system

    Web Queries: From a Web of Data to a Semantic Web?

    Get PDF

    Sound ranking algorithms for XML search

    Get PDF
    Ranking algorithms for XML should reflect the actual combined content and structure constraints of queries, while at the same time producing equal rankings for queries that are semantically equal. Ranking algorithms that produce different rankings for queries that are semantically equal are easily detected by tests on large databases: We call such algorithms not sound. We report the behavior of different approaches to ranking content-and-structure queries on pairs of queries for which we expect equal ranking results from the query semantics. We show that most of these approaches are not sound. Of the remaining approaches, only 3 adhere to the W3C XQuery Full-Text standard

    A Database Approach to Content-based XML retrieval

    Get PDF
    This paper describes a rst prototype system for content-based retrieval from XML data. The system's design supports both XPath queries and complex information retrieval queries based on a language modelling approach to information retrieval. Evaluation using the INEX benchmark shows that it is beneficial if the system is biased to retrieve large XML fragments over small fragments

    Towards MKM in the Large: Modular Representation and Scalable Software Architecture

    Full text link
    MKM has been defined as the quest for technologies to manage mathematical knowledge. MKM "in the small" is well-studied, so the real problem is to scale up to large, highly interconnected corpora: "MKM in the large". We contend that advances in two areas are needed to reach this goal. We need representation languages that support incremental processing of all primitive MKM operations, and we need software architectures and implementations that implement these operations scalably on large knowledge bases. We present instances of both in this paper: the MMT framework for modular theory-graphs that integrates meta-logical foundations, which forms the base of the next OMDoc version; and TNTBase, a versioned storage system for XML-based document formats. TNTBase becomes an MMT database by instantiating it with special MKM operations for MMT.Comment: To appear in The 9th International Conference on Mathematical Knowledge Management: MKM 201

    Projector - a partially typed language for querying XML

    Get PDF
    We describe Projector, a language that can be used to perform a mixture of typed and untyped computation against data represented in XML. For some problems, notably when the data is unstructured or semistructured, the most desirable programming model is against the tree structure underlying the document. When this tree structure has been used to model regular data structures, then these regular structures themselves are a more desirable programming model. The language Projector, described here in outline, gives both models within a single partially typed algebra and is well suited for hybrid applications, for example when fragments of a known structure are embedded in a document whose overall structure is unknown. Projector is an extension of ECMA-262 (aka JavaScript), and therefore inherits an untyped DOM interface. To this has been added some static typing and a dynamic projection primitive, which can be used to assert the presence of a regular structure modelled within the XML. If this structure does exist, the data is extracted and presented as a typed value within the programming language

    XML Reconstruction View Selection in XML Databases: Complexity Analysis and Approximation Scheme

    Full text link
    Query evaluation in an XML database requires reconstructing XML subtrees rooted at nodes found by an XML query. Since XML subtree reconstruction can be expensive, one approach to improve query response time is to use reconstruction views - materialized XML subtrees of an XML document, whose nodes are frequently accessed by XML queries. For this approach to be efficient, the principal requirement is a framework for view selection. In this work, we are the first to formalize and study the problem of XML reconstruction view selection. The input is a tree TT, in which every node ii has a size cic_i and profit pip_i, and the size limitation CC. The target is to find a subset of subtrees rooted at nodes i1,⋯ ,iki_1,\cdots, i_k respectively such that ci1+⋯+cik≤Cc_{i_1}+\cdots +c_{i_k}\le C, and pi1+⋯+pikp_{i_1}+\cdots +p_{i_k} is maximal. Furthermore, there is no overlap between any two subtrees selected in the solution. We prove that this problem is NP-hard and present a fully polynomial-time approximation scheme (FPTAS) as a solution

    Relational Approach to Logical Query Optimization of XPath

    Get PDF
    To be able to handle the ever growing volumes of XML documents, effective and efficient data management solutions are needed. Managing XML data in a relational DBMS has great potential. Recently, effective relational storage schemes and index structures have been proposed as well as special-purpose join operators to speed up querying of XML data using XPath/XQuery. In this paper, we address the topic of query plan construction and logical query optimization. The claim of this paper is that standard relational algebra extended with special-purpose join operators suffices for logical query optimization. We focus on the XPath accelerator storage scheme and associated staircase join operators, but the approach can be generalized easily

    Expressing OLAP operators with the TAX XML algebra

    Full text link
    With the rise of XML as a standard for representing business data, XML data warehouses appear as suitable solutions for Web-based decision-support applications. In this context, it is necessary to allow OLAP analyses over XML data cubes (XOLAP). Thus, XQuery extensions are needed. To help define a formal framework and allow much-needed performance optimizations on analytical queries expressed in XQuery, having an algebra at one's disposal is desirable. However, XOLAP approaches and algebras from the literature still largely rely on the relational model and/or only feature a small number of OLAP operators. In opposition, we propose in this paper to express a broad set of OLAP operators with the TAX XML algebra.Comment: in 3rd International Workshop on Database Technologies for Handling XML Information on the Web (DataX-EDBT 08), Nantes : France (2008
    • …
    corecore