95 research outputs found

    Social-aware Opportunistic Routing Protocol based on User's Interactions and Interests

    Full text link
    Nowadays, routing proposals must deal with a panoply of heterogeneous devices, intermittent connectivity, and the users' constant need for communication, even in rather challenging networking scenarios. Thus, we propose a Social-aware Content-based Opportunistic Routing Protocol, SCORP, that considers the users' social interaction and their interests to improve data delivery in urban, dense scenarios. Through simulations, using synthetic mobility and human traces scenarios, we compare the performance of our solution against other two social-aware solutions, dLife and Bubble Rap, and the social-oblivious Spray and Wait, in order to show that the combination of social awareness and content knowledge can be beneficial when disseminating data in challenging networks

    A DTN routing scheme for quasi-deterministic networks with application to LEO satellites topology

    Get PDF
    We propose a novel DTN routing algorithm, called DQN, specifically designed for quasi-deterministic networks with an application to satellite constellations. We demonstrate that our proposal efficiently forwards the information over a satellite network derived from the Orbcomm topology while keeping a low replication overhead. We compare our algorithm against other well-known DTN routing schemes and show that we obtain the lowest replication ratio without the knowledge of the topology and with a delivery ratio of the same order of magnitude than a reference theoretical optimal routing

    MaxHopCount: A New Drop Policy to Optimize Messages Delivery Rate in Delay Tolerant Networks

    Get PDF
    Communication has become a necessity, not only between every point on the earth, but also on the globe. That includes hard topography, highlands, underwater areas, and also space- crafts on other planets. However, the classic wired internet cannot be implemented in such areas, hence, researchers have invented wireless networks. The big challenge for wireless networking nowadays, is maintaining nodes connected in some difficult conditions, such as intermittent connectivity, power failure, and lot of obstacles for the interplanetary networks. In these challenging circumstances, a new networking model arises; it is Delay Tolerant networking which is based on the Store-Carry-and-Forward mechanism. Thus, a node may keep a message in its buffer for long periods of time; until a delivery or forward chance arises then it transmit it to other nodes. One of the big issues that confront this mechanism is the congestion of nodes buffer due to the big number of messages and the limited buffer size. Here, researchers have proposed buffer management algorithms in order to deal with the buffer overload problem, and they called it Drop Policies. In our present work, we propose a new Drop policy which we have compared to other existing policies in different conditions and with different routing protocols, and it always shows good result in term of number of delivered messages, network overhead and also average of latency

    Fibonary Spray and Wait Routing in Delay Tolerant Networks

    Get PDF
    Although there has been a tremendous rise in places being connected through the Internet or any other network protocol, there still lie areas, which remain out of reach due to various reasons. For all such places the answer is a Delay Tolerant Network (DTN). A DTN is such a network where there is no fixed or predefined route for messages and no such guarantee whatsoever of all messages being correctly routed. DTN can be considered as a superset of networks wherein other networks such as adhoc, mobile, vehicular etc. form the subset. Therefore routing in DTN is a very chancy affair where one has to maximize on the present network scenarios to get any fruitful result other than depending on past information. Also protocols here need to be less complex and not increase the already high nodal overhead. In this paper we propose a new approach, the Fibonary Spray and Wait, which does exactly this. It forwards copies of a message in a modified Binary Spray and Wait manner so that it performs well even in non independent and identically distributed node structure. We have supported our statements with mathematical as well as simulation analysis

    GrAnt: Inferring Best Forwarders from Complex Networks' Dynamics through a Greedy Ant Colony Optimization

    Get PDF
    This paper presents a new prediction-based forwarding protocol for the complex and dynamic Delay Tolerant Networks (DTN). The proposed protocol is called GrAnt (Greedy Ant) as it uses a greedy transition rule for the Ant Colony Optimization (ACO) metaheuristic to select the most promising forwarder nodes or to provide the exploitation of good paths previously found. The main motivation for the use of ACO is to take advantage of its population-based search and of the rapid adaptation of its learning framework. Considering data from heuristic functions and pheromone concentration, the GrAnt protocol includes three modules: routing, scheduling, and buffer management. To the best of our knowledge, this is the first unicast protocol that employs a greedy ACO which: (1) infers best promising forwarders from nodes' social connectivity, (2) determines the best paths to be followed to a message reach its destination, while limiting the message replications and droppings, (3) performs message transmission scheduling and buffer space management. GrAnt is compared to Epidemic and PROPHET protocols in two different scenarios: a working day and a community mobility model. Simulation results obtained by ONE simulator show that in both environments, GrAnt achieves higher delivery ratio, lower messages redundancy, and fewer dropped messages than Epidemic and PROPHET.Cet article porte sur la proposition d'un protocole d'acheminement pour les réseaux complexes et dynamiques du type tolérants aux délais (DTN), qui est basé sur l'estimation de possibilités futures de contact. Le protocole proposé est appelé GrAnt (Greedy Ant) car il utilise une rÚgle de transition greedy pour la méta-heuristique d'optimisation par colonies de fourmis (ACO). Cette méta-heuristique donne à GrAnt la possibilité de sélectionner les relais les plus prometteuses ou d'exploiter les bons chemins préalablement trouvé. La motivation principale pour l'utilisation de l'ACO est de profiter de son mécanisme de recherche basée sur population et de son apprentissage et adaptation rapide. En utilisant des simulations basées sur des modÚles synthétiques de mobilité, nous montrons que GrAnt est en mesure d'adapter conformément son acheminement dans des différents scénarios et possÚde une meilleure performance comparée à des protocoles comme Epidemic et PROPHET, en plus de la génération de faible surcharge

    MinHop (MH) Transmission strategy to optimized performance of epidemic routing protocol

    Get PDF
    Delay tolerant network aims to provide the network architecture in environments where end-to-end path may never exist for long duration of time Furthermore dynamic topology changes limited buffer space and non stable connectivity make routing a challenging issue The research contribution regarding DTN routing protocols can be categorized in to single and multi copy strategies A single copy strategy makes less use of network resources but suffers from long delay and less delivery probability Multi copy schemes enjoy better delivery probability and minimum delivery delay at the cost of heavy use of network resource Moreover DTN nodes operate under short contact duration and limited transmission bandwidth Therefore it is not possible for a node to transmit all messages from its forwarding queue Hence the order at which the messages are forwarded becomes very vital In this paper we propose a forwarding queue mode named MinHop We prove through simulations that the proposed policy performs better then FIFO in terms of delivery probability overhead message drop and rela

    Optimal Cluster Head in DTN Routing Hierarchical Topology (DRHT)

    Get PDF
    In delay tolerant networking (DTN), nodes are autonomous and behave in an unpredictable way. Consequently, a control mechanism of topology is necessary. This mechanism should ensure the overall connectivity of the network taking into account nodes’ mobility. In this paper, we study the problem of data routing with an optimal delay in the bundle layer, by exploiting: the clustering, the messages ferries and the optimal election of cluster head (CH). We first introduce the DTN routing hierarchical topology (DRHT) which incorporates these three factors into the routing metric. We propose an optimal approach to elect a CH based on four criteria: the residual energy, the intra-cluster distance, the node degree and the head count of probable CHs. We proceed then to model a Markov decision process (MDP) to decide the optimal moment for sending data in order to ensure a higher delivery rate within a reasonable delay. At the end, we present the simulation results demonstrating the effectiveness of the DRHT. Our simulation shows that while using the DRHT which is based on the optimal election of CH, the traffic control during the TTL interval (Time To Live) is balanced, which greatly increases the delivery rate of bundles and decreases the loss rate

    Overview of Hybrid MANET-DTN Networking and its Potential for Emergency Response Operations

    Get PDF
    Communication networks for emergency response operations have to operate in harsh environments. As fixed infrastructures may be unavailable (e.g., they are destroyed or overloaded), mobile ad-hoc networks (MANETs) are a promising solution to establish communication for emergency response operations. However, networks for emergency responses may provide diverse connectivity characteristics which imposes some challenges, especially on routing. Routing protocols need to take transmission errors, node failures and even the partitioning of the network into account. Thus, there is a need for routing algorithms that provide mechanisms from Delay or Disruption Tolerant Networking (DTN) in order to cope with network disruptions but at the same time are as efficient as MANET routing schemes in order to preserve network resources. This paper reviews several hybrid MANET-DTN routing schemes that can be found in the literature. Additionally, the paper evaluates a realistic emergency response scenario and shows that MANET-DTN routing schemes have the potential to improve network performance as the resulting network is diverse in terms of connectivity. In particular, the network provides well-connected regions whereas other parts are only intermittently connected
    • 

    corecore