249 research outputs found

    Improved Power Quality AC/DC Converters

    Get PDF

    Power factor-corrected transformerless three-phase PWM converter for UPS applications

    Get PDF
    This thesis describes the research of a new transformerless three phase PWM converter for uninterruptible power supplies (UPS) applications. The removal of the bulky three phase transformer in larger power UPS can provide a significant saving in weight and cost of the overall system. The converter consists of a new four-wire rectifier coupled with a four-wire inverter via a dc bus. The supply and load neutral may be connected together without any neutral current flowing into the utility regardless of the load on the inverter. This allows the load to be at the same potential as the utility. The rectifier, inverter and complete UPS and control system are described in detail and simulation results are used extensively to back up the theory. An experimental prototype of the four-wire rectifier provides further confirmation of the principles. A further proposal to digitize the system is given. This would reduce the size of the required control circuit and simplify the hardware requirements

    Advanced control of grid-connected multilevel power electronic rectifiers

    Get PDF
    Multilevel power electronic converters have been gaining attention due to their ability to supply high amounts of power and to handle high voltage levels. In this dissertation, grid connected AC-DC rectifier application is investigated with different topologies and control scheme. At first, neutral point clamped (NPC) rectifier is employed to transfer power from the grid to the load. The NPC rectifier has two capacitors in order to build multilevel output voltage. However, it causes voltage unbalancing problem. Therefore, the new method has been proposed to regulate each capacitor voltage at the same voltage level. Experimental results show that it is effective to balance capacitor voltages of the NPC and it can improve total harmonic distortion (THD) of the grid current as a result. Furthermore, 7 voltage levels can be achieved by using hybrid multilevel rectifier which consists of an NPC and cascaded H-bridges (CHB). Because the hybrid multilevel rectifier has total 8 capacitors which are completely discharged at first, large inrush currents from the grid might cause hazards. Therefore, the paper develops a pre-charge routine for building it up to steady state operation in which unity power factor control (PFC) and load voltage control are achieved. Finally, multiple reference frame theory (MRF) is used to improve THD of the grid currents when the hybrid multilevel rectifier is connected with distorted grid voltage source. After calculating 5th harmonic of the grid current in real time, the voltage reference for the hybrid multilevel rectifier will be compensated in a feedback loop. Experimental results show validity in improving THD of the grid currents. --Abstract, page iv

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    A novel fixed switching frequency control strategy applied to an improved five-level active rectifier

    Get PDF
    A novel fixed switching frequency control strategy applied to an improved five-level active rectifier (iFLAR) is proposed. The operation with fixed switching frequency represents a powerful advantage, since the range of the produced harmonics is well identified, and it is possible to design passive filters to mitigate such harmonics. The experimental validation shows that the control strategy allows attaining an ac-side current with reduced total harmonic distortion and high power factor, which is an attractive influence for grid-connected electrical appliances. This contribution is even more relevant with the new paradigm of smart grids where higher levels of power quality are required. A theoretical analysis of the control strategy and the details of its implementation in a digital signal processor are presented. The control scheme and the developed iFLAR were experimentally confirmed using a laboratorial prototype, showing its benefits in terms of accuracy, reduced total harmonic distortion and high power factor.This work has been supported by COMPETE: POCI-010145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia, within project SAICTPAC/0004/2015 – POCI – 01–0145–FEDER–016434. Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency. This work is part of the FCT project 0302836 NORTE-01-0145-FEDER-030283.info:eu-repo/semantics/publishedVersio

    Novel single-phase five-level VIENNA-type rectifier with model predictive current control

    Get PDF
    A novel single-phase five-level active rectifier based on the VIENNA-type rectifier with model predictive current control is presented. The proposed topology operates in unidirectional mode, imposing a sinusoidal grid-side current with unitary power factor. A unidirectional electric vehicle battery charger is the target application in which the proposed rectifier is used; however, it can also be used as an active rectifier for other purposes aiming to improve the efficiency of ac-to-dc rectification. The model predictive current control is used to select the active rectifier state during each sampling period, trying to minimize the grid current error and obtain low total harmonic distortion. The suitability and performance of the proposed topology of active rectifier, as well as the principle of operation and the digital control algorithm, are evaluated through simulation and experimental results.This work has been supported by COMPETE: POCI-01- 0145–FEDER–007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia, within project SAICTPAC/0004/2015 – POCI – 01–0145–FEDER–016434.info:eu-repo/semantics/publishedVersio

    Design and Advanced Model Predictive Control of Wide Bandgap Based Power Converters

    Get PDF
    The field of power electronics (PE) is experiencing a revolution by harnessing the superior technical characteristics of wide-band gap (WBG) materials, namely Silicone Carbide (SiC) and Gallium Nitride (GaN). Semiconductor devices devised using WBG materials enable high temperature operation at reduced footprint, offer higher blocking voltages, and operate at much higher switching frequencies compared to conventional Silicon (Si) based counterpart. These characteristics are highly desirable as they allow converter designs for challenging applications such as more-electric-aircraft (MEA), electric vehicle (EV) power train, and the like. This dissertation presents designs of a WBG based power converters for a 1 MW, 1 MHz ultra-fast offboard EV charger, and 250 kW integrated modular motor drive (IMMD) for a MEA application. The goal of these designs is to demonstrate the superior power density and efficiency that are achievable by leveraging the power of SiC and GaN semiconductors. Ultra-fast EV charging is expected to alleviate the challenge of range anxiety , which is currently hindering the mass adoption of EVs in automotive market. The power converter design presented in the dissertation utilizes SiC MOSFETs embedded in a topology that is a modification of the conventional three-level (3L) active neutral-point clamped (ANPC) converter. A novel phase-shifted modulation scheme presented alongside the design allows converter operation at switching frequency of 1 MHz, thereby miniaturizing the grid-side filter to enhance the power density. IMMDs combine the power electronic drive and the electric machine into a single unit, and thus is an efficient solution to realize the electrification of aircraft. The IMMD design presented in the dissertation uses GaN devices embedded in a stacked modular full-bridge converter topology to individually drive each of the motor coils. Various issues and solutions, pertaining to paralleling of GaN devices to meet the high current requirements are also addressed in the thesis. Experimental prototypes of the SiC ultra-fast EV charger and GaN IMMD were built, and the results confirm the efficacy of the proposed designs. Model predictive control (MPC) is a nonlinear control technique that has been widely investigated for various power electronic applications in the past decade. MPC exploits the discrete nature of power converters to make control decisions using a cost function. The controller offers various advantages over, e.g., linear PI controllers in terms of fast dynamic response, identical performance at a reduced switching frequency, and ease of applicability to MIMO applications. This dissertation also investigates MPC for key power electronic applications, such as, grid-tied VSC with an LCL filter and multilevel VSI with an LC filter. By implementing high performance MPC controllers on WBG based power converters, it is possible to formulate designs capable of fast dynamic tracking, high power operation at reduced THD, and increased power density

    Applications of Power Electronics:Volume 1

    Get PDF

    Industrial IoT based condition monitoring for wind energy conversion system

    Get PDF
    Wind energy has been identified as the second dominating source in the world renewable energy generation after hydropower. Conversion and distribution of wind energy has brought technology revolution by developing the advanced wind energy conversion system (WECS) including multilevel inverters (MLIs). The conventional rectifier produces ripples in their output waveforms while the MLI suffers from voltage balancing issues across the DC-link capacitor. This paper proposes a simplified proportional integral (PI)-based space vector pulse width modulation (SVPWM) to minimize the output waveform ripples, resolve the voltage balancing issue and produce better-quality output waveforms. WECS experiences various types of faults particularly in the DC-link capacitor and switching devices of the power converter. These faults, if not detected and rectified at an early stage, may lead to catastrophic failures to the WECS and continuity of the power supply. This paper proposes a new algorithm embedded in the proposed PI-based SVPWM controller to identify the fault location in the power converter in real time. Since most wind power plants are located in remote areas or offshore, WECS condition monitoring needs to be developed over the internet of things (IoT) to ensure system reliability. In this paper, an industrial IoT algorithm with an associated hardware prototype is proposed to monitor the condition of WECS in the real-time environment. © 2015 CSEE

    Power Quality

    Get PDF
    Electrical power is becoming one of the most dominant factors in our society. Power generation, transmission, distribution and usage are undergoing signifi cant changes that will aff ect the electrical quality and performance needs of our 21st century industry. One major aspect of electrical power is its quality and stability – or so called Power Quality. The view on Power Quality did change over the past few years. It seems that Power Quality is becoming a more important term in the academic world dealing with electrical power, and it is becoming more visible in all areas of commerce and industry, because of the ever increasing industry automation using sensitive electrical equipment on one hand and due to the dramatic change of our global electrical infrastructure on the other. For the past century, grid stability was maintained with a limited amount of major generators that have a large amount of rotational inertia. And the rate of change of phase angle is slow. Unfortunately, this does not work anymore with renewable energy sources adding their share to the grid like wind turbines or PV modules. Although the basic idea to use renewable energies is great and will be our path into the next century, it comes with a curse for the power grid as power fl ow stability will suff er. It is not only the source side that is about to change. We have also seen signifi cant changes on the load side as well. Industry is using machines and electrical products such as AC drives or PLCs that are sensitive to the slightest change of power quality, and we at home use more and more electrical products with switching power supplies or starting to plug in our electric cars to charge batt eries. In addition, many of us have begun installing our own distributed generation systems on our rooft ops using the latest solar panels. So we did look for a way to address this severe impact on our distribution network. To match supply and demand, we are about to create a new, intelligent and self-healing electric power infrastructure. The Smart Grid. The basic idea is to maintain the necessary balance between generators and loads on a grid. In other words, to make sure we have a good grid balance at all times. But the key question that you should ask yourself is: Does it also improve Power Quality? Probably not! Further on, the way how Power Quality is measured is going to be changed. Traditionally, each country had its own Power Quality standards and defi ned its own power quality instrument requirements. But more and more international harmonization efforts can be seen. Such as IEC 61000-4-30, which is an excellent standard that ensures that all compliant power quality instruments, regardless of manufacturer, will produce of measurement instruments so that they can also be used in volume applications and even directly embedded into sensitive loads. But work still has to be done. We still use Power Quality standards that have been writt en decades ago and don’t match today’s technology any more, such as fl icker standards that use parameters that have been defi ned by the behavior of 60-watt incandescent light bulbs, which are becoming extinct. Almost all experts are in agreement - although we will see an improvement in metering and control of the power fl ow, Power Quality will suff er. This book will give an overview of how power quality might impact our lives today and tomorrow, introduce new ways to monitor power quality and inform us about interesting possibilities to mitigate power quality problems. Regardless of any enhancements of the power grid, “Power Quality is just compatibility” like my good old friend and teacher Alex McEachern used to say. Power Quality will always remain an economic compromise between supply and load. The power available on the grid must be suffi ciently clean for the loads to operate correctly, and the loads must be suffi ciently strong to tolerate normal disturbances on the grid
    • …
    corecore