4,291 research outputs found

    Constraint-driven RF test stimulus generation and built-in test

    Get PDF
    With the explosive growth in wireless applications, the last decade witnessed an ever-increasing test challenge for radio frequency (RF) circuits. While the design community has pushed the envelope far into the future, by expanding CMOS process to be used with high-frequency wireless devices, test methodology has not advanced at the same pace. Consequently, testing such devices has become a major bottleneck in high-volume production, further driven by the growing need for tighter quality control. RF devices undergo testing during the prototype phase and during high-volume manufacturing (HVM). The benchtop test equipment used throughout prototyping is very precise yet specialized for a subset of functionalities. HVM calls for a different kind of test paradigm that emphasizes throughput and sufficiency, during which the projected performance parameters are measured one by one for each device by automated test equipment (ATE) and compared against defined limits called specifications. The set of tests required for each product differs greatly in terms of the equipment required and the time taken to test individual devices. Together with signal integrity, precision, and repeatability concerns, the initial cost of RF ATE is prohibitively high. As more functionality and protocols are integrated into a single RF device, the required number of specifications to be tested also increases, adding to the overall cost of testing, both in terms of the initial and recurring operating costs. In addition to the cost problem, RF testing proposes another challenge when these components are integrated into package-level system solutions. In systems-on-packages (SOP), the test problems resulting from signal integrity, input/output bandwidth (IO), and limited controllability and observability have initiated a paradigm shift in high-speed analog testing, favoring alternative approaches such as built-in tests (BIT) where the test functionality is brought into the package. This scheme can make use of a low-cost external tester connected through a low-bandwidth link in order to perform demanding response evaluations, as well as make use of the analog-to-digital converters and the digital signal processors available in the package to facilitate testing. Although research on analog built-in test has demonstrated hardware solutions for single specifications, the paradigm shift calls for a rather general approach in which a single methodology can be applied across different devices, and multiple specifications can be verified through a single test hardware unit, minimizing the area overhead. Specification-based alternate test methodology provides a suitable and flexible platform for handling the challenges addressed above. In this thesis, a framework that integrates ATE and system constraints into test stimulus generation and test response extraction is presented for the efficient production testing of high-performance RF devices using specification-based alternate tests. The main components of the presented framework are as follows: Constraint-driven RF alternate test stimulus generation: An automated test stimulus generation algorithm for RF devices that are evaluated by a specification-based alternate test solution is developed. The high-level models of the test signal path define constraints in the search space of the optimized test stimulus. These models are generated in enough detail such that they inherently define limitations of the low-cost ATE and the I/O restrictions of the device under test (DUT), yet they are simple enough that the non-linear optimization problem can be solved empirically in a reasonable amount of time. Feature extractors for BIT: A methodology for the built-in testing of RF devices integrated into SOPs is developed using additional hardware components. These hardware components correlate the high-bandwidth test response to low bandwidth signatures while extracting the test-critical features of the DUT. Supervised learning is used to map these extracted features, which otherwise are too complicated to decipher by plain mathematical analysis, into the specifications under test. Defect-based alternate testing of RF circuits: A methodology for the efficient testing of RF devices with low-cost defect-based alternate tests is developed. The signature of the DUT is probabilistically compared with a class of defect-free device signatures to explore possible corners under acceptable levels of process parameter variations. Such a defect filter applies discrimination rules generated by a supervised classifier and eliminates the need for a library of possible catastrophic defects.Ph.D.Committee Chair: Chatterjee, Abhijit; Committee Member: Durgin, Greg; Committee Member: Keezer, David; Committee Member: Milor, Linda; Committee Member: Sitaraman, Sures

    Control-Theoretical Perspective in Feedback-Based Systems Testing

    Get PDF
    Self-Adaptive Systems (SAS) and Cyber-Physical Systems (CPS) have received significant attention in recent computer engineering research. This is due to their ability to improve the level of autonomy of engineering artefacts. In both cases, this autonomy increase is achieved through feedback. Feedback is the iteration of sens- ing and actuation to respectively acquire knowledge about the current state of said artefacts and steer them toward a desired state or behaviour. In this thesis we dis- cuss the challenges that the introduction of feedback poses on the verification and validation process for such systems, more specifically, on their testing. We highlight three types of new challenges with respect to traditional software testing: alteration of testing input and output definition, and intertwining of components with different nature. Said challenges affect the ways we can define different elements of the test- ing process: coverage criteria, testing set-ups, test-case generation strategies, and oracles in the testing process. This thesis consists of a collection of three papers and contributes to the definition of each of the mentioned testing elements. In terms of coverage criteria for SAS, Paper I proposes the casting of the testing problem, to a semi-infinite optimisation problem. This allows to leverage the Scenario Theory from the field of robust control, and provide a worst-case probabilistic bound on a given performance metric of the system under test. For what concerns the definition of testing set-ups for control-based CPS, Paper II investigates the implications of the use of different abstractions (i.e., the use of implemented or emulated compo- nents) on the significance of the testing. The paper provides evidence that confutes the common assumption present in previous literature on the existence of a hierar- chy among commonly used testing set-ups. Finally, regarding the test-case gener- ation and oracle definition, Paper III defines the problem of stress testing control- based CPS software. We contribute to the generation and identification of stress test cases for such software by proposing a novel test case parametrisation. Leveraging the proposed parametrisation we define metamorphic relations on the expected be- haviour of the system under test. We use said relations for the development of stress testing approach and sanity checks on the testing results

    Stress Testing Control Loops in Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPSs) are often safety-critical and deployed in uncertain environments. Identifying scenarios where CPSs do not comply with requirements is fundamental but difficult due to the multidisciplinary nature of CPSs. We investigate the testing of control-based CPSs, where control and software engineers develop the software collaboratively. Control engineers make design assumptions during system development to leverage control theory and obtain guarantees on CPS behaviour. In the implemented system, however, such assumptions are not always satisfied, and their falsification can lead to guarantees loss. We define stress testing of control-based CPSs as generating tests to falsify such design assumptions. We highlight different types of assumptions, focusing on the use of linearised physics models. To generate stress tests falsifying such assumptions, we leverage control theory to qualitatively characterise the input space of a control-based CPS. We propose a novel test parametrisation for control-based CPSs and use it with the input space characterisation to develop a stress testing approach. We evaluate our approach on three case study systems, including a drone, a continuous-current motor (in five configurations), and an aircraft.Our results show the effectiveness of the proposed testing approach in falsifying the design assumptions and highlighting the causes of assumption violations.Comment: Accepted for publication in August 2023 on the ACM Transactions on Software Engineering and Methodology (TOSEM

    Dynamic Pressure Sensing for the Flight Test Data System

    Get PDF
    This thesis describes the design, assembly, and test of the FTDS-K, a new device in the Boundary Layer Data System (BLDS) family of flight data acquisition systems. The FTDS-K provides high-frequency, high-gain data acquisition capability for up to two pressure sensors and an additional three low-frequency pressure sensors. Development of the FTDS-K was separated into a core module, specialized analog subsystem, and practical testing of the FTDS-K in a flow measurement mission. The core module combines an nRF52840-based microcontroller module, switching regulator, microSD card, real-time clock, temperature sensor, and trio of pressure sensors to provide the same capabilities as previous-generation BLDS-P devices. An expansion header is included in the core module to allow additional functionality to be added via daughter boards. An analog signal chain comprised of two-stage amplification and fourth-order active antialiasing filters was implemented as a daughter board to provide an AC-coupled end-to-end gain of 7,500 and a DC-coupled end-to-end gain of 50. This arrangement was tested in a wind tunnel to demonstrate that sensors with a full-scale range of 103 kPa can be used to reliably discriminate between laminar and turbulent flows based on pressure fluctuation differences on the order of tens of Pa. A combination of wind-off correction and band-filtering was used to reduce the effect of inherent and induced electrical noise, while two-sensor correlation was tested and shown to be effective at removing certain types of noise. Total power consumption for the FTDS-K in a representative mission is 208 mW, which translates to an operational endurance of 9 hours with 2 AAA LiFeS2 cells at -40°C

    Adaptive identification and control of structural dynamics systems using recursive lattice filters

    Get PDF
    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center

    Une plate-forme sans fil pour electrochimique spectroscopie d'impédance

    Get PDF
    Avec l’émergence soutenue de capteurs et de dispositifs électrochimiques innovants, la spectroscopie d'impédance électrochimique est devenue l'un des outils les plus importants pour la caractérisation et la modélisation de la matière ionique et de l'interfaçage des capteurs. La capacité de détecter automatiquement, à l’aide de dispositifs électrochimiques peu couteux, les caractéristiques physiques et chimiques de la matière ionique ouvre une gamme d’application très variée pour la compréhension et l’optimisation des procédés ou interviennent les processus électrochimiques. Cette thèse décrit le développement d’une plate-forme microélectronique miniaturisée, connectée, multiplexée, et à faible coût pour la spectroscopie d'impédance diélectrique (SID) conçue pour les mesures électrochimiques in-situ et adaptée aux architectures de réseau sans fil. La plate-forme développée durant ce travail de maitrise a été testée et validée au sein d’une maille ZigBee et a été en mesure d'interfacer jusqu'à trois capteurs SID en même temps et de relayer l'information à travers le net Zigbee pour l'analyse de données et le stockage. Le système a été construit à partir de composants microélectroniques disponibles commercialement et bénéficie des avantages d'une calibration système on-the-fly qui effectue la calibration du capteur de manière aisée. Dans ce mémoire de maitrise, nous rapportons la modélisation et la caractérisation de senseurs électrochimiques de nitrate; notamment nous décrivons la conception microélectronique, la réponse d'impédance de Nyquist, la sensibilité et la précision de la mesure électrochimique, et les résultats de tests de la plate-forme pour les applications de spectroscopie d'impédance relatives à la détection du nitrate, de la détection de la qualité de l'eau, et des senseurs tactiles.The emergence of the various applications of electrochemical sensors and devices, electrochemical impedance spectroscopy became one of the most important tools for characterizing and modeling of the material and interfacing the sensors. The ability to sense in an automatic manner enables a wide variety of processes to be better understood and optimized cost-effectively. This thesis describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS) designed for in-situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on a ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the Zigbee net for data analysis and storage. The system was built from commercial microelectronics components and benefits from an on-the-fly calibration system that makes sensor calibration easy. The thesis reports characterizing and modeling of two electro-chemical devices (i.e. nitrate sensor and optically-transparent electrically-conductive glasses) and also describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in-situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing

    Attack Resilience and Recovery using Physical Challenge Response Authentication for Active Sensors Under Integrity Attacks

    Get PDF
    Embedded sensing systems are pervasively used in life- and security-critical systems such as those found in airplanes, automobiles, and healthcare. Traditional security mechanisms for these sensors focus on data encryption and other post-processing techniques, but the sensors themselves often remain vulnerable to attacks in the physical/analog domain. If an adversary manipulates a physical/analog signal prior to digitization, no amount of digital security mechanisms after the fact can help. Fortunately, nature imposes fundamental constraints on how these analog signals can behave. This work presents PyCRA, a physical challenge-response authentication scheme designed to protect active sensing systems against physical attacks occurring in the analog domain. PyCRA provides security for active sensors by continually challenging the surrounding environment via random but deliberate physical probes. By analyzing the responses to these probes, and by using the fact that the adversary cannot change the underlying laws of physics, we provide an authentication mechanism that not only detects malicious attacks but provides resilience against them. We demonstrate the effectiveness of PyCRA through several case studies using two sensing systems: (1) magnetic sensors like those found wheel speed sensors in robotics and automotive, and (2) commercial RFID tags used in many security-critical applications. Finally, we outline methods and theoretical proofs for further enhancing the resilience of PyCRA to active attacks by means of a confusion phase---a period of low signal to noise ratio that makes it more difficult for an attacker to correctly identify and respond to PyCRA's physical challenges. In doing so, we evaluate both the robustness and the limitations of PyCRA, concluding by outlining practical considerations as well as further applications for the proposed authentication mechanism.Comment: Shorter version appeared in ACM ACM Conference on Computer and Communications (CCS) 201
    • …
    corecore