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Cyber-Physical Systems (CPSs) are often safety-critical and deployed in uncertain environments. Identifying

scenarios where CPSs do not comply with requirements is fundamental but difficult due to the multidisciplinary

nature of CPSs. We investigate the testing of control-based CPSs, where control and software engineers develop

the software collaboratively. Control engineers make design assumptions during system development to

leverage control theory and obtain guarantees on CPS behaviour. In the implemented system, however, such

assumptions are not always satisfied, and their falsification can lead to guarantees loss. We define stress

testing of control-based CPSs as generating tests to falsify such design assumptions. We highlight different

types of assumptions, focusing on the use of linearised physics models. To generate stress tests falsifying such

assumptions, we leverage control theory to qualitatively characterise the input space of a control-based CPS.

We propose a novel test parametrisation for control-based CPSs and use it with the input space characterisation

to develop a stress testing approach. We evaluate our approach on three case study systems, including a drone,

a continuous-current motor (in five configurations), and an aircraft. Our results show the effectiveness of the

proposed testing approach in falsifying the design assumptions and highlighting the causes of assumption

violations.
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1 INTRODUCTION
Cyber-Physical Systems (CPSs) are engineering artefacts characterised by the tight coupling of

physical and software components [31]. This tight coupling is created by sensors and actuators that

allow the software component to measure and affect the physical part of the system. For example, a

drone uses sensors (such as accelerometer and camera) to estimate its position and actuators (such
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as propellers) to move. The desired behaviour is usually that the drone performs stable flight and

reaches a desired position.

CPSs are often by nature safety-critical, and they are expected to operate in uncertain environ-

ments [54]. For example, drones and cars operate in environments where people are present and

the external conditions are never fully known (e.g., the presence of wind and obstacles for drones,

and other vehicles and pedestrians on the road for cars). In such circumstances, it is of primary

importance to identify the scenarios in which the CPS is no longer able to fulfil its requirements. To

identify such scenarios, stress testing aims to execute a system under test (SUT) in conditions that

are different from the ones expected during the system design [46]. However, CPS development

is known to be multidisciplinary [31], and the definition of the operating conditions expected

during the CPS design depends on the combination of design choices made by different types of

engineers (in our case, software engineers and control engineers). For example, for a drone we

want to identify what can limit its capability to avoid a moving obstacle. The limiting factors can

be the hardware design (e.g., the size of the propellers), different software components (e.g., the

path planning), or their interaction.

Intuitively, being composed of a physical and software part, CPS development involves both

software engineers and engineers with specific knowledge of the physical part of the system

(e.g., aerospace engineers for a drone or mechanical engineers for a car). However, besides these

categories of engineers, many CPS applications involve also control engineers [26]. We call CPSs

that involve control engineers control-based CPSs.1 In such applications, there are multiple layers

of decision making, depending on the decision’s level of abstraction and time-scale. Among the

different layers, we highlight in Figure 1 the role of the control layer in the interaction between

the cyber component (green dashed box) and the physical component (purple dashed box). The

control layer receives desired values (the references) for physical quantities of interest and uses

sensors and actuators in real-time to enforce these values in the physical component. Accordingly,

CPS requirements are generally defined over quantities that live in the physical part of the system,

captured by the CPS outputs in the figure. For example, for a delivery drone, high-level decision

making concerns the definition of the sequences of picking up the object to be delivered, while the

control layer receives the desired position, reads the sensors values, and adjusts in real time the

propellers commands to reach and maintain the desired position.

In control-based CPSs, the role of control engineers is to design control algorithms that are
implemented in software as part of the control layer. When designing control algorithms, control

engineers leverage control theory. To apply such theory, they make design assumptions and abstract
certain aspects of the design problem. Such abstractions concern both the physical component as

well as the software implementation of the control layer. For example, for a drone, they simplify

how the drone moves in space, they neglect the finite capacity of the motors to generate thrust

(also known as actuator saturation) and dismiss other functionalities of the software like flight

mode changes.

From a theoretical point of view, control theory provides formal guarantees, under its design

assumptions, on the CPS performance (e.g., drone flight speed along a certain trajectory). In practice,

the design assumptions do not necessarily hold for the implemented CPS, and the guarantees might

be lost. We can then distinguish scenarios (e.g., values of the references, environment conditions,

system state) in which the design assumptions hold (and therefore also the formal guarantees are

valid) from scenarios in which they are falsified (and the behaviour of the system is unpredictable).

1
CPSs developed with control theory have also been called “control-CPSs” in the literature [26]. We believe “control-based

CPSs” is a more precise characterisation since the word “control” can have different meanings depending on the context

(e.g., control in the sense of supervision).
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Fig. 1. Structure of a CPS, where a cyber component (green dashed box) interacts with a physical component
(purple dashed box). In the cyber component, we highlight the controllers that implement the control layer
and handle the low-level interaction with the physics. The control layer receives desired values for given
physical quantities (the references) and uses sensors and actuators in order to enforce these values in the
physical component. The measures and actuation signals create a closed-loop interaction between the control
layer and the physical layer. In fact, CPS requirements are generally defined over quantities that live in the
physical part of the system, captured by the CPS outputs.

In general, a CPS is expected to be robust to some level of falsification of a design assumption (e.g.,

if an assumption is falsified for a limited amount of time) and be still able to provide the guarantees.

Following this observation, we define the design scope of a CPS as the set of scenarios in which the

design assumptions either hold for the CPS implementation or their falsification does not impact

the CPS behaviour. Conversely, we consider scenarios where the software implementation of the

control layer is affected by the falsification of the design assumptions to be outside of the design

scope of the CPS. In other words, the falsification of design assumptions limits the CPS design

scope, i.e., it reduces the set of scenarios in which the designed algorithm can provide a priori

guarantees. For example, in the drone, scenarios in which the actuators do not saturate (i.e., they do

not reach their maximum or minimum power), or saturate without affecting the flight, are within

the design scope. Conversely, scenarios in which the limited capacity of the motors limits the drone

flight capabilities are outside of the design scope.

We argue that, when performing the verification and validation of a control-based CPS, software

engineers have to take into account its design scope, which is limited by the falsification of the

design assumptions in practice. In fact, when the CPS is executed within the design scope, the

control software can be expected to have predictable behaviour thanks to the a priori guarantees

(although other types of faults can of course still appear). In contrast, when the CPS is outside of

the design scope, the control layer can expose unpredictable behaviour. To give a practical example,

a delivery drone can be led out of its design scope by a specific sequence of reference values fed to

the control layer, such as those created by unexpected obstacles encountered during its mission.

When this happens, the ability of the drone to perform stable flight is impaired and the delivery is

likely compromised. By identifying the design scope of the CPS, software engineers can decide, for

example, if the CPS needs changes in the design, runtime checks, or fall-back solutions to ensure

the CPS’s stable and reliable operation.

Previous literature on control-based CPS testing focuses the testing process on the identification

of test cases that lead the SUT to violate its requirements [40]. Accordingly, several prior works

propose various approaches to CPS test case generation based onmetrics that quantify the fulfilment
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of the requirements (e.g., approaches based on search algorithms [37], or classification trees [30]). In

this article, we propose a complementary perspective to the test case generation problem. Instead of

focusing on testing the requirements, we focus on testing to falsify the control design assumptions.

The intuition is that, in the scenarios where such assumptions are fulfilled, we can rely on the a

priori guarantees of control theory. Conversely, in the scenarios where they are not fulfilled, the

behaviour of the CPS is unpredictable and empirical evaluation through testing is needed.

We use the falsification of control design assumptions to define the problem of stress testing

control-based CPS software. In this testing problem, the objective is to generate test cases that

falsify, to different degrees, the design assumptions (i.e., stress test cases) and identify when such

falsification prevents the control algorithm from providing guarantees. We use knowledge from the

control engineering domain to identify the different types of design assumptions that engineers

make during the control design process. By excluding the assumptions that can be addressed

with existing testing approaches, we focus this work on the assumptions related to the use of

linearised physics models [3]. For generating test cases that falsify the linearised models, we use

frequency-based control-theoretical models to qualitatively describe the input space of the control

layer. In order to leverage this qualitative input space characterisation, we propose a novel approach

for the definition of test cases (test case parametrisation) and a novel metric for identifying the

stress test cases for control-based CPS. More specifically, we propose to define test cases according

to (i) a shape function, (ii) an amplitude scaling coefficient and (iii) a time scaling coefficient. Using

such parametrisation and metric, we develop a complete stress testing approach for the linearised

model assumption.

We assessed our testing methodology by applying it to three different case studies: the altitude

control of a drone, the position control of a DC servo (a continuous current motor), and aircraft

altitude control. Our results suggest that our approach and metrics are capable of generating and

identifying test cases that falsify to different degrees the control design assumptions. This in turn

allows engineers to observe the behaviour of the SUT at the bounds of its design scope where

a priori control-theoretical guarantees become uncertain. Most notably, we generate tests that

expose, across our case studies, actuator saturation time ranging from 0% to 95%, thus allowing

the evaluation of the CPS under a large variety of saturation conditions. Actuator saturation is

arguably the most common source of non-linear behaviour that can falsify the linear models design

assumption in CPSs [27]. This is due to actuators being one of the most expensive components in

CPS and therefore being sized to the minimum to reduce costs. For this reason, they often saturate

during CPS operation. Hence, assessing the ability of the CPS to operate in the presence of actuator

saturation is of prime importance. In this article, based on case studies, we showcase how our tests

can be used to gain insights into design choices that limit the ability of the SUTs to perform safely

in different scenarios. For example, how actuator saturation can limit the trajectories that a drone

can follow during flight.

To summarise, this article makes the following contributions:

(i) We use control-theory domain knowledge to develop an input space qualitative characteri-

sation (i.e., qualitatively describe the expected behaviour of the SUT according to different

input features) for individual reference values, i.e., the real-valued inputs of the control layer

(Section 4.1).

(ii) We define different metrics to quantify the relevant aspects of the proposed input space

characterisation (Section 4.2).

(iii) We propose a novel test case parametrisation for CPS control layers that enables the use

of the characterisation (Section 5.1). We use such parametrisation to develop metamorphic

relations for control-based CPSs and a control-based CPS stress testing approach (Section 5.3).
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Fig. 2. Simplified high-level description of the control system development; the red dashed arrows represent
development steps, while the black solid arrows represent data flow. The development flow is simplified (e.g.,
neglecting iterations) to focus on the role of control engineering.

The rest of the article is structured as follows. First, given the multidisciplinary nature of this

problem, we present in Section 2 the relevant background on the control-based CPS development

and the control algorithms design process. Section 3 provides a control engineering perspective

of CPS stress testing. In Section 4 we describe our characterisation of the reference values input

space. We illustrate our testing approach in Section 5. Section 6 reports on our empirical evaluation.

Section 7 discusses the applicability and limitations of the approach. Section 8 presents the related

work on the testing process for cyber-physical systems and control systems in particular. Section 9

concludes the article and outlines directions for future work.

2 CONTEXT AND BACKGROUND
This section provides the relevant background on the development of control-based CPSs; we use

the position control of a drone as running example to exemplify the different concepts. In such CPSs,

the control layer receives desired values for the position of the drone, for example, the desired 𝑥 , 𝑦,
and 𝑧 coordinates. It uses sensors to estimate the drone’s current position and actuators to bring

the drone to the desired one. The section is divided in two parts. First, in Section 2.1 we present the

engineering process for developing a control-based CPS, and define the key roles involved in this

process. Then, in Section 2.2 we provide the relevant control engineering background needed to

understand the remainder of this article.

2.1 Development of Control-Based CPS
Figure 2 provides a graphical overview of the typical development workflow of control-based CPSs.

This overview is simplified and focuses on the role of control engineers in the development of the

software that handles the interaction between the physical and the cyber components.

The development of any engineering system starts with the definition of the system’s require-

ments, denoted by Overall CPS Requirements in the figure. In the case of control-based CPSs, the

requirements usually describe the desired behaviour of the physical part of the system. In our

running example, the overall CPS requirements describe, at a high level, how the drone is supposed
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to move in space. A concrete example of such a requirement could be that the drone must plan

and follow a prescribed trajectory (at every point in time) with no discrepancy higher than a given

threshold (e.g., one meter), and reach the desired position within a given time duration (e.g., three

minutes).

These requirements are then made available to the engineers involved in the development of the

CPS. We identify three types of engineers involved, each having different duties. In Figure 2, we

use red arrows to highlight their role in the development.

(i) Physical-Component Engineers design the physical part of the system. These could be for

example mechanical or aerospace engineers depending on whether the considered CPS is a

car or a drone. In our running example, an aerospace engineer may size up the propellers

and draw the mechanical structure of the drone’s body.

(ii) Control Engineers select and design the control algorithms, managing interactions between

the physical and cyber parts. In the case of our running example, this means designing the

algorithms in charge of estimating the drone’s current position based on the sensors’ readings,

and computing the commands to be sent to the drone motors so that it can fly.

(iii) Software Engineers are in charge of the cyber part of the CPS. They implement the control

algorithms, and design the functions that are needed to integrate the different software

components (e.g., the high-level decision making in Figure 1). In our running example, there

might be an aggressive and faster control algorithm when the drone is flying outdoors,

compared to a safer one when the drone is flying indoors in a constrained space.

In Figure 2, we use black arrows to highlight the data and information flow during the de-

velopment workflow. For instance, in our running example, the physical-component engineer

communicates the data related to the propeller thrust to the control engineer, who then uses it in

the control design step, further described in Section 2.2. The result of the control design process is a

set of algorithms that are provided to the software engineers, so that they can implement them

and integrate them with the rest of the software necessary to fly the drone (e.g., the functions that

perform initial checks, sensor data acquisition, communication with the motors). When software

engineers implement and integrate control algorithms, they make different choices that can al-

ter the behaviour of control algorithms. For example, a control algorithm can behave differently

depending on how frequently and how much its inputs values (the references) are changed. Vice

versa, the design of the control algorithm (e.g., how it reacts to reference changes) will affect which

implementations of the software fulfil the requirements and which do not.

Consequences of Multidisciplinarity on the Testing Process: The development workflow

highlights the multidisciplinary nature of control-based CPSs. More specifically, it highlights

that control engineers play an essential role in developing control-based CPSs to bridge software

implementation (i.e., software engineers’ concern) and physical components development (i.e.,

physical-component engineers’ concern). This multidisciplinarity impacts the testing of such

systems [34]. In particular, when testing the CPS control layer, we must account for the control

algorithms implemented in the control layer. Indeed, the control layer includes control algorithms

designed by the control engineers which are however implemented and integrated with other

functionalities (e.g., mode switches) by the software engineers. Furthermore, since requirements of

CPS usually concern the behaviour of the physical component, testing must necessarily include the

latter in the setup. In other words, testing the software in isolation has limitations since it does not

account for the interactions between the software and physical components, which limit the design

scope. Therefore, engineers must account not only for the software implementation but also such

interactions, which requires multidisciplinary considerations, including both control and software

engineering.
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2.2 Control Engineering Primer
In this section, we introduce the definition of a control design problem and the control design

process.
2
We illustrate the frequency-domain description of signals and systems (alternative to the

time-domain description), and introduce the basic concepts used in the remainder of this article.

Definition of Control Design Problems: As mentioned in Section 1, the objective of the control

layer in a CPS is to steer physical quantities to track desired values. More rigorously, the input of

the control layer is the vector 𝑟 of desired values (also called references). The control objective is to
ensure that the actual values in the physical system are as close as possible to the corresponding

reference values. Using the control terminology, we say these physical quantities constitute an

output vector 𝑦, and the control objective is 𝑦 ≈ 𝑟 (i.e., 𝑦 tracks the reference values in 𝑟 ).
To achieve its objective, the control layer uses sensors to iteratively measure signals from the

physical part of the system, and actuators to steer it. Based on measurements and reference values,

the control algorithm computes the commands to be sent to the actuators. The control algorithm

is executed repeatedly, at constant time intervals, resulting in a continuous interaction between

cyber and physical components. This interaction is called control loop. The control loop creates

a cause and effect cycle for which the output of the control algorithm (the actuation) affects the

physical components and therefore its own input (the sensor readings). Because of this cause and

effect cycle, the cyber and physical components are said to be in closed loop.
In the drone example, the control objective is to use the propellers to move the drone following

a reference trajectory. The software iteratively (i) uses sensors to measure quantities like its own

acceleration every millisecond, (ii) executes the control algorithm, and (iii) actuates the motors

spinning the propellers by sending voltage commands. On the physical side, the propellers generate

forces that cause the drone movement, and in turn affect the future acceleration readings, leading

to the closed-loop interaction.

As 𝑟 and 𝑦 are vectors, the engineers usually define multiple control loops, often one for each

element of the vectors. In a drone, we can expect to find one loop for each of the three dimensions

in the space that the drone can move in: forward or backward, left or right, and up or down.

Furthermore, the CPS requirements might call for different control modes, such as fast (but risky)

flight mode, and a safe (but slower) one. In the most common control design approaches (like

proportional-integral-derivative control, also known as PID control), the design of the different

control loops and control modes is addressed separately: engineers develop a dedicated control

algorithm for each mode. The implementation can switch between the algorithms of the different

modes during execution.

The identification of the control loops and modes is the control problem definition, and constitutes
a preliminary step in the control design process. For each of the identified loops and modes, the

control design problem is reduced to the design of the control algorithms needed to control the

physics. Each control algorithm, when executed in closed loop with the physical component,

is expected to guarantee (to the best degree possible) that the output 𝑦 tracks the reference 𝑟
when operating in the mode it is designed for. We now discuss the control design process for one

individual loop and mode.

Control Design Process: As highlighted inside the control design block in Figure 1, the design of

a control algorithm comprises of three main steps. The first step is to define an equation-based

model of the physical component. The role of this model is to provide a representation of how

the actuators affect the measurements and output. For example, in the drone, this is a model that

represents how the thrust generated by the propellers affects the position and orientation (called

2
The content of this section is mostly based on the book “Feedback Systems: an Introduction for Scientists and Engineers” [3].
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attitude) of the drone itself. These models can be obtained using either first-principle approaches,

through the laws of physics, or with data-driven approaches through system identification [6].

Either way, the models are typically in the form of non-linear differential equations, i.e., non-linear

equations that contain both signals and their derivatives (rate of change). Non-linear models are

difficult to analyse, as small changes in the input can cause significantly different behaviours and

hence they do not allow for approaches that apply with generality to a variety of systems [29].

To overcome the complexity of non-linear models, the second step of the control design is

to approximate them using linearised models. Retrieving such approximated models is called

linearisation, and restricts the model scope to the surroundings of an expected operating point.
3

Accordingly, the operating point is chosen as the physical state around which we expect the system

to operate most of the time. In the drone, the operating point would be the horizontal state in

which the drone is parallel to the ground and not tilted in any direction. Through linearisation,

we then obtain a model that is still valid for small variations in the attitude angles around the

operating point. The model is now a set of ordinary linear differential equations and therefore it

can be handled in a simpler way thanks to a large variety of analytical tools [3].

The third step is finally the control algorithm design. To design such algorithm, control engineers

use control theory. To this end, they make different assumptions about the system (e.g., that the

physical component is sufficiently close to the assumed operating point). For models based on

linear differential equations, control theory provides numerous tools to perform exact analyses

and design control algorithms with formal performance guarantees. Such tools are based on a

frequency-domain description of the physical system. Frequency-domain descriptions are well-

suited for treating ordinary differential equations because they provide a compact description for

the derivative of a signal with respect to the signal itself. This makes it easier to analyse the physics

and draw conclusions on the system’s properties. The control algorithms obtained using control

theory are also in the form of linear differential equations.

Frequency-Domain Descriptions:We now provide a high-level description of the frequency-

domain for both signals and systems, together with the intuition of why the frequency-domain is

well suited for analysing and manipulating differential equations.

The frequency-domain description of signals is based on the fact that signals can be decomposed

and treated as the sum of sinusoidal functions with different frequencies. The description in the

frequency-domain specifies which sinusoidal components are present in the signal and what their

amplitude is. This is in contrast to the time-domain, where signals are represented as a sequence of

values over time. The frequency-domain sinusoidal components are commonly called frequency
components: for example, a fast-changing signal is mostly composed of fast (i.e., high-frequency)

sinusoids. On the contrary, a signal that does not change much is mostly composed of slow (i.e.,

low-frequency) sinusoids.

The translation of a signal from the time-domain representation to its frequency-domain one

uses the Fourier Transform—or its time-sampled equivalent Discrete Fourier Transform (DFT [16]),

which we will use in the remainder of this article. Figure 3 shows three examples of time-domain

signals and their frequency-domain representations obtained with the DFT. The first row shows

a constant signal, whose frequency representation consists of a single sinusoidal wave at 0Hz.

The second row shows a pure sinusoidal signal that is mapped by the DFT into a single frequency

component. More complex signals, like the step function in the third row, include a larger number

of frequency components.

3
Linearising a non-linear equation means approximating its non-linear relations (e.g., if a variable is squared, like in the case

of aerodynamic drag) with a linear function. The linear function is based on the first derivative of the non-linear relation,

and more specifically, on the value of the first derivative in the chosen operating point.
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The frequency-domain representation provides a description of signals according to their rate

of change, or frequency content. The derivative of a signal is another signal that also describes

its rate of change. This similarity can be seen as the intuitive reason why the frequency-domain

description is convenient for analysing differential equations.

In the frequency-domain, systems (i.e., entities that take an input signal and generate an output

signal) are described by how much they react to an input according to its frequency content, and

more specifically by how much they amplify or reduce every frequency component of the input

signal. This is measured by the ratio between the intensity of a given frequency component in the

output and in the input. If the output over input ratio is smaller than 1 we observe a reduction;

conversely, if it is greater we observe amplification. When such ratio is equal to 1, we have unit

amplification, which corresponds to a frequency component not being altered by the system.

For example, many physical systems behave like a low-pass filter, transmitting or amplifying

slow signals (i.e., low-frequency components), while reducing quickly changing components (i.e.,

high-frequency components). This behaviour of reducing a frequency component is called filtering.
In the case of control systems, we ideally want the physical quantity 𝑦 to track the reference 𝑟 at

every time instant. In the frequency-domain this corresponds to unit amplification between the

reference and the output at every frequency. This is apparently infeasible, since a change in 𝑟 (a
quantity in the cyber component that can be arbitrarily set) requires some time for 𝑦 (a quantity of

the physical world that has to obey the physics laws) to follow. In other words, reference changes

that are too rapid cannot be tracked by the output of a system. In Figure 4 we show an example

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:10 Claudio Mandrioli, Seung Yeob Shin, Martina Maggio, Domenico Bianculli, and Lionel Briand

of how we could expect the drone to follow a step-like change in the desired position along one

direction. The output 𝑦, denoted by the solid line, does not follow instantly the reference 𝑟 , denoted
by the dashed line. On the contrary, the quick change of reference value is smoothed in the output

signal, which gradually reaches the new reference value. The frequency-domain concept of filtering

can be used to describe this phenomenon. In fact, we could rephrase this as “the output only tracks

the slowly changing (low-frequency) components of the reference, while it filters the fast-changing

(high-frequency) ones”. We illustrate this intuitive interpretation in Figure 4 with red ellipses. The

ellipse on the left highlights the filtering behaviour that occurs when the reference signal has a

rapid change, while the one on the right highlights the tracking behaviour when the reference

signal does not change.

Given this behaviour consisting of tracking the low frequencies and filtering the high frequencies,

for a given control loop, we can identify the so-called closed-loop bandwidth, denoted by 𝑓𝑏 . The
closed-loop bandwidth is the threshold frequency below which we expect to have a tracking

behaviour (i.e., 𝑦 ≈ 𝑟 ) and above which we have a filtering behaviour. This quantity therefore

corresponds to the fastest frequency components of the reference that the control system is able

to track. Accordingly, it is also considered a quantification of the speed of the control system: the

higher the closed-loop bandwidth, the higher the rate of change of reference signals that it can

track. We remark that such threshold, the closed-loop bandwidth, is a property of the system and

should not depend on the specific input.

While it may seem intuitive that the control engineer wants to design a control algorithm that

maximises 𝑓𝑏 , to obtain tracking of fast-changing references, there are other factors to account for.

As an example, a high value of 𝑓𝑏 usually comes at the cost of a control actuation with a high value

possibly leading to hardware damages, e.g., a fast-moving drone will generate high forces that can

ruin the actuators. Furthermore, noise can be found in the measurements at high frequencies,e.g., an

accelerometer that measures a drone’s acceleration is usually affected by high-frequency electrical

noise. Therefore, if the control system reacts to input signals in the high-frequency range (providing

high speed), it will also react to noise. In turn, this will reduce the system performance making its

behaviour unpredictable. Such considerations lead to a trade-off in the control algorithm design

between speed of the system and noise rejection.

3 CONTROL ENGINEERING PERSPECTIVE ON CPS STRESS TESTING
In this section, we first motivate and define the problem of stress testing the control layer in a

CPS. Second, based on the development workflow of control-based CPSs illustrated in Section 2,

we identify the types of assumptions that the engineers make in the different control software

development stages. For each of these types, we discuss which techniques are already available

for testing the corresponding assumptions, and which assumptions require an application-specific

solution; we exclude the latter from the scope of this work. For the remaining types we discuss

which assumption types should be tested first. We conclude this section by defining the problem

addressed in this article.

3.1 Problem Motivation
As discussed in Section 2.2, when applying control theory, control engineers make design assump-
tions about both the physical part of the CPS and the control algorithm to be developed. The role of

these assumptions is to abstract away the details of the system that are not necessary for developing

control algorithms, and to define the fundamental building blocks (e.g., linear models) used by

the theory. For example, when designing the control algorithm of a drone, engineers assume that

the generated thrust is proportional to the voltage command and that it does not saturate when

the maximum power of the motors is reached. This allows engineers to use a linear model of how
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the voltage, when applied to the motors, affects the drone movement and position. This linearity

assumption is necessary to apply traditional control theory [3].

As discussed in Section 2.1, software engineers are provided with the control algorithms from

control engineers. These algorithms are only one component of the control layer. In fact, when

implementing the latter, software engineers address the implementation of other functionalities

such as the flight mode changes, the interaction with sensors and actuators (e.g., filtering and

sanity checks), the parallel execution of the different control loops and the discretisation of the

equations. The implementation and integration of other software functionalities can render the

design assumptions made by control engineers invalid. For example, the linear model used for the

control design is an assumption that is falsified when the drone motors saturate. This happens

because the motors are requested to produce more thrust than their capacity, as in the cases when

the reference value changes too much or too fast. In such scenarios, the drone control algorithm

will be operating in conditions different from the ones assumed during design.

When testing the CPS implementation, software engineers have to be aware of possibly un-

predictable software behaviour due to falsified design assumptions. For example, when testing

the ability of a drone to perform a delivery, software engineers have to consider the possibility

that the motors may saturate, thus leading to unpredictable behaviour. This implies that the flight

performance of the drone might be impaired, potentially affecting the overall fulfilment of the

requirements concerning the safe execution of the delivery. Conversely, software implementation

choices can determine for which scenarios the design assumptions hold or not. For example, the

update mechanism of the drone position reference values (e.g., based on external inputs or regular

periods) can result in faster or slower reference changes, which can cause the saturation of the

motors (and the consequent loss of guarantees that hold under design assumptions). Therefore,

when generating test cases for the CPS control layer (as well as for the CPS overall) and evaluating

the tests outcomes, software engineers have to consider the potential impact of falsified design

assumptions.

Control algorithms are usually robust (at least to some degree) to the falsification of the different

design assumptions; this property is one of the reasons for the successful adoption of control

theory [3]. Control theory provides metrics to quantify the algorithm robustness to the deviation

from assumptions, e.g., “stability margins”. However, those metrics are also based on the control

design models and are still subject to the validity of the assumptions. Hence, the quantification of the
extent to which a CPS can be pushed outside of its design scope cannot be provided a priori by control
theory and intrinsically requires empirical approaches or, in other words, testing. This evaluation can

be obtained through stress testing of the software that implements the control layer, by targeting

the control design assumptions. Therefore, such a type of testing is ideally performed on the final

implementation of the CPS. However, this is generally expensive in both time and resources. As a

common alternative, implementation details (of both software and physical component) can be

added to the simulation models and those can be used in place of the final implementation for

testing their impact. The more exhaustive and adherent the additions are to the real implementation,

the more the testing on the simulation model will be relevant to the CPS implementation.

3.2 Design Assumptions in Control Algorithms
Before defining our stress testing problem, we need to identify the types of design assumptions that

control engineers make at design time. These assumptions are made at the different development

stages of a control-based CPS. In Section 2.1 we identified three main development stages:

(i) control problem definition,

(ii) control algorithm design, and
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(iii) control algorithm implementation.

We now discuss the design assumptions made at each stage.

Assumptions at Control Problem Definition Time: At this stage the engineers identify the

different control loops and modes for which they will develop a control algorithm. As a consequence,

when designing the individual control loops, they assume that (i) the different loops do not interfere

with each other and (ii) the mode changes do not impact the control design that follows [3]. For

example, for a drone, the design of the altitude controller may not account for the horizontal

controllers (and vice versa). Similarly, the design of the “aggressive flight” controllers is done

independently from the “safe flight” controllers. Such assumptions significantly simplify the design

of the control algorithms, allowing, among others, to independently design the response to a change

in each element of the vector 𝑟 . However they do not always hold in practice. For example, when the

drone tilts to move horizontally, it also loses vertical thrust, affecting the altitude controller. Another

case of assumptions not holding is when a mode change command is issued during the flight. This

can cause a sudden change in the motors’ commands, thus affecting the CPS performance.

Assumptions at Control Design Time: During the control design, the engineers develop a

non-linear model of the physical part of the CPS, based in part on the information received from

the physical-component engineers that designed it. Such a model (like any model) is only an

approximation of reality and will not consider or only approximate certain aspects of the problem.

For example, a drone model assumes a given mathematical relation between the rotational speed of

the propellers and the generated vertical thrust. However, this type of aerodynamic phenomena

is difficult to quantify. Moreover, there could be some inconsistency between the mathematical

model and the real physical system. By using such models, the engineers implicitly assume that

they are a sufficiently accurate representation of the physical reality.

As mentioned above, the models of the physics also need to be linearised in order to use the tools

from control theory. The linearised version of the model is only valid in the surroundings of the

operating point chosen for the linearisation. Practically, by using the linearised model, the engineers

implicitly assume that, during operations, the CPS stays sufficiently close to the operating point so

that the linearised model is an accurate enough representation of the physical part. For example, the

propellers cannot generate more thrust than the motors can provide: the motors saturate (max-out)

once they reach their maximum capacity. To linearise this relation, the engineers assume that the

motors are not in the saturated state, and that they always provide a thrust proportional to the

voltage command. When, during the actual flight, the motors saturate, this proportional relation

loses validity, as well as the model assumed during the control algorithm design.

Assumptions at Control Algorithm Implementation Time: Control algorithms are generally

specified as linear differential equations. Such equations are defined with the use of continuous

mathematics. However, they are implemented on computers which are discrete machines. Hence

they have finite precision in the representation of the parameters and execute the algorithms

in discrete steps over time. Accordingly, the engineers, when designing the control algorithm

with continuous mathematics, are implicitly assuming that the discretisation happening during

the implementation does not significantly alter the algorithm. More specifically, they assume

both that the finite precision does not significantly alter the computed values, and also that the

discrete execution does not alter the frequency properties (meaning the properties of the algorithm

execution over time).

Design Assumptions Summary: To summarise, we identify the following types of design as-

sumptions that are made by engineers during the development of control algorithms:

A1 they ignore the interaction between different control loops;
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A2 they ignore the impact of mode changes on the control algorithms’ performance;

A3 they assume that the initial non-linear model of the physics is a sufficiently accurate repre-

sentation of the real system;

A4 they assume that the system stays sufficiently close to the operating point chosen for the

linearisation so that the linearised model is valid;

A5 they assume that the finite precision of the representation of the equation variables and

parameters is adequate; and

A6 they assume that the execution in discrete time steps does not significantly affect the expected

execution time properties of the algorithm.

When performing stress testing for a control-based CPS, engineers should aim at falsifying each of

these assumptions.

We note that there are branches of control engineering that aim at mitigating each of those

simplifying assumptions, such as multivariable control (targeting A1) and robust control (target-

ing A3). However, like the stability margins mentioned above, such approaches are still subject to

design assumptions and do not exclude the need for empirical verification. Furthermore, those are

rather advanced theories and, as of now, find limited application in practice [18]. We now discuss

which types of assumptions can be already stress tested with existing software testing techniques

and which ones require an application-specific solution.

Testing numerical properties of numerical algorithms (Assumptions A5 and A6) is not a novel
problem; there is a significant literature corpus [25, 56], also targeting control algorithms [33, 48].

Similar considerations can be made about testing execution timing properties. A number of works

can be found in the literature for testing real-time software [7, 32]. Furthermore, we note recent

works dedicated to the verification and testing of the robustness of control algorithms to execution

timing faults [21, 52]. Given the above previous works, we leave the testing of numerical and timing

properties out of the scope of this article.

Testing the validity of the physical model (Assumption A3) is a highly application-specific

problem. To test the aspects of the physics model that are unknown, one must know the aspects

that were uncertain when developing it. For example, for a drone, two assumptions of the model can

be on the aerodynamic properties of the propellers (needed to evaluate the vertical thrust that can

be generated) and on the rigidity of the drone body (to simplify the equations describing the motion

of the drone in space). Among those, the former is likely to be associated to a higher degree of

uncertainty because the aerodynamic phenomena are generally hard to characterise. In contrast, the

assumption on the rigidity is more likely to be valid: intuitively, we do not expect the drone motor

supports to bend. Such considerations are clearly application-specific and require an understanding

of the specific model that is being used. Accordingly, the generation of test cases that falsifies this

type of assumptions cannot be treated in a general fashion. Given its application-specific nature,

we leave the testing of this type of assumptions out of the scope of this work.

We are therefore left with the assumptions regarding non-interactions between control loops (A1)
and control modes (A2), and about the sufficiently large range of validity of the linear models (A4).
Among those we note that the first two depend on the latter. In fact, if an individual control loop

does not have a sufficiently large range of validity when operating independently (i.e., without

mode switches and in the absence of reference changes for the other loops), then, the switching

across different modes and the interaction between loops are unlikely to improve its range. For

example, if we have an altitude control loop for a drone that is not very robust when operating

alone, then it is unlikely to perform better when the control loops of the horizontal directions are

also active and can disturb it. Given this dependency, we argue that testing the validity of linear
models should occur before testing the interactions between control modes and control loops. In light of
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this discussion, this work focuses on the testing of the linearised model control design assumptions,

for which we give our problem statement below.

3.3 Problem Statement
In this article, we address the problem of stress testing the implementation of a CPS control layer. In

the control layer of a CPS there are several control loops; we focus on the problem of stress testing

the linearised model design assumptions for the implementation of the individual loops. Our SUT

is therefore an individual loop characterised by its reference value input and physical quantity

output. We assume available basic information about the control-loop design and implementation,

namely an estimate of the closed-loop bandwidth from the control design and a range of valid

values for the reference. The objective is to generate test cases that falsify the linearity design

assumption, and identify when the falsification pushes the control algorithm out of its design

scope (and hence causes the loss of the control-theoretical guarantees). To falsify the linearity

assumption we have to generate test cases where the physical component behaves differently from

the (linear) model used during the control algorithm design. This difference in the behaviour should

occur at various degrees and should increasingly make the control algorithm unable to provide the

control-theoretical guarantees. The tests thus expose the robustness of the control algorithm to the

different degrees of falsification of design assumptions. Accordingly, our test inputs exercise the
control layer and consist of sequences of reference values over time. Our test outputs are the traces
of the physical quantity that has to track the reference value.

To address the generation of stress test cases we use control-domain knowledge to qualitatively

characterise the input space of a control loop. In order to make the qualitative characterisation

usable in practice, we propose a novel approach to the parametrisation of test cases for control-

based CPSs based on the frequency-domain, in contrast to traditional time-domain approaches.

Using such parametrisation, we can then introduce a novel metric to identify the stress test cases

as well as different metamorphic relations that describe the expected behaviour patterns across

different test cases. Leveraging the proposed parametrisation, metric, and metamorphic relations,

we then develop a stress testing approach for the different control loops of a CPS control layer.

4 CONTROL LOOP INPUT SPACE CHARACTERISATION
In this section, we use domain knowledge from control theory to provide a qualitative character-
isation of a single control loop input space. The proposed characterisation maps frequency and

amplitude features of the input to the expected behaviour, i.e., the expected relation between the

(scalar) output 𝑦 of a control loop and the (scalar) input reference 𝑟 . In the first part, we present the

qualitative characterisation based on the validity boundaries of the linearised model and insights

from control theory.
4
We use a minimal example (a simplified model of the altitude control of a

drone) to exemplify the different system behaviours highlighted by the characterisation. In the

second part of this section, we list the qualitative aspects of the characterisation and propose

approaches to quantify them. Such a quantification enables the practical use of the characterisation,

and constitutes the basis for the test case generation approach proposed in the following section.

We conclude the section by discussing our problem statement in the context of the proposed

characterisation.

4
We note that a similar qualitative characterisation of the input space of a control loop is found only in one book on control

engineering from 1959 [22]. However, the treatment of the topic is brief and high-level and has not been investigated further

in later literature.
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Fig. 5. Qualitative frequency-amplitude characterisation of the input space of a control loop. The colours
highlight the validity of the linearised model with respect to the input frequency content and amplitude. The
green area corresponds to the input signals for which the system remains within the assumptions of control
theory. The azure area corresponds to the input signals that trigger non-linear phenomena but not enough to
cause significant performance degradation in the system. The purple area corresponds to input signals for
which control theory assumptions are not fulfilled and the behaviour of the system becomes unpredictable.
We highlight the design scope (i.e., the union of the green and azure areas) with a dashed box.

4.1 Qualitative Input Space Characterisation
In order to leverage domain knowledge from control theory (Section 2.2), we base our charac-

terisation on a frequency-domain description of the input sequences. This means describing the

input space with two dimensions: one capturing the input frequency content and the second one

capturing its amplitude. Being a two-dimensional space, the input space can be represented as

a frequency-amplitude plane. We provide a graphical representation of this input space plane in

Figure 5: one input sequence corresponds to one or more points on the plane according to its

frequency content and its amplitude. We can use knowledge from control theory to identify differ-

ent areas in the input plane according to the expected behaviour of the control loop, depicted by

colours and boundaries in Figure 5. We identify these areas by checking where control-theoretical

guarantees apply (i.e., checking the validity of the linear model), and where they exhibit a tracking

and filtering behaviour within the applicability boundaries of control theory. In the figure, we

draw the areas with simplified boundaries represented as straight lines (the dashed lines in the

figure). Such lines are apparently a simplification and, in practice, the boundaries might not be

represented as straight lines nor provide a clear division between the different areas. In the last part

of this section (Section 4.3) we discuss in more detail the benefits and limitations of the proposed

characterisation.

In order to exemplify the different behaviours highlighted in the characterisation, we use a

minimal example of the altitude control of a drone. To enable the easy detection of the limitations

of the linear model, we use a simulator based on a linear model and introduce one single source

of non-linearity: the saturation of the thrust. This saturation limits the force that can be applied

by the motors to move up and down the drone. In Figure 6, we report four executions showing

the response to square waves with different amplitude and period values. For each execution,

the top plot shows the desired altitude (the black line) and the actual altitude (the blue line). As

discussed, the desired altitude is the input reference, and the actual altitude is the output physical

quantity. The bottom plot shows instead the command sent to the motor that is used to accelerate or
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Fig. 6. This figure exemplifies the four different behaviours highlighted in the qualitative characterisation of
the input space of a control loop. The plots are based on the simulation of a minimal model of the altitude
control of a drone. The only source of non-linearity in this example is the saturation of the motor that limits
(between ±2N) the thrust that can be generated by the motors. The blue lines show the altitude of the drone
(i.e., the output 𝑦), the black line shows the desired altitude (i.e., the input 𝑟 ), and the red line in the bottom
plots shows the thrust generated by the motors. Appearance of non-linear phenomena can be detected when
the red line saturates at ±2N.

decelerate the drone (the red line). The saturation of the motor (and hence the validity of the linear

model) can be detected in these plots when the force becomes fixed at ±2N (see the bottom-left

and bottom-right plots).

We first discuss the upper plots that concern flight simulations where motor saturation does not

occur and that therefore are within the CPS design scope. We then discuss the bottom plots, where

saturation occurs. Such tests are at the boundaries or outside of the CPS design scope. We conclude

the description of Figure 5 discussing its connection with our definitions of design scope and stress

tests.

Behaviours Within the Design Scope: Inputs consisting of small amplitude values will not push

the CPS far away from its operational point. Accordingly, for lower amplitude values we are within

the validity bounds of the linear model: this is represented by the green area in Figure 5. Within

this area, we expect the system to be able to track the slow-changing inputs: those sequences

correspond to low-frequency inputs inside the “Reference Tracking” area. Fast-changing signals

map instead to high-frequencies and are not expected to be tracked: those belong to the “Reference
Filtering” area. In the figure we highlight the closed-loop bandwidth 𝑓𝑏 that separates the tracking

and filtering areas. To exemplify the reference tracking and filtering behaviours, in the upper plots

of Figure 6, we feed the controller of the drone with a slower (in the left-hand side plot) and a faster

square wave (in the right-hand side plot), with an amplitude value equal to 0.6m. In the former we

can see that the reference is successfully tracked within seconds after a step change. In the latter
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the reference changes are too fast and the drone cannot follow it successfully: we say that it is

filtered.

Behaviours at the Boundary and Outside of the Design Scope: When we consider input

signals that are larger in amplitude, the CPS moves further away from the operational point used

for the linearisation and non-linear phenomena start to appear. In the altitude controller example

this corresponds to hitting the motor saturation. Accordingly, in the bottom-left plot of Figure 6, we

feed the drone with a larger square wave with an amplitude equal to 1.5m. As we can see from the

plot of the control action, the motor saturates for some time after the occurrence of the step in the

reference. This, however, does not significantly affect the way that the actual altitude of the drone

follows the desired reference, i.e., the reference is still successfully tracked. Since the reference

is successfully tracked, we can consider this test to be still within the design scope of the CPS,

despite the occurrence of motor saturation. In other words, the control algorithm is showing some

robustness to the motors being saturated over a limited amount of time. Accordingly, in Figure 5,

such signals correspond to the azure area “Non-Linear Phenomena Appear” which we consider

part of the design scope as the CPS behaviour is not impaired. When the system moves even further

away from the design scope, the linearised models are falsified even more and there is no way to

predict the system behaviour. This is the “Out-of-Design Scope” purple area. For example, in the

bottom-right plot of Figure 6, we can see that the drone is not only unable to track the square wave

with an amplitude value of 3.5m, but it also exhibits a new behaviour, a triangular wave.

Finally, we note that either large (high amplitude) or fast-changing (high frequency) inputs

can lead the system out of its design scope. For example, in the drone altitude control, either a

fast-changing input or a large input can require high thrust and hence can cause motors saturation.

Furthermore, fast change combined with a large inputs lead to a compounded effect on the validity of

the linear model. Accordingly, in Figure 5, we depict the thresholds for which non-linear behaviours

appear and the bound of the design scope (i.e., the green area) as decreasing when frequencies

increase.

To summarise, given the qualitative plot of Figure 5, the design scope is identified as the union

of the green and azure areas; we highlight this area using a dashed box. The system is instead

considered out of the design scope when the occurrence of non-linear phenomena affects the CPS

behaviour, which corresponds to the purple area. Accordingly, the stress tests are the tests that

cover the azure area and especially its boundary with the purple area. Those are the tests where the

non-linear phenomena appear and become large enough to affect the CPS behaviour, thus requiring

empirical verification.

4.2 Qualitative Aspects of the Characterisation and theirQuantification
We aim to use the qualitative characterisation proposed in the previous section to generate test

cases that falsify the linearised model used for the algorithm design, and hence push the control

layer to its performance limits. In other words, we want to sample (test) points in the frequency-

amplitude plane and identify the behaviour that the test results expose in various areas of the plane.

In order to stress test the CPS, we want to sample around the border of the “out-of-scope” area to

understand when the control algorithm is no longer able to provide the performance guarantees.

Furthermore, we also want to identify the border between “tracking” and “filtering” behaviours in

order to characterise the fastest signals that the control algorithm can track.

We note that the latter distinction between the “tracking” and “filtering” areas (i.e., the closed-

loop bandwidth) is not related to the falsification of the design assumptions (both areas are in fact

coloured green). However, it represents how fast the control loop can track a reference and hence
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represents a performance limit of the system. If we want to push the system to its performance

limits, then we have to ensure that the test cases cover both behaviours.

Accordingly, in order to make our qualitative characterisation usable for the generation of stress

test cases, we have to make quantitative the following qualitative aspects:

• One input sequence generally contains more than one frequency, and hence can map to more

than one point in the frequency-amplitude plot. Accordingly, we need to define a mapping
between a test input sequence to a corresponding set of frequency-amplitude coordinates in the

input plane. This enables the identification of which points in the frequency-amplitude plane

are sampled by a test (Section 4.2.1).

• Detecting when a test trace shows a behaviour altered by the falsification of the linearised

model—when a test belongs to the purple area—does not have a formal definition in the existing

literature. Accordingly, we need to define a “degree of non-linearity” observed in a given test

result. Such a degree of non-linearity should capture the impact of non-linear phenomena on

the CPS behaviour. In other words, we want to detect test cases that belong to the purple area

and that are outside of the scope of the design assumptions (Section 4.2.2).

• Since a test can map to multiple frequency-amplitude points, it can expose multiple behaviours

simultaneously. Accordingly, we need to define a mapping between the different behaviours
observed in a given test and its frequency-amplitude points (i.e., the different coordinates

mentioned above). This enables the distinction of the different behaviours (tracking, filtering,

out of scope) that might appear in the same test (Section 4.2.3).

• It is practically impossible to know a priori (1) the actual shape of the threshold for which

non-linear phenomena start to appear, and (2) the threshold for which they falsify the linear

models to a sufficient degree to impair the system performance. Hence, the bounds between

the areas of different colours can have an arbitrary shape. However, we can use the relative
positioning of the behaviour areas to define a set of properties that are expected to hold when
comparing the behaviours exposed by test cases with different frequency and amplitude content
(e.g., filtering will appear at higher frequencies than tracking). This enables the definition of

test case generation strategies in the frequency-amplitude plane that explore the different

behaviours of the control loop (Section 4.2.4).

We now address the definition and quantification of each of these qualitative aspects. Since

we leverage the DFT of the input and output of the tests, in Figure 7 we show the frequency-

domain representation for the tests of Figure 6. The figure uses the same colour convention as

its time-domain equivalent: blue crosses represent the frequency components of the trace of the

actual position of the drone, and black crosses represent the frequency components of the input

sequence. We use the plots of the DFT to exemplify the different definitions and explain the

underlying intuitions. We remark that, based on common practice in the frequency-domain, we

use a logarithmic scale on both the axes of all the plots in Figure 7. This enhances the readability of

the plots.

4.2.1 Mapping of Tests to Frequency-Amplitude Points. Given an input reference sequence 𝑟 (𝑡), we
want to define the frequency-amplitude coordinates sampled with the associated test. We define

this mapping according to the frequency spectrum (the DFT) of the input reference. In practice,

inputs are signals sampled over time: therefore, the spectrum computed with the DFT is also

discrete [16]. More specifically, the time-domain samples are mapped to an equal number of evenly

spaced frequency components, like in the DFT examples in Figure 3. The number of the frequency

components is therefore large: for example, a 5 seconds trace sampled every millisecond is mapped

to 5000 frequency components. However, most of those components are usually equal to zero or

close to it, meaning that only few of the frequency samples actually carry information about the
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Fig. 7. DFT of the input (black crosses) and output (blue crosses) traces from the tests on the minimal example
of the drone altitude control shown in Figure 6. These plots exemplify how we use the frequency content of
the input and output to detect the different behaviours of control systems. The filtering behaviour is detected
when input components are not found in the output (top-right plot). Non-linear behaviour is detected when
new frequency components are found in the output (bottom-right plot). Furthermore, the red dashed line
highlights the threshold that we adopt to identify the relevant input components used for the mapping of
the test case to the frequency-amplitude plane.

signal.
5
Accordingly, among all of the frequency components computed with the DFT, we consider

as relevant only the ones with larger amplitudes. Formally, given an arbitrary input 𝑟 (𝑡), we map

it to a set of frequency-amplitude coordinates ⟨𝑓 , 𝐴⟩:
fAmap[𝑟 (𝑡)] = {⟨𝑓 , 𝐴⟩ : 𝐴 = |DFT [𝑟 (𝑡)] (𝑓 ) | ∧𝐴 > 𝜌 ·max

𝑓
{|DFT [𝑟 (𝑡)] (𝑓 ) |}}, (1)

where DFT [·] denotes the DFT, | · | denotes the modulus, and 𝜌 is a parameter in the range [0, 1] that
we use to select the relevant components (i.e., the larger ones) in a relative way to the largest one:

max𝑓 {|DFT [𝑟 (𝑡)] (𝑓 ) |}. We exemplify the definition of this relative threshold (used for selecting

the relevant input components) with the red dashed line (for 𝜌 = 0.1) in the plots of Figure 7. We

can then observe in Figure 7 that: the faster square waves of the two right-hand side plots map to

points further to the right on the frequency axis than the other tests associated with slower square

waves. Furthermore, the larger amplitude values of the square waves from the bottom plots map to

points higher in the amplitude axis than the other tests associated with smaller square waves. This

exemplifies how the size and the speed of the inputs are captured in the frequency-domain.

4.2.2 Degree of Non-Linearity Definition. With the degree of non-linearity, we want to detect

when non-linear phenomena impact the CPS behaviour. As exemplified in the bottom-right plot

of Figure 6, when non-linear phenomena push the CPS out of its design scope, they introduce

unexpected behaviours in the output. This kind of behaviour can be harmful as it implies that

the control algorithm is introducing some new behaviour in the system that was not part of the

reference. For example, in the bottom-right plot of Figure 6 the altitude of the drone reaches 4.5m
when the reference is at 3.5m. The bottom-right plot of Figure 7 shows the DFT of the input and

5
The reason for such excess of samples is that signals are usually oversampled (sampled more frequently than strictly

necessary) for redundancy and robustness. This oversampling introduces extra frequency components in the higher part of

the spectrum that do not carry much information about the signal and are therefore zero or close to it.
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Fig. 8. Graphical representation of how the repetition of the same input sequence increases the resolution in
the frequency-domain. The repetition of the same sequence does not introduce new information to the input
signal, whose non-zero frequency components remain unchanged. However, when the input is repeated, the
output signal is also sampled in frequencies outside of the main input components (the ones that have a
value equal to zero in this plot) hence enabling the detection of frequency spectrum broadening because of
non-linear behaviour.

output of the test exhibiting non-linear behaviour in our drone altitude control example. In this

example, we remark the presence in the output (the blue crosses) of components in the frequency

range [0.02, 0.4]Hz that were not present in the input (the black crosses).

According to this intuition, we define the degree of non-linearity on the base of new output

frequency components that appear outside of the input spectrum. This requires sampling the
output in between the frequencies of the input components. To increase the number of samples in

the frequency spectrum without altering the frequency content of the input we can repeat the

input sequence (i.e., make it periodic). This does not alter the information contained in the input

(since it is just repeated), and the non-zero frequency components do not change. However, for

each repetition we double the samples in the time-domain, resulting in doubling the samples in

the frequency-domain. The new samples obtained in this way are found on the frequency axis

between the samples previously available (rather than only in the higher part of the spectrum, as

for the samples introduced by the oversampling). We exemplify graphically the sampling of new

frequencies in Figure 8. The figure shows how repeating the steps in the time-domain (plots on the

left-hand side) increases the number of samples in the frequency-domain (plots on the right-hand

side) by adding new zero-valued frequency samples in between existing samples, hence increasing

the sampling resolution.

When identifying the impact of non-linear phenomena on the CPS, we are interested in detecting

frequency components that were small in the input and become large in the output. Hence, we define
the degree of non-linearity according to the maximum amplitude of the output spectrum outside of

the relevant components of the input spectrum. We look therefore at all the frequencies sampled

in the DFT of the output 𝑦, excluding the relevant ones found in the input (i.e., 𝑓 Amap[𝑟 (𝑡))]).
Formally, given a reference sequence 𝑟 (𝑡), we can define the set of frequencies to check as 𝑓new =
{𝑓 : ∃DFT [𝑟 (𝑡)] (𝑓 ) ∧ ¬∃(⟨𝑓 , ∗⟩ ∈ fAmap[𝑟 (𝑡)])}, where ∗ can be any amplitude value. For

example, in the tests of Figure 6 it means that we are looking at the frequencies that are not
associated with any input frequency component (black cross) above the red dashed line. Such an

amplification of frequency components only appears in the bottom-right plot, where the saturation

time is sufficiently long to affect the CPS behaviour. Differently, in the bottom-left plot, saturation

occurs but not for long enough to alter the CPS behaviour. Furthermore, to obtain comparable
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results across tests with different amplitudes, we normalise our metric with respect to the amplitude

of the input max𝑓 {|DFT [𝑟 (𝑡)] (𝑓 ) |} (remarking that the sampled frequencies are necessarily the

same for input and output across the tests). The intuition is that a deviation from a large reference

change matters less than the same deviation from a small reference change. We then obtain the

following definition for the degree of non-linearity of a given test 𝑖

𝔡nl (𝑖) =
max𝑓 ∈ 𝑓new {|DFT [𝑦𝑖 (𝑡)] (𝑓 ) |}
max𝑓 {|DFT [𝑟𝑖 (𝑡)] (𝑓 ) |}

, (2)

where 𝑟𝑖 (𝑡) and 𝑦𝑖 (𝑡) are respectively the input and output associated with the test and the other

elements follow the same conventions as in previous equations. When we apply the 𝔡nl formula

to the examples in Figure 7, we obtain the values reported in the titles of the different plots.
6
By

comparing the numbers, we see that the new frequencies that appear in the bottom-right plot cause

the 𝔡nl to be one order of magnitude higher than the 𝔡nl of the other tests. This example also shows

that having a new frequency component with 16% of the maximum input amplitude (caused by

non-linear phenomena) can significantly impact the system’s performance.

We exemplify the use of this metric with our examples in Figure 7. As indicated in the plots

titles, for the tests where the saturation is not triggered, we measured a 𝔡nl of 0.05 and 0.06. In
the bottom-right test that shows misbehaviour, we desirably obtain a higher value of 0.16 for

our metric. Finally, in the bottom-left plot we measure a 𝔡nl value of 0.01, hence lower than the

one in the upper plots. Such a low value might seem counter-intuitive given that in this test the

saturation is triggered but, thanks to the algorithm robustness, in this case the saturation does

not alter the behaviour of the CPS by introducing new potentially dangerous components in the

output. Therefore, such a low 𝔡nl value allows us to distinguish when the occurrence of non-linear

phenomena, actually pushes the CPS out of its design scope (bottom-right test) from when it does

not (bottom-left test). Instead, the fact that the 𝔡nl value is even lower than the value of the upper

plots can be attributed to numerical noise. Indeed, in each of the three tests, no large amplitude is

found in the 𝑓new set of frequencies: amplitude values are small or close to zero and small variations

caused by numerical noise can alter the values. However, when non-linear behaviour appears and

larger amplitudes are found in 𝑓new , the numerical noise becomes less relevant.

To conclude, we note that the idea of repeating the input sequence comes with a trade-off

between the test duration and the frequency resolution. Higher frequency resolution increases the

chances of detecting new frequency components, hence non-linear behaviours; however, more

repetitions require longer tests. The number of frequency samples needed to detect new frequencies

in the output depends on the specific application. Accordingly, such a number can be evaluated

empirically using a manual test, with several input repetitions, that shows non-linear behaviour

(this test can be obtained using high amplitude and frequency content, and an arbitrary shape).

Then, by computing the 𝔡nl using different trace lengths (corresponding to different numbers of

repetitions), we can evaluate how many periods are needed so that the frequency samples are

sufficient to detect new undesired output components.
7

4.2.3 Mapping of Behaviour to Frequency-Amplitude Points. When we analyse the degree of non-

linearity, we obtain a metric that characterises all the input frequency-amplitude components. In

fact, by looking at the 𝔡nl metric, there is no way to identify which input component causes the

non-linear behaviour.

6
In this example, we used ten repetitions of the step sequence to compute the 𝔡nl .

7
We exemplify the procedure of selecting the number of input repetitions in the experimental part of this work, specifically

in Section 6.2.
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Differently, when the SUT behaves linearly, some frequency components of the same input

are tracked and pass through to the output, while other components are filtered. For example,

in the top-right plot of Figure 7 we can observe that the input component at frequency 1Hz is

found, albeit reduced in amplitude, also in the output, while the component at frequency 3Hz has

a much lower amplitude value in the output. Therefore, when we quantify the filtering behaviour

of tests exposing linear behaviour, it is necessary to analyse the different frequency components

individually.

For each of the frequency-amplitude component of the input, we define a degree of filtering based
on the ratio of the output and input amplitudes. If a frequency component is perfectly tracked, its

amplitude in the input and output are equal, hence yielding a ratio equal to 1. Instead, if the ratio of

the input over the output is below the unit, it corresponds to filtering since part of the signal is lost.

Analogously, values above 1 indicate amplification: while a small amplification can be expected in

real-world systems, large amplification can be dangerous (for the very same reason as the risks of

broadening the frequency spectrum).

Hence, given a test 𝑖 , we define the degree of filtering for a given input frequency component 𝑓 as

the difference between 1 and the mentioned output-input ratio:

𝔡f (𝑖, 𝑓 ) = 1 − |DFT [𝑦𝑖 (𝑡)] (𝑓 ) ||DFT [𝑟𝑖 (𝑡)] (𝑓 ) | , (3)

with the same conventions as for the equations above, and the caveat that this definition is valid only

for tests that expose linear behaviour. Given the absolute values at the numerator and denominator,

this metric takes values in the range [−∞, 1]. A value of 1 describes complete filtering, while 0

describes perfect tracking. Negative values correspond to input amplification.

4.2.4 Expected Properties of the Characterisation. Due to the qualitative nature of the characterisa-

tion presented in Figure 5, we cannot use it to predict the exact shape of the different behaviour

areas. However, we can use the relative positioning of the areas to define properties over the tests.

More specifically, the areas’ relative positioning shows that (1) tests with higher frequency content

and larger amplitudes are expected to push the CPS further away from the operation point used for

the linearisation and cause non-linear behaviour, and (2) tests with higher frequency content are

expected to expose more filtering behaviour than ones at lower frequencies. We therefore formulate

the following expected properties:
8

PR1 The degree of non-linearity should increase when the amplitude and frequency values

increase. In fact, the further we move away from the origin of the frequency-amplitude plane

the closer we should be to the input area outside of the design scope.

PR2 For tests within the design scope (i.e., tests that show linear behaviour), the filtering degree

should increase as the frequency increases. In other words, faster signals should always be

harder to track than slower ones.

PR3 The closed-loop frequency bandwidth should be independent of the specific test. In fact,

when the system behaves linearly, the threshold between the tracking and filtering areas

should not depend on the specific input and be instead a property of the system [3].

We now exemplify an evaluation of these properties on the tests of Figures 6 and 7. Property PR1
is fulfilled by all tests except for the bottom-left one. In fact, the test with the highest amplitude

(the bottom-right one) is the one with the largest 𝔡nl and the one with the second highest 𝔡nl is
the one with the fastest input (the upper-right one). However, when we compare the two plots

on the left-hand side, we would expect the bottom one to have a higher 𝔡nl than the upper one,

since the latter receives an input with the same frequencies but smaller amplitude. The exception

8
In Section 5.2, we formalise the properties into metamorphic relations.
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of the bottom-left plot showcases that, when the linear model loses validity (in this case because of

saturation), the behaviour of the system becomes unpredictable, though not necessarily worse as

illustrated by the low 𝔡nl value. This unpredictability further underlines the importance of testing in

the areas of the input space that are close to the design assumptions validity bounds. Property PR2
is fulfilled: looking at the tests exhibiting linear behaviour, we can observe that the blue crosses

move further down in the position axis from the black ones as we move to higher frequencies.

This means that the reference signal is found increasingly less often in the output. Concerning

Property PR3, we can observe, in the tests shown in the top part of the figure, that the frequency

above which the input is filtered in the output (i.e., the closed-loop bandwidth) is similar for both

tests (around 0.9Hz). In other words, the 𝑓𝑏 measured from the two tests in the upper plots is similar

and thus the two tests comply with the third property. For the bottom-left test, the frequency

at which the input is filtered is lower (around 0.6Hz). This is possibly due to the appearance of

the saturation that limits how large and fast references the drone can track (hence practically

decreasing the closed-loop bandwidth for larger amplitudes). Given that in the real world we would

not necessarily know that the bottom-left test is triggering some non-linear phenomenon, this

discrepancy from the two upper tests can be used to highlight that this test might require a more

detailed analysis (even though the control performance is possibly still acceptable).

4.3 Benefits and Limitations of the Frequency-Amplitude Characterisation
Our testing objective is to generate and identify stress test cases that push the system around

the limits of validity of the linearised model. In test cases where non-linear phenomena appear,

the control-theoretical guarantees are gradually lost (depending on how far the behaviour of the

CPS deviates from the one described by the model) and new unpredictable frequency components

appear in the output. Accordingly, we propose the use of the 𝔡nl metric, as a measure of the new

frequency components that appear in the CPS output, to identify the stress test cases and therefore

whether a test is inside or outside of the design scope. In other words, 𝔡nl captures and quantifies

non-linear behaviour. In order to specifically explore the validity limits of the design assumptions,

we are interested in test cases where the 𝔡nl is non-zero (hence not being fully within the design

scope) but also not too large (hence not being far outside of the design scope).

However, the identification of a boundary in the input space where the 𝔡nl transitions from
zero to non-zero values is not possible for arbitrary input sequences. In fact, as discussed above,

the 𝔡nl metric equally characterises all of the frequency-amplitude components of a given test.

Consequently, a given point in the frequency-amplitude plane can lead to different 𝔡nl values
depending on the other components of the input. For example, in both the two right-hand side

tests presented in Figure 7, we can identify a main component around 1Hz and amplitude 0.2m.

The two components are located very close in the plane but are associated with two tests that

yield different 𝔡nl values (and accordingly different behaviours). The test depicted in the upper plot

shows linear behaviour and is within the design scope, while the test in the bottom plot is outside

of the scope. This discrepancy appears because the two components belong to different tests and

are therefore coupled with different other components. This further highlights that Figure 5 is a

simplified representation of the input space with clear-cut boundaries. Depending on the other

frequency-amplitude components that one point in the frequency-amplitude plane is paired with

in a given test, it can map to different behaviours (i.e., 𝔡nl values). The exposed behaviour of a point
in the plane can in fact change according to which other frequency components are present in the

same input.

To overcome the above limitation, in our testing approach we propose a novel test-case parametri-

sation for the control layer of CPSs. With this parametrisation we separate, in a test case, the

definition of
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• the frequency content,

• the amplitude content and

• the combination (i.e., the relative positioning) of the different frequency-amplitude compo-

nents.

As shown in the next section, thanks to this separation, we can leverage the proposed characterisa-

tion to control the expected behaviour of the tests.

5 TESTING APPROACH
In the first part of this section, we propose a novel test case parametrisation for the control layer

of CPSs. The objective of the proposed parametrisation is to enable the definition of test cases

according to the concepts presented in the previous section. More specifically, we design our

parametrisation with the following objectives:

• it allows the use of the degree of non-linearity 𝔡nl (Equation 2),

• it distinguishes possible choices for the different input features (frequency content, amplitude

content and the combination of different frequency-amplitude components), and

• it enables the definition of the expected properties from Section 4.2.4 as metamorphic rela-

tions [4, 14].

In the second part of this section we define the mentioned metamorphic relations. In the third

part, we use our test case parametrisation and the metamorphic relations to develop our testing

approach. We use the 𝔡nl and the expected property PR1 to obtain a preliminary optimistic bound

on the input amplitudes that the control layer can track. Using the preliminary bound, we use our

heuristic sampling method to generate test cases that explore the area of the frequency-amplitude

plane where stress test cases are likely to appear. We then execute the test cases, and use the 𝔡nl
and the 𝔡f metrics, together with the metamorphic relations, to identify test cases outside of the

design scope.

5.1 Test Case Parametrisation
One test case 𝑖 corresponds to a sequence 𝑟𝑖 (𝑡) of reference values over time 𝑡 . In order to achieve

the parametrisation objectives listed above, we define 𝑟𝑖 (𝑡) as a function defined by three elements:

an amplitude gain, a time scaling coefficient, and a periodic shape function. More specifically, we

use the expression

𝑟𝑖 (𝑡) = 𝛼𝑖 𝜙𝑖 (𝛾𝑖𝑡) , (4)

where:

𝜙 (·) is a periodic function defining the input shape. For example, it can define a square wave or

a triangular wave (arbitrary sequences can be chosen as long as they are periodic). Without

loss of generality, we assume that shape functions are normalized to have a unit period (i.e.,

∀𝑡 : 𝜙 (𝑡) = 𝜙 (𝑡 + 1)) and also have a unit amplitude range (i.e., max𝑡 𝜙 (𝑡) −min𝑡 𝜙 (𝑡) = 1).

𝛼 is a gain used to scale the input amplitude.

𝛾 is a time scaling coefficient that changes how quickly we go through the input shape.

One test case 𝑖 is therefore fully defined by a triplet ⟨𝜙𝑖 , 𝛼𝑖 , 𝛾𝑖⟩. We note that, as long as 𝜙 is a

periodic function, the sequence 𝑟𝑖 (𝑡) is also periodic. Hence it is a repeated sequence and enables

the use of the proposed 𝔡nl (Equation 2).

Sampling of Frequency-Amplitude Coordinates: We now use the reference square waves

from the examples in Figures 6 and 7 to exemplify how the proposed parametrisation works and

how it enables intuitive sampling of the frequency-amplitude plane. More specifically, we describe

how the parametrisation separates the choice of the relative positioning of the different main
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frequency-amplitude components and of their frequency and amplitude values. The four tests from

the figures can be defined using our parametrisation with the 𝜙 function being a square wave with

unit period, and the reference position switching between 0 and 1. The 𝛼 value corresponds to the

amplitude of the square wave and, hence, the tests in the upper plots both have an amplitude gain

of 0.6, while the bottom plots have an amplitude gain of 1.5 and 3.5, respectively. Concerning the

values of 𝛾 , the left-hand side plots’ period is 10 and hence have a time scaling of 0.1 to make the

signal slower. The right-hand side plots have instead periods equal to 1 and 5, respectively, and

hence corresponding time scaling values of 1 and 0.2.
The shape function 𝜙 defines the relative positioning of the different ⟨𝑓 , 𝐴⟩ test coordinates. In

other words, it defines their pattern (e.g., combination of larger and smaller components) in the

frequency-amplitude plane. However, thanks to the linearity of the DFT, this pattern is independent

of the 𝛼 and 𝛾 coefficients. For example, if we look at the main frequency-amplitude components

of the inputs in Figure 7 (the black crosses above the red dashed line), we can see that the different

square waves all map to components along a decreasing straight line.
9
This showcases that the

relative positioning of themain components is defined only by the shape function and is independent

of the scaling coefficients 𝛼 and 𝛾 .
The 𝛼 coefficient enables the movement of the ⟨𝑓 , 𝐴⟩ test coordinates along the amplitude axis.

Increasing (decreasing) its value makes the frequency-amplitude components map to components

further up (down) in the plane. Thanks to the linearity of the DFT, multiplying the value of 𝛼 pro-

portionally increases the main components’ amplitude coordinate 𝐴 [16]. For example, comparing

the two left-hand side plots of Figures 6 and 7, we can see that the two square waves with the same

period map to components with the same frequency but scaled amplitude.

The 𝛾 coefficient enables the movement of the ⟨𝑓 , 𝐴⟩ test coordinates along the frequency axis:

i.e., the choice of the horizontal coordinate 𝑓 . Analogously to the amplitude, increasing (decreasing)

its value increases (decreases) the speed with which we go through the shape function and thus

its frequency content. Due again the linearity of the DFT, a scaling of this coefficient corresponds

to an equivalent scaling of the main components’ 𝑓 coordinates. For example, comparing the two

upper plots of Figures 6 and 7 we can see that the two square waves that have the same amplitude

but different periods map to points with the same amplitude but respectively lower and higher

frequency.

5.2 Definition of Metamorphic Relations
The properties introduced at the end of Section 4.2 describe relations between different tests. For

example, we used such properties to describe the relation between the four tests in Figures 6

and 7. Properties that concern the inputs and outputs of multiple test cases are known as meta-

morphic relations (MR) [14]. We define one MR for each property. We define the first two MRs

as implications over tests with the same shape. Accordingly, each one contains a condition and

an expected implication. The conditions concern relations between the amplitude and frequency

content of different test inputs as well as whether the output shows non-linear behaviour or not.

The implications concern relations between the 𝔡nl and 𝔡f observed in the tests outputs. In contrast,

we define the third MR as a property across tests with different shapes.

Using our test case parametrisation, for tests based on the same shape, we can directly identify

relations in the input amplitude and frequency content using parameters 𝛼 and 𝛾 . More specifically,

given two tests 𝑖 and 𝑗 with the same shape (i.e., 𝜙𝑖 = 𝜙 𝑗 ), the relation between 𝛼𝑖 and 𝛼 𝑗 (𝛾𝑖 and 𝛾 𝑗 )
identifies their relation in terms of amplitude (frequency) content. For example, 𝛼𝑖 > 𝛼 𝑗 implies

9
Square waves map to a decreasing straight line in logarithmic scale. In linear scale they map to a hyperbole, as exemplified

in Figure 8.
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that test 𝑖 maps to points higher in the frequency-amplitude plane with respect to points for test 𝑗 .
Analogously,𝛾𝑖 > 𝛾 𝑗 implies that test 𝑖 maps to points further to the right in the frequency-amplitude

plane with respect to points for test 𝑗 .
Property PR1 states that an increase in amplitude or frequency content of the input should

cause an increase in 𝔡nl . Thanks to our characterisation, for two tests 𝑖 and 𝑗 based on the same

shape (𝜙𝑖 = 𝜙 𝑗 ), an increase in amplitude and frequency are identified with 𝛼𝑖 > 𝛼 𝑗 and 𝛾𝑖 > 𝛾 𝑗 .
Their conjunction can be used to define the MR condition. The MR implication instead concerns an

increase in the degree of non-linearity. This can be expressed as 𝔡nl (𝑖) > 𝔡nl ( 𝑗). Hence, we can
write the following MR:

MR1:
(
𝜙𝑖 = 𝜙 𝑗

) ∧ ( (
𝛼𝑖 > 𝛼 𝑗

) ∧ (
𝛾𝑖 ≥ 𝛾 𝑗

) ∨ (
𝛼𝑖 ≥ 𝛼 𝑗

) ∧ (
𝛾𝑖 > 𝛾 𝑗

) )
=⇒ 𝔡nl (𝑖) > 𝔡nl ( 𝑗) . (5)

As described in Section 4.2.4, this MR is, for example, satisfied by the upper-left and bottom-right

tests of Figure 7, where the increase of 𝛾 from 0.1 to 0.2 and the increase of 𝛼 from 0.6 to 3.5 lead to
an increase in 𝔡nl from 0.05 to 0.16. Differently, it is not satisfied by the tests of the left-hand side

plots, where an increase of 𝛼 from 0.6 to 1.5 and same 𝛾 correspond to a decrease in 𝔡nl from 0.05
to 0.01.

Property PR2 states that, as long as the tests show linear behaviour, an increase in the frequency

content will correspond to an increase in the filtering behaviour. To identify linear tests, we use a

threshold 𝔱nl on our degree of non-linearity. Tests below such threshold (𝔡nl (𝑖) < 𝔱nl) are therefore
considered to show linear behaviour and we limit the definition of this MR to those. Like for the

previous MR, we identify an increase in the frequency content for two tests with the same shape as

a greater time scaling parameter 𝛾𝑖 > 𝛾 𝑗 . The conjunction of the 𝔡nl threshold and the increase in

frequency content constitute the MR condition. For the MR implication, an increase in the filtering

behaviour can be identified with an increase of the 𝔡f . However, different from the 𝔡nl , the 𝔡f applies
to each main frequency-amplitude component of the test. Hence we need to evaluate it for each

component of the inputs, i.e., ∀𝑓 |⟨𝑓 , 𝐴⟩ ∈ fAmap[𝑟𝑖 (𝑡)], and compare it with the corresponding

component of the other test, i.e., the one with frequency 𝑓 · 𝛾 𝑗𝛾𝑖 (leveraging the linearity of the

DFT, the proportion in the 𝛾 coefficients matches the proportion in the frequencies). Using this

quantification of the implied increase in 𝔡f , we obtain

MR2:
(
𝜙𝑖 = 𝜙 𝑗

) ∧ (
𝛾𝑖 > 𝛾 𝑗

) ∧ (𝔡nl (𝑖) < 𝔱nl) ∧ (𝔡nl ( 𝑗) < 𝔱nl) =⇒
∀𝑓 |⟨𝑓 , 𝐴⟩ ∈ fAmap[𝑟𝑖 (𝑡)], 𝔡f (𝑖, 𝑓 ) > 𝔡f

(
𝑗, 𝑓 · 𝛾 𝑗/𝛾𝑖

)
.

(6)

For example, this MR is satisfied by the upper tests of Figure 7, where the increase of 𝛾 from 0.1
to 1 corresponds to an increase in 𝔡f for the main frequency component (respectively the ones

at 0.1Hz and 1Hz). In fact, the blue cross (representing the output frequency component) moves

further down along the amplitude axis with respect to the input component, hence highlighting

filtering action. More precisely, the 𝔡f value of the main component of the upper-left plot is 0 at

0.1Hz and the 𝔡f value of the upper-right plot is 0.45 1Hz.
Property PR3 states that, as long as the tests show linear behaviour, the closed-loop bandwidth

should not depend on any specific test. We can use the 𝔡f metric to identify the closed-loop

bandwidth. According to its control-theoretical definition, the closed-loop bandwidth 𝑓𝑏 corresponds
to a ratio of 0.5 between output and input [3]. Therefore, the bandwidth can be identified as the

threshold below (above) which the frequency components show a 𝔡f lower (higher) than 0.5,
determining the reference tracking (filtering) area. To complement the two previous MRs that

concern tests having the same shape, we use this property to define an MR across different shapes.

We denote the closed-loop bandwidth estimated with the tests of a given shape 𝜙 as the threshold

𝑓𝑏,𝜙 . Therefore the third MR can be defined as the expectation that the 𝑓𝑏 estimated using two tests
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Fig. 9. Graphical representation of main steps of proposed testing approach. For each step we describe the
contribution to the testing in terms of the information that it adds in the frequency-amplitude plane. In each
plot we show the bounds provided by the engineers as required input. The dashed line represents the optimistic
bound on the amplitude values obtained in the Step 1. The crosses represent how the tests generated in
Step 2 sample the frequency-amplitude plane. In Step 3 the colouring of the crosses and pr (𝑖, 𝑗)? respectively
exemplify the evaluation of the behaviour observed in the tests and the evaluation of the metamorphic
relations.

𝑖 and 𝑗 with different shapes are similar

MR3: |𝑓𝑏,𝜙𝑖 − 𝑓𝑏,𝜙 𝑗 | < 𝜖, (7)

where 𝜖 is a small discrepancy that can be accepted. As described in Section 4.2.4 when exem-

plifying PR3, the two upper tests of Figure 7 satisfy this MR as they show filtering behaviour

for frequencies above 0.9Hz, while the bottom-left plot shows a bandwidth of 0.6Hz, hence not
satisfying this MR. As discussed above, this is due to the appearance of the saturation non-linear

phenomenon, that however has a limited impact on the CPS and does not push it outside of its

design scope.

5.3 Approach Steps
In this section we describe the main steps of our testing approach. We use our test case parametri-

sation to generate test cases that cover ranges of amplitudes and frequencies. We then rely on the

proposed metrics and MRs enabled by the parametrisation to identify stress test cases.

In our approach, we require the engineers to provide ranges of frequency and amplitude values

that are relevant for the SUT. Starting from these ranges, we propose a testing approach based on

three main steps. We use Figure 9 to provide an overview and depict how the required input and

steps contribute to the generation and identification of stress test cases:

Step 0. Setting of Required Input. In this preliminary phase, we ask the engineers to provide

bounds on the relevant frequency and amplitude ranges as well as the desired resolution.

We use the ranges (𝑓min, 𝑓max, and 𝐴max in Figure 9) to limit the scope of the testing to

practically relevant values. Furthermore, a resolution 𝛿𝐴 is also needed to identify the

smallest amplitude variations in the reference value that are expected to impact the control

behaviour.

Step 1. Optimistic Bounding of Amplitude Values. This iterative step provides an optimistic

evaluation of amplitude values that cause non-linear behaviour in the SUT (the dashed

line in Figure 9). The objective is to obtain a bound that excludes inputs that have such

a large amplitude that they are “trivially” outside of the design scope. To obtain such

values, we use tests with the sinusoidal shape. The sinusoidal shape maps to a single
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frequency-amplitude component and does not account for the combination of different

components, hence making this step optimistic.

Step 2. Generation of Test-Set. This step uses different input shapes to generate the actual test

set. We use the optimistic amplitude bounds determined by the previous step to limit the

target area of the input space during test case generation. For each shape, we use uniform

sampling of frequencies and sampling of an exponential distribution over amplitudes

to cover the target area. Each of the black crosses in Figure 9 corresponds to a pair of

frequency-amplitude coordinates, and hence a generated test.

Step 3. Execution of Tests and Properties Evaluation. In this step we execute the tests and

quantify the observed behaviours. The crosses’ colours in Figure 9 depict 𝔡nl values, green
being a low value and purple a high value. We use the degree of non-linearity and proposed

MRs (𝑝𝑟
(
𝑡𝑖 , 𝑡 𝑗

)
in Figure 9) to identify test cases that push, to various degrees, the control

algorithm out of its design scope.

We now delve into the details of each step.

5.3.1 Step 0: Setting of Required Input. In order to practically initialise the approach we ask the

engineers to define different quantities specific to the control system. Such quantities initialise

the ranges of the amplitudes and frequencies that are relevant for the SUT, and define the desired

resolution across tests. The required quantities are:

• A bound on the maximum amplitude value 𝐴max that can be used for the reference
10
: this is

an upper boundary to practically limit the exploration of high values along the amplitude axis.

For example, for drone altitude control, it can be set to the maximum altitude that the drone is

expected to fly at.

• A frequency range [𝑓min, 𝑓max] around the expected closed-loop bandwidth 𝑓𝑏 . Such an expected
value can be obtained from the control design process or from the speed requirements. As

discussed above, it is important to cover the closed-loop bandwidth in order to push the CPS

to its performance limits. As a rule of thumb, a factor of 10 around the expected 𝑓𝑏 should be

sufficient to make sure to include the actual one. With this rule of thumb, if the tests show

that the 𝑓𝑏 is not included in the used frequency range, it implies that there is an error of

more than one order of magnitude on the expected system bandwidth. Such large error in the

expected value suggests the presence of some issue in the system development.

• An amplitude resolution 𝛿𝐴 that is used to define the smallest variation in the input size that

is expected to have an impact on the system behaviour. Ideally, this should be a range within

which differences in performance are expected to either not matter or be indistinguishable

because of practical limitations (e.g., sensor resolution). However, this is likely to result in a

fine-grained resolution that is neither practically needed nor achievable, and larger values can

be used.

As we discuss later, we propose a heuristic approach to retrieve a desired frequency resolution from

the results of Step 1. In fact, it can be difficult to intuitively define a desired frequency resolution.

In case of specific needs, the engineers can set the desired frequency resolution manually (e.g.,

to control the number of tests given a testing budget). We remark that both the ranges and the

resolution can be defined in a conservative way (i.e., using larger ranges and smaller resolution

steps) at the cost of increasing the number of tests.

Concerning the approach itself, we require the definition of an upper bound 𝔱nl on the degree of

non-linearity. This quantity defines a 𝔡nl value above which tests are considered to be outside of the

design scope of the SUT. Being a threshold on the 𝔡nl , it can be interpreted as the maximum relative

10
The lower boundary is always zero since the amplitude describes the absolute value of the signal.
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amplitude of new frequency components that we can accept in the CPS output. Accordingly, it can

be chosen based on the maximum relative accepted deviation from the reference value. For example,

for drone altitude control, we might be interested in tests that show up to 0.15m of deviation from

the reference when hovering around 1m, hence setting 𝔱nl = 0.15.11 Furthermore, its value does

not need to be strict. In fact, as far as test case generation is concerned, it is used only for the

preliminary optimistic bounding of the amplitude values (Step 1). Hence, a larger value can be

selected without compromising the approach effectiveness. However, in the same way as for the

ranges and resolutions, a conservative choice for this parameter results in a larger test set.

5.3.2 Step 1: Optimistic Bounding of Amplitude Values. The purpose of this step is to obtain, for

the different frequency values, an optimistic evaluation of the input amplitude values 𝛼 that push

the control algorithm out of its design scope. With this optimistic evaluation we can restrict the

sampling of the frequency-amplitude plane and avoid trivially large amplitudes that expose non-

linear behaviour (i.e., 𝔡nl > 𝔱nl). By excluding such amplitude values, we can focus the test case

generation on the area of the input space where the non-linear phenomena start to affect the CPS

ability to track reference signals. Intuitively, this restriction of the amplitude values helps avoiding

sampling the purple area of Figure 5 and target the azure area.

To obtain this optimistic bound, we test the SUT using sinusoidal inputs (𝜙 = sin). As described in

Section 2.2 (Figure 3), sinusoidal inputs sample a single point in the frequency-amplitude plane and

therefore avoid interactions between different components. Since sinusoidal tests do not account

for such interactions, they provide only an optimistic evaluation of the SUT behaviour for that

frequency-amplitude combination. In other words, even if a sinusoidal test with a given value of

𝛼 and 𝛾 exposes linear behaviour (𝔡nl ≤ 𝔱nl), it could happen that other shapes, paired with the

same values, expose non-linear behaviour (𝔡nl > 𝔱nl). On the other end, if a sinusoidal test shows

non-linear behaviour, the use of a different shape (with the same values for 𝛼 and 𝛾 ), is unlikely to

show linear behaviour. In fact, by changing to a more complex shape, we are adding new frequency

components on top of a component that was already sufficient to push the control algorithm out of

its design scope.

We show the pseudocode implementing this step in Algorithm 1. The algorithm takes as inputs

the frequency range, the desired amplitude resolution, the upper bound on the maximum amplitude

value, and the non-linearity upper bound 𝔱nl . It then uses tests with sinusoidal inputs to sample the

frequency-amplitude plane and obtain a frequency-dependent bound of amplitude values over the

frequencies. We represent this bound on the amplitude values with a map object upperbound_amp

that maps each frequency 𝑓 to a maximum amplitude value 𝐴bound .

In our algorithm, we sample the amplitude and frequency dimensions (𝛾 and 𝛼 values) with

different strategies. We graphically exemplify such strategies in the two plots of Figure 10. For

the frequencies, we start by sampling the minimum 𝑓min and maximum frequency values 𝑓max

provided in the required input. For each frequency, the algorithm performs a binary search of 𝛼
values between 0 and 𝐴max (Lines 2 and 4) until it finds the minimum value for which the SUT

shows 𝔡nl > 𝔱nl . This binary search is exemplified in the left-hand side plot in Figure 10, where

we fix the frequency 𝑓 and vary the amplitude gain 𝛼 until we find a test that shows a degree of

non-linearity close to 𝔱nl .12 In practice, we stop the binary search when the difference between

11
Note that, 𝔡nl being based on the DFT, it has a linear proportion with time-domain values. Hence relative amplitudes in

the two domains are equivalent.

12
In order to perform a binary search, we assume that MR1 holds, i.e., that 𝔡nl increases for increasing values of 𝛼 . Thanks

to the simple nature of the sinusoidal input, MR1 is more likely to hold for inputs based on this shape. However, as

demonstrated in the experimental evaluation (Section 6.4), MR1 does not always hold in practice. The invalidation of MR1

in the preliminary search can lead to overestimate the upper bound; however, such overestimation is still a valid upper

bound. In fact, the search stops only around tests with a high 𝔡nl value (hence, tests that are in the purple area of Figure 5)
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Fig. 10. Graphical examples of the sampling strategies used for the amplitude and frequency axes in Step 1
of the approach (respectively the binary_search_upperbound and find_gap functions in Algorithm 1). For
exploring the amplitude axis (left-hand side plot) we use a binary search starting from 𝐴max until we find the
amplitude for which sinusoidal tests show a 𝔡nl close to the chosen threshold 𝔱nl . In this example the search
takes 3 steps, and performs one test that shows too high 𝔡nl (test1),one that shows too low 𝔡nl (test2), and a
final one close to the threshold (test3). For exploring the frequency axis (right-hand side plot) we exemplify
the choice of sampling a new frequency (𝑓next ) between two that have already been explored (𝑓𝑖 and 𝑓𝑗 ). If
the upper bound of the two frequencies shows a difference higher than the desired amplitude resolution
(i.e., upperbound_amp (𝑓𝑖 ) − upperbound_amp

(
𝑓𝑗
)
> 𝛿𝐴 then we chose to sample a new frequency between

them (and perform the binary search along the amplitude axis).

Algorithm 1 Step 1: Optimistic Bounding of Amplitude Values

1: function OptimisticAmplitudeBound(𝑓min, 𝑓max, 𝛿𝐴, 𝐴max,𝔱nl)
2: 𝐴bound ← binary_search_upperbound (𝑓min, 𝛿𝐴,𝐴max, 𝔱nl)
3: add_sample (upperbound_amp, 𝑓min, 𝐴bound)
4: 𝐴bound ← binary_search_upperbound (𝑓max, 𝛿𝐴,𝐴max, 𝔱nl)
5: add_sample (upperbound_amp, 𝑓max, 𝐴bound)
6: while max_gap (upperbound_amp) > 𝛿𝐴 do
7: 𝑓next ← find_gap (upperbound_amp, 𝛿𝐴)
8: 𝐴bound ← binary_search_upperbound (𝑓next, 𝐴max, 𝛿𝐴, 𝔱nl)
9: add_sample (upperbound_amp, 𝑓next, 𝐴bound)
10: end while
11: return upperbound_amp

12: end function

the upper and lower amplitude values identified by the binary search is smaller than the desired

amplitude resolution 𝛿𝐴 (i.e., the next amplitude update is smaller than half the resolution). We

then take as 𝐴bound the lower amplitude values obtained with the binary search and add it, together

with the sampled frequency value, to the map object upperbound_amp (Lines 3 and 5).

Then the iterative part of the algorithm starts with the loop at Line 6. In this iteration we sample

the frequency axis until the amplitude value difference between the 𝐴bound values of subsequently

sampled frequencies are smaller than 𝛿𝐴. Such gap is graphically exemplified in the right-hand side

plot of Figure 10. In the plot we have already explored frequencies 𝑓𝑖 and 𝑓𝑗 and we evaluate if we

need to sample a new frequency between them according to the difference upperbound_amp (𝑓𝑖 ) −
upperbound_amp

(
𝑓𝑗
)
. If there is a gap larger than 𝛿𝐴 between two subsequent frequencies, then

we sample a new frequency 𝑓next between them (Line 7). For the new frequency we perform again a

or around the maximum allowed value 𝐴max. An overestimation implies that the bound is not as tight, thus rendering the

approach less efficient. Specifically, it increases the number of tests needed to cover the area below the bound.
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binary search over the amplitude values and add the obtained 𝐴bound to the upperbound_amp map

object (Lines 8 and 9). Once all the amplitude gaps are smaller than 𝛿𝐴 we stop the sampling of

new frequencies. Finally, the algorithm returns the obtained map object (Line 11). The map object

represents the optimistic bound of the amplitude values leading the SUT out of its design scope

and we use it to avoid testing trivially large inputs.

For some systems, it may happen that none of the amplitude values in the range between 0 and

𝐴max causes the SUT to show non-linear behaviour. In such cases, the binary search converges to a

value close to 𝐴max and the use of the upperbound_amp will not be able to reduce the number of

test cases in the next steps of the approach. Such occurrence does not hinder the effectiveness of

the approach: it only suggests (but does not imply) that the 𝐴max value might be set too low.

5.3.3 Step 2: Generation of Test-Set. In this step we generate the actual test set. Given our test

case parametrisation, we need to define a set of shape functions and different amplitude and time

scaling parameter values. We now discuss each of them.

Concerning the shape functions, we propose to use a set of shapes inspired by common practice

in control engineering. In control engineering, the most common inputs used to evaluate a control

algorithm are the step (instantaneous change of the reference) and ramp (linear change in the

reference) [3]. Accordingly, we propose the use of shape functions that resemble such inputs: square,

sawtooth, triangular, and trapezoidal waves. If other patterns are available from use cases in a

specific CPS application, engineers can expand this set.

For each of the chosen shapes, we generate a set of ⟨𝛾, 𝛼⟩ pairs. We aim at exploring the area

of the input space delimited by the upper-bound threshold identified in Step 1. Since one shape

corresponds to more than one frequency-amplitude ⟨𝑓 , 𝐴⟩ point, we take as reference the point
associated with the largest amplitude, which we call the main component of a shape. Accordingly,
we sample values for 𝛼 and 𝛾 and thus move the main component of each shape to obtain test cases

that cover the area delimited by the upper-bound threshold.

Regarding the frequency axis, in the general case, we assume that there is no reason to test a

specific range. Therefore, we aim at uniformly covering (with the main component of the shape) the

frequency range [𝑓min, 𝑓max]. Practically, we sample frequencies at equal intervals in the given range.

Since it can be difficult to intuitively set the frequency resolution, we propose to compute such

resolution 𝛿 𝑓 from the results of Step 1. Specifically, we suggest to use the average frequency gap

(i.e., avg𝑖 {𝑓𝑖+1 − 𝑓𝑖 }) obtained in the amplitude upper-bound. Intuitively, these gaps are obtained by

imposing a maximum difference 𝛿𝐴 in the amplitude threshold for which the SUT shows non-linear

behaviour. Therefore, they should correspond to frequency variations for which the 𝔡nl does not
change significantly. In specific cases, the engineers can adapt the sampling of the frequency

axis according to application-specific needs. For example, if a frequency range is known to be

particularly relevant for the specific SUT, a biased random sampling can be applied.

Differently, along the amplitude dimension, we are generally more interested in exploring the

area with large amplitudes. For the amplitude values we can leverage the upper bound obtained at

Step 1 and avoid sampling large amplitudes that, already with a sinusoidal input, would provide a

very high 𝔡nl . Practically, we limit the sampling range with the optimistic upper bound obtained in

each sampled frequency. Within this range, we propose to sample different amplitudes 𝛼 according

to a beta distribution skewed toward the higher values [50].
13
The number of samples is determined

according to the desired amplitude resolution 𝛿𝐴. Practically, we compute the number of tests

for each frequency 𝑓 with upperbound_amp (𝑓 ) /𝛿𝐴, to obtain a number of samples compatible

with the desired resolution. Similarly to the frequency dimension, application-specific sampling

strategies might be adopted if areas of particular interest are given.

13
A beta distribution is a version of the more classical exponential distribution with bounded support.
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Fig. 11. This figure shows how to manually evaluate the proposed MRs. For each MR (the different rows) we
report an example in which it is verified (left column) and one in which it is invalidated (right column). To
evaluate MR1 we compare the 𝔡nl measured in different tests (tests 𝑖 , 𝑗 , and 𝑘) and their relative position in
the frequency-amplitude plane. We compare the 𝔡nl for each pair of tests (highlighted by the arrows in the
plots). If the 𝔡nl is higher for tests further away from the origin (left-hand side plot), then MR1 is verified. If
the 𝔡nl decreases for tests further away from the origin (right-hand side plot), then MR1 is invalidated. To
evaluate MR2 we compare the 𝔡f in frequency components of tests (tests 𝑖 and 𝑗 ) with different time scaling
coefficients (𝛾𝑖 > 𝛾 𝑗 ). If a larger time scaling coefficient corresponds to a higher 𝔡f (left-hand side plot), then
MR2 is fulfilled. If a larger time scaling coefficient corresponds to a smaller 𝔡f (right-hand side plot), then
MR2 is invalidated. To evaluateMR3 we compare the closed-loop bandwidth (the frequency for which the 𝔡f
becomes greater than 0.5) using tests with different shapes (shapes 𝜙𝑖 , and 𝜙 𝑗 ). If the closed-loop bandwidth
evaluated with tests that use different shapes are equal (left-hand side plot 𝑓𝑏,𝜙𝑖

= 𝑓𝑏,𝜙 𝑗
) then MR3 is verified.

If the two closed-loop bandwidths evaluated do not correspond (right-hand side plot 𝑓𝑏,𝜙𝑖
≠ 𝑓𝑏,𝜙 𝑗

) then MR3
is invalidated.

5.3.4 Step 3: Execution of Tests and Properties Evaluation. In this final step we proceed to executing

the tests and evaluating their outputs. The evaluation is based on the 𝔡nl and 𝔡f metrics defined in

Section 4.2 and includes the verification of the MRs and the identification of the stress test cases. We

first discuss the identification of stress test cases and evaluation of MR1 using 𝔡nl . We then discuss

the evaluation of MR2 and MR3 using 𝔡f . We use Figure 11 to exemplify the manual evaluation of

the MRs. In the experimental section, we showcase in detail the visualisation and analysis step for

our case studies.

We execute each test and store its output trace. We then compute, according to the definitions

given in Section 4.2: (i) the set of relevant ⟨𝑓 , 𝐴⟩ components, (ii) the degree of non-linearity, and
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(iii) the degree of filtering of each ⟨𝑓 , 𝐴⟩ component. Such information can then be analysed by

leveraging plots on the frequency and amplitude dimensions.

First, we discuss how to use 𝔡nl to identify stress test cases and evaluate MR1. To do so, the

main component of each test (i.e., the component with the largest amplitude) can be displayed in a

scatterplot on the frequency-amplitude plane using its ⟨𝑓 , 𝐴⟩ coordinates. The markers can then be

coloured with a gradient that represents the measured 𝔡nl (e.g., purple for 𝔡nl ≥ 𝔱nl , and green for

𝔡nl = 0, with the colour gradients for representing the values in the range [0, 𝔱nl)). We exemplify

such scatterplot with the mentioned colour choice in the upper plots of Figure 11. The engineers

can then use the colours to distinguish the input space regions within the design scope of the CPS

(green regions characterised by a low 𝔡nl) and regions outside of the CPS design scope (purple

regions characterised by a high 𝔡nl). The test cases at the borders between the regions where we

observe a transition between colours are the stress test cases. The inspection of the stress test cases

provides information about the phenomena in the CPS that can falsify the design assumptions and

push the system out of its design scope.

• MR1 can be evaluated analysing the relative positioning of regions characterised by low and

high 𝔡nl . In fact, MR1 states that 𝔡nl should increase with increasing frequency and amplitude

values. Practically, regions with low 𝔡nl (green regions) should be closer to the origin of the

axes than regions with high 𝔡nl (purple regions). Accordingly, a pattern similar to the one

shown in Figure 5 should appear. For example, in the upper left-hand side plot of Figure 11

where the tests 𝑖 , 𝑘 and 𝑗 show increasing 𝔡nl , consistent with their distance from the origin

(respectively green, azure, and purple colouring).

If the test results show such patterns, then they fulfil MR1.

We now discuss the evaluation of MR2 and MR3. As discussed in Section 5.2, MR2 and MR3

describe expected 𝔡f properties for tests within the design scope (i.e., tests for which 𝔡nl < 𝔱nl).
Accordingly, we use these MRs to validate the identification of tests that are within the design

scope: if such identification is correct, then the tests should fulfil the two MRs, otherwise there is

likely some issue with the testing process.

In order to discuss their evaluation, we note that MR2 and MR3 (i) concern only tests that show

linear behaviour, (ii) do not depend on the input amplitude, and (iii) address 𝔡f . Accordingly, to
evaluate them, we first select only the tests that fulfil 𝔡nl < 𝔱nl , i.e., the tests that are considered
within the design scope. From such tests, we extract the individual ⟨𝑓 , 𝐴⟩ components and asso-

ciated 𝔡f value. We then plot, in separate plots for each shape, 𝔡f of each frequency-amplitude

point as a function of its frequency coordinate 𝑓 . We exemplify such plotting in the middle and

bottom plots of Figure 11, where the crosses represent a frequency-amplitude component with

the horizontal coordinate being the corresponding frequency value (𝑓𝑖 and 𝑓𝑗 ) and the vertical

coordinate representing 𝔡f measured for that component. Such plots can then be used to evaluate

MR2 and MR3:

• MR2 states that an increase in the frequency values corresponds to an increase in the degree

of filtering. Accordingly, the proposed frequency-𝔡f plot should show an increasing trend

irrespective of the used shape. For example, in the middle plots of Figure 11 the left-hand

side one shows an increasing pattern that fulfils MR2, while the right-hand side one shows a

decreasing pattern that invalidates MR2.

• MR3 states that 𝑓𝑏 should not depend on the specific shape of the input. We recall that 𝑓𝑏 is

defined as the frequency below which 𝔡f < 0.5 and above which 𝔡f > 0.5. For example, in the

bottom plots of Figure 11, we use shapes 𝜙𝑖 and 𝜙 𝑗 and observe the closed-loop bandwidths

𝑓𝑏,𝜙𝑖 and 𝑓𝑏,𝜙 𝑗 . Accordingly, the trend of the degree of filtering values for the different shapes

should cross the 0.5 value around the same frequency. In Figure 11, the left-hand side plots

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:34 Claudio Mandrioli, Seung Yeob Shin, Martina Maggio, Domenico Bianculli, and Lionel Briand

show 𝑓𝑏,𝜙𝑖 = 𝑓𝑏,𝜙 𝑗 and fulfils MR3, while the right-hand side plots show 𝑓𝑏,𝜙𝑖 ≠ 𝑓𝑏,𝜙 𝑗 and thus

invalidates MR3.

If the above properties are not verified by some frequency-amplitude components, the tests as-

sociated to such components should be inspected for identifying possible faults in the testing

process.

6 EMPIRICAL EVALUATION
In this section, we empirically evaluate the proposed testing approach. We aim to assess its effec-

tiveness in using the frequency and amplitude dimensions for generating test cases that falsify the

linearity assumptions made during the control algorithm design. Furthermore, we want to evaluate

the ability of the MRs to highlight test cases that fall outside of the design scope and provide

insights about the specific non-linear phenomena that can lead to the SUT behaving unexpectedly.

Accordingly, we define two research questions (RQ).

RQ1 - Generation of Stress Tests: We aim to evaluate how effective is the use of the frequency

and amplitude characterisation of the test inputs to trigger non-linear phenomena that limit the

design scope. With RQ1, we ask: How effective is our test case generation approach in pushing a
CPS control-loop away from the linearisation point and triggering non-linear phenomena around the
boundary where they appear?
RQ2 - Relevance of Metamorphic Relations: With the second research question, we aim to

evaluate the possibility of using the proposed MRs to identify inconsistencies with the qualitative

input space characterisation and thus identify which tests stress the system such as to induce

non-linear behaviour. Hence, we ask: How the proposed MRs identify stress test cases at the bounds of
the SUT design scope?

This section is structured as follows. We first present and motivate the case studies (Section 6.1) as

well as the settings choices required for our testing approach (Section 6.2). Then, for each question,

we present our empirical methodology, followed by the evaluation results, that we use to answer

the RQs (Sections 6.3 and 6.4). We conclude this empirical evaluation with a discussion of the

threats to validity (Section 6.5), and information about code and data availability (Section 6.6).

6.1 Systems Under Test
To answer our research questions, we apply our testing approach to the simulation models of

three CPSs: a Python model of the Crazyflie drone, a Simulink model of a DC servo (a continuous

current motor), and a Simulink model of a lightweight aircraft. We choose these CPSs based on

three main criteria. First, we aim at covering the two most common types of algorithms found in

traditional control theory: PID control and state feedback [3, 18]. The drone and the lightweight

aircraft include PID control algorithms, while the DC servo uses state feedback. Intuitively, the

difference between the two is that PIDs compute the actuation based on the distance between the

physical output and the desired value, while state feedback bases the computation on the whole

system state estimation.

Second, we need SUTs that include non-linear phenomena as well as detailed knowledge about

these phenomena (e.g., saturation bounds), and access to their development documentation. This

knowledge is necessary to evaluate the effectiveness of our approach in triggering such phenomena.

Accordingly, for the Crazyflie drone and the DC servo, we use simulation models that we built

based on their development documentation and actual CPS implementations, which are available

to us. In this way, we can also build models behaving consistently with the real systems. However,

in order to gain further insights and higher confidence in the general validity of our approach, we

also include a CPS model that was not built by us. We chose the publicly available model of the
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altitude control of a lightweight aircraft.
14
This model fits our needs as it includes both a detailed

model of the aircraft dynamics (hence including the non-linear phenomena) as well as the control

algorithm implementation.
15

Third, we want our case studies to capture the variability that can appear among SUTs when

applying our testing approach. In fact, when applying our testing approach, engineers cannot

know a priori which non-linear phenomena affect the SUT design scope. For this reason we want

to include different types of non-linear phenomena in our case studies. In this regard, the DC

servo, being an electric motor, has a wide variety of applications, and depending on the specific

application it can expose different non-linear phenomena. This feature of the DC servo allows us

to inject different non-linearities that are plausible in a specific application context. In this way

we can obtain the desired SUT variability.
16

We now briefly describe the three CPSs as well as

their simulation models, including information on how we built the Crazyflie drone model and the

different versions of the DC servo.

The Crazyflie drone is developed by Bitcraze
17
and is completely open-source. This gives us

full access to the source code, as well as software and design documentation [23]. We use the

documentation to build a detailed Python model of the physics. In addition, we use the source code

together with the design documentation to build the model of the control software
18
. In previous

research, we compared the flight of the model with the flight of the real drone and observed that they

show similar behaviour [34]. This gives us confidence on the real-world validity of the experiments

performed with this model. The control layer of the drone includes three separate control loops for

the three directions. Among those, we chose to test the altitude control, which controls the drone’s

vertical position as, different from the other control loops, it allows for the quantification of the

non-linear phenomena occurrence that we leverage in answering RQ1. Despite being a small drone

(size of 6 × 6 cm), we note that the Crazyflie drone implements standard drone control algorithms

that are also used in larger drone applications [42].

The Simulink model of the DC servo is based on laboratory hardware used for educational

purposes at Lund University. Hence, like for the Crazyflie drone, we have access to the CPS

implementation and its documentation. The control layer of the DC servo receives from the users a

desired angular position of the motor axis (the input reference 𝑟 ). Given such input references and

the motor axis position measurements (the output 𝑦), the control layer generates a voltage signal
to be fed to the motor in order to make it move (the actuation signal). We built the Simulink model

to execute the very same C code that is used in the microcontroller of the DC servo. This gives us

confidence that the simulation model behaves similarly to the actual implementation. While the

considered DC servo is used for educational purposes, it is analogous to electrical motors found

in many industrial applications such as the joint of a robot or the steering axis of an autonomous

car. As mentioned above, we chose this SUT because electrical motors can expose, depending

on the specific application, different types of non-linearities that can affect the behaviour of the

control algorithm. This allows us to develop different but still practically relevant versions of

the DC servo in which we manually inject non-linearities to study their impact. To ensure these

14
https://nl.mathworks.com/help/aeroblks/lightweight-airplane-design.html

15
As discussed at the end of Section 3.1, in the scope of this article, we need more detailed models than the ones used by

control engineers. This limits our choice of publicly available models as many of the publicly available ones do not have

such level of detail (e.g., https://nl.mathworks.com/help/simulink/slref/aircraft-longitudinal-flight-control.html).

16
Conversely, we decided not to manually inject non-linearities in the model of the Crazyflie drone in order to keep the

SUT identical to the one used during the actual development of the drone.

17
https://www.bitcraze.io/

18
https://github.com/bitcraze/crazyflie-firmware
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non-linearities are commonly found in real applications, we use the following non-linearities

defined in the “Discontinuities” folder of the Simulink library:
19

• Saturation represents the limitation of variables in the system. It generally affects actuators

(which have limited capacity) and sensors (which typically have a limited range of values they

can read).

• Quantisation is the effect of the finite precision in the analog-to-digital conversion of the

sensors signals.

• Pulse-Width-Modulation is a common technique used for digital-to-analog conversion, which

can distort the actuation signals.

• Coulomb Friction is always found in the physical world but is however hard to model and

non-linear and, for these reasons, often neglected or approximated.

• Dead-Zone and Backlash are always found in mechanical gearing as they are caused by the

play between the different cogs.
20

We add to this list a quadratic friction model as, in practice, it is a very common source of non-linear

behaviour, e.g., aerodynamic drag in a car or drone. Among these non-linearity sources, we consider

saturation, quantisation, and pulse-width-modulation to be always present as they are part of the

interface between the cyber and physical parts of the system. In contrast to these sources, we inject

one by one the quadratic friction, the coulomb friction, the dead-zone and backlash. We therefore

obtain the following five versions of the DC servo according to the included non-linearities:

DC1 saturation (on actuation and sensor), quantisation, pulse-width-modulation.

DC2 saturation (on actuation and sensor), quantisation, pulse-width-modulation, and Coulomb

friction.

DC3 saturation (on actuation and sensor), quantisation, pulse-width-modulation, and quadratic

friction.

DC4 saturation (on actuation and sensor), quantisation, pulse-width-modulation, and dead-zone.

DC5 saturation (on actuation and sensor), quantisation, pulse-width-modulation, and backlash.

Finally, in the altitude control of the lightweight aircraft, the objective is to reach and maintain

a desired altitude. To achieve this, the software is responsible for setting the elevator angle (one

of the moving surfaces of the aircraft tail) based on various sensor data such as air pressure and

gyroscope readings. This CPS, as noted above, was not developed by us and we do not have detailed

knowledge on the non-linear phenomena that it entails. This limits our ability to quantify the

occurrence of non-linear phenomena (RQ1) and of identifying root causes for the misbehaviour

observed in the tests. However, it does not impact our findings in terms of identification of the test

cases where non-linear phenomena impact the CPS ability to track references (RQ2). To summarise,

we apply our approach to seven different SUTs: the two altitude control models for the drone and

the aircraft, and the five different versions of the DC servo.

6.2 Testing Settings
In this subsection, we present the settings needed for the application of our testing approach to the

selected SUTs. We first report on the required input (defined in Section 5.3) and the number of input

repetitions needed to evaluate the 𝔡nl metric (defined in Section 4.2). We conclude by reporting the

resulting number of executed tests.

Selection of Required Inputs: We summarise in Table 1 the values chosen, based on our domain

knowledge, for the required inputs of our testing approach.

19
https://www.mathworks.com/help/simulink/discontinuities.html

20
Among the blocks listed in the Discontinuities folder, we excluded the “rate limiter” as it is just a special case of saturation,

and the “relay” as it is a very simple and old control approach, used only for non-critical systems.
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Table 1. Selected input values for our testing approach to test the drone, the DC servo, and the lightweight
aircraft.

SUT 𝑓min 𝑓max 𝐴max 𝛿𝐴

Crazyflie Drone 0.1Hz 2Hz 6m 0.05m
DC servo (all versions) 0.005Hz 3Hz 2𝜋 rad 0.015 rad
Lightweight Aircraft 0.005Hz 0.5Hz 750m 5m

Concerning the frequency range, the drone and the DC servo should be able to track the reference

within a time span in the order of seconds. Accordingly, we place the expected closed-loop bandwidth

for these SUTs around 1Hz. Intuitively, this corresponds to taking around 2 s to track a unit change

in the reference value (e.g., 1m for the drone and 1 rad for the DC servo). For the drone, we define

the frequency range to be [0.1Hz, 2Hz]. For the DC servo, we do not have a clear estimate from its

development documentation. Hence, we choose a broader range [0.005Hz, 3Hz]. The lightweight
aircraft is a slower system, and we expect the bandwidth to be around 0.05Hz, which gives a

response to a unit change in the reference of the order of tens of seconds. Accordingly, using the

rule of thumb of including one order of magnitude above and below the expected closed-loop

bandwidth, we choose the frequency range [0.005Hz, 0.5Hz].
Concerning the maximum amplitude, we reason on the largest inputs that we can expect in

practice for our SUTs. Since the Crazyflie drone is expected to mostly fly in indoor environments,

we chose a maximum amplitude of 6m, corresponding to a large room.
21
The DC servo is supposed

to track desired angular positions. Hence, we limited the reference amplitude changes to one full

rotation of the motor axis, 2𝜋 rad. The lightweight aircraft is expected to fly around 2000m in

altitude and perform manoeuvres around that height. Hence we set a maximum amplitude range

for the manoeuvres of 750m, resulting in references between 1250m and 2750m.

Concerning the amplitude resolution, we reason about the variations of the input amplitude that

can cause a change in the behaviour of the SUT. For the drone, this is in the order of centimetres. For

example, asking the drone to reach 1.01m or 1m should not show significantly different behaviour.

Accordingly, we chose 𝛿𝐴 = 5 cm for the drone. The DC servo is expected to react to reference

changes in the order of rotation degrees. Since such devices are expected to be rather precise, we

chose a range smaller than the desired precision. Specifically, we chose
1

400
of a rotation for the

DC servo (less than one degree): 𝛿𝐴 = 0.015 rad. For the lightweight aircraft, we can expect that a

difference in the reference in the order of meters does not significantly alter the system behaviour;

hence, we chose 𝛿𝐴 = 5m.

Finally, in order to apply the testing approach to the SUTs, we have to set the non-linear threshold.

The 𝔱nl threshold is connected to the maximum relative deviation from the reference that the SUTs

can accept. In our experiments, across the SUTs, we observed unexpected behaviours when output

signals deviate 15% from the reference 𝑟 . Accordingly, we set 𝔱nl = 0.15. This means that we identify

tests with more than 15% deviation from the reference 𝑟 to be trivially out of the design scope and

therefore not interesting in terms of stress testing. For example, in the drone case study, this means

that we are interested in tests that deviate of up to 15 cm when the drone is expected to hover at

1m of height.

Setting the Number of Input Iterations: In order to apply our testing approach to the SUTs, we

need to define the number of input repetitions needed to compute the 𝔡nl metric (Section 4.2). For

efficiency, we want to select the smallest number of repetitions (i.e., shorter tests) yielding sufficient

21
For example, Crazyflie has been used for automated inventorying of supermarkets [24].
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Table 2. 𝔡nl of the preliminary tests computed using different numbers of periods for each SUTs. For the
drone, we can see that the value stabilises when using five periods; hence, that is the number of periods that
we use when applying our approach to this SUT. For each of the DC servo versions, the value detects the
non-linear behaviour after six repetitions; hence, we use seven to allow for some margin. For the lightweight
aircraft, we see that the 𝔡nl value steadily increases up to ten input repetitions and is greater than the chosen
threshold for nine or more repetitions; hence, we chose ten input repetitions.

Number of Periods 1 2 3 4 5 6 7 8 9 10

Crazyflie Drone 0.12 0.26 0.36 0.40 0.39 0.41 0.47 0.54 0.56 0.54
DC1 0.05 0.10 0.09 0.09 0.08 0.50 0.45 0.42 0.37 0.30
DC2 (Coulomb Friction) 0.05 0.10 0.09 0.08 0.07 0.54 0.49 0.47 0.43 0.36
DC3 (Quadratic Friction) 0.01 0.02 0.03 0.01 0.02 0.25 0.24 0.24 0.25 0.24
DC4 (Dead-Zone) 0.05 0.10 0.09 0.09 0.07 0.49 0.45 0.44 0.41 0.35
DC5 (Backlash) 0.05 0.11 0.10 0.09 0.07 0.49 0.45 0.42 0.38 0.32
Lightweight Aircraft 0.00 0.01 0.02 0.04 0.05 0.08 0.10 0.14 0.17 0.22

accuracy when computing 𝔡nl . To evaluate this trade-off, we performed a preliminary experiment,

in which we ran a single long test with the maximum amplitude and time scaling coefficients

(corresponding to 𝐴max and 𝑓max in Table 1) such that the SUT exposes non-linear behaviour. We

detect non-linear behaviour by inspecting whether the output follows the input reference. We use

10 input repetitions and compute the 𝔡nl value using different trace lengths that correspond to

different numbers of input periods. We then evaluate after how many input periods the 𝔡nl value
converges to a value detecting non-linear behaviour (i.e., it is higher than the chosen 𝔱nl). As this
evaluation is different for the different SUTs, we run it for each of them before applying our testing

approach.

In order to manually bring the SUTs out of their design scope, we use tests with high frequency

and amplitude. As discussed in the 𝔡nl definition (Section 4.2.2), the specific amplitude, frequency,

and shape used for this preliminary experiment are not relevant as long as the test pushes the

SUT out of its design scope. We run tests with the specified maximum amplitude and frequencies

(Table 1). To cause non-linear behaviour, for the drone and the lightweight aircraft, we used a test

with the sinusoidal shape, while for the DC servo, we used a test with the steps shape.

We report in Table 2 the 𝔡nl values obtained for each of the SUTs using different numbers of

input periods. For the drone, the 𝔡nl value exceeds the threshold already when using two periods.

We chose, however, to use 5 periods as 𝔡nl increases until then. For the DC servo, we observe a

similar pattern in each version of the system. The 𝔡nl value is below the threshold when using 5 or

less periods and then suddenly increases to a higher (and constant) value above the threshold for 6

or more periods. To allow some margin, we chose to use 7 periods in our tests. For the lightweight

aircraft, the 𝔡nl value passes the threshold for 9 periods; hence, for the same reason as for the DC

servo, we use tests with 10 periods.

We note that the measured 𝔡nl does not always increase when we increase the number of periods

used for its computation (e.g., for 6 to 10 periods in the DC4). In general, the more frequency

samples we have, the more likely we are to detect new frequency components in the output signal

and hence having a higher 𝔡nl . However, when increasing the length of the traces, the new frequency

samples move on the frequency axis, as shown in Figure 8. Since different frequencies are sampled,

different amplitudes can be measured, and hence, there is no guarantee that the 𝔡nl value increases
monotonically.
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Table 3. Number of tests executed for each SUT in Step 1 (Optimistic Bounding of Amplitude Values) and
Step 3 (Execution of Tests and Properties Evaluation).

Approach Step Step 1 Step 3 Total

Crazyflie Drone 112 1012 1124

DC1 12 5100 5112

DC2 (Coulomb Friction) 12 5010 5022

DC3 (Quadratic Friction) 12 5100 5112

DC4 (Dead-Zone) 12 5100 5112

DC5 (Backlash) 12 5100 5112

Lightweight Aircraft 172 3421 3593

Number of Tests and Duration of Experiments: In Table 3, we report the number of tests

executed for each SUT. The table reports the number of tests executed respectively for Step 1

and Step 3.
22
We note that the DC servo requires more tests as it has wider ranges and a higher

resolution was selected. For the drone and lightweight aircraft, the execution of Step 1 reduces

the number of tests needed to cover their input space. In total, for our experimental campaign, we

executed 30 187 tests.
23

The execution of the tests took few hours for the drone and the lightweight aircraft on a 2017

MacBook Pro, with 2.3GHz Dual-Core Intel Core i5 processor. The different versions of the DC
servo took instead almost a full day for each version. This is due both to the higher number of

tests and also to the pulse-width modulation. In fact, the simulation of the pulse-width modulation

includes a high-frequency signal that requires a very short simulation time step, hence making the

simulation significantly slower.

6.3 RQ1 - Generation of Stress Tests

Methodology: To answer this question, we define metrics to evaluate the occurrence of the

different non-linear phenomena in the performed tests. We study tests results over the different

values of the proposed frequency-amplitude input characterisation. If our approach is effective,

the tests results will show various occurrences of the non-linear phenomena depending on the

frequency and amplitude content of the input. Such tests can then be used to assess how and in

which scenarios the non-linear phenomena affect system performance. For the Crazyflie drone and

the DC servo, we have complete knowledge of the non-linear phenomena involved. Hence, we

can conduct an exhaustive evaluation of their results with respect to this research question. For

the lightweight aircraft, however, we do not have such detailed knowledge about its non-linear

phenomena. Upon inspecting the Simulink model of the aircraft, we could identify non-linearity due

to actuator saturation. Therefore, we limit ourselves to evaluating the occurrence of this non-linear

phenomenon. We now discuss how we use the knowledge about the SUTs to define metrics that

quantify the occurrence of non-linear phenomena.

In the case of the Crazyflie drone, we identify two non-linear phenomena: (1) the saturation of

the actuators, which occurs as the electric motors have a constrained power range and (2) the fact

that the motors cannot generate negative force, meaning that the propellers cannot generate a force

that pulls the drone down. Hence, downward movement is achieved only through gravity force.

Both phenomena can be detected when the voltage signal sent to the motors reaches its upper or

22
Recall from Section 5.3 that Step 2 does not require the execution of test cases.

23
In Section 7, we comment on what insights the number of executed tests provides on the testing approach.
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lower limit. Accordingly, to quantify the occurrence of non-linear phenomena for a given test, we

calculate the percentage of test time during which the actuators are saturated (i.e., when they have

reached their upper or lower limit).

As for the DC servos, non-linear phenomena include saturation (of both actuators and sensors),

pulse-width modulation, quantisation, and injected non-linearities. Analogously to the drone, we

quantify saturation with the percentage of test time during which they occur. However, pulse-

width modulation and quantisation affect every sensor reading and actuation in the control loop.

Hence, it is not possible to distinguish tests in which they appear more than others. Regarding

the non-linearities injected in separate instances of the SUT, we quantify them as the deviation

from how the model would have behaved in their absence. For example, when we inject non-linear

models of friction, we can compare them to the friction value that we would have obtained with

a linear model. Accordingly, at every time instant, we measure the difference between the two

values. We then average such values over the whole test and obtain a metric capturing the degree

of observed non-linearity.
24

Finally, as mentioned above, we do not have the same level of detailed knowledge about the

non-linear phenomena involved in the lightweight aircraft as we do for the Crazyflie drone and the

DC servo. However, we could identify non-linearity caused by actuator saturation based on our

inspection of the model. This saturation limits the angle that the elevator (the moving surface of

the aircraft tail) can take. In the same way as for the other case studies, we quantify the occurrence

of actuator saturation in a test as the percentage of time that the elevator is at the maximum or

minimum angle.

Reading Guide for Non-Linear Phenomena Occurrence Plots: We report the measured

occurrence of the different non-linear phenomena in Figure 12a for the drone, Figure 12b for the

aircraft, and Figure 13 for the different versions of the DC servo. For the drone and the aircraft,

we report plots on the occurrence of actuator saturation. For the DC servo, in Figure 13, the rows

correspond to the different versions of the SUT. The columns correspond to the three non-linear

phenomena: the actuator and sensor saturations, and the injected non-linearity. Each plot shows the

quantification of a non-linear phenomenon occurrence in the frequency-amplitude plane. For each

test, we use the frequency-amplitude values of the test’s main component as coordinates to position

the test in the plane. We then use the colour gradient of the marker (empty circle) for representing

the quantified occurrence of the non-linearity phenomenon. Green corresponds to a zero value of

the quantified occurrence, and purple corresponds to the maximum measured value. Above each

plot, we report the colour scale mapping the occurrence values with the colours. Furthermore,

we use the boxplot convention to represent the median, minimum, maximum, and quartiles of

the occurrences of each non-linear phenomenon, overlaid on each of the colourbars reporting

the gradient scale. While we are mostly interested in the relationship between the occurrence of

non-linear phenomena and the frequency-amplitude content of the input, the boxplots provide

better visibility into the frequency of a given non-linear phenomenon in our tests. In other words,

they show how many green or purple points we have in each plot, corresponding to the occurrence

of non-linear phenomena.

24
We note that this approach can give very different value ranges depending on the specific phenomenon considered. For

example, the input variation caused by the play found between cogs, i.e., the backlash or the dead-zone, will be much smaller

in value than the friction variation caused by the use of a quadratic model instead of a linear one. However, regarding the

answer to RQ1, we are only interested in the definition of a value that is zero when the model is behaving linearly and that

increases when the behaviour differs further from the linear model. We are not interested in a comparison of the absolute

values. Hence, it is not necessary to normalise the data.
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Fig. 12. These figures present the quantified occurrences of the actuator saturation respectively in the drone
tests (plot on the left) and in the lightweight aircraft tests (plot on the right), measured using the defined
metrics. On the frequency-amplitude plane, each test is captured by a single point corresponding to the main
component of the input sequence. For each point (i.e., each circular marker), the colour gradient indicates
the quantified occurrence of the actuator saturation, where green corresponds to no actuator saturation
(0% of test time) and purple corresponds to complete saturation (100% of test time). The boxplot overlaid on
the colourbar highlights the median, minimum, maximum and quartiles of the occurrences of non-linear
phenomena in the tests.

Results: Using such figures, we now discuss the ability of the test approach to expose different non-

linear phenomena. The actuator saturation non-linearity concerns all of our SUTs. From Figures 12a,

12b, and the left-most column of Figure 13, we observe that our tests cover a wide range of saturation

percentages for each of our SUTs. This can be seen from the fact that the scatter plots cover the

full scale of the colour gradient and confirmed with the boxplots above them. From the boxplots

for the DC servo tests, we can observe that our approach only misses tests exposing more than

90% of saturation time. This is due to the range of input values considered (one rotation of the

motor) combined with the use of a powerful motor. Such tests could be possibly covered with a

higher value for 𝐴max: intuitively, higher reference values require higher actuation. However, such

tests would not be interesting as they would go beyond the range of possible angles. This shows

that our testing approach is able to generate test cases that trigger the saturation of actuators to

diverse degrees. Furthermore, from the frequency-amplitude scatter plots, we can highlight that,

by covering different amplitude and frequency values, the approach is covering the transition areas

of the frequency-amplitude plot where actuator saturation starts to appear. As predicted, higher

values of frequency and amplitude content, as well as the combination of the two, tend to cause the

actuator saturation to appear.

When looking at the sensor saturation, which concerns only the DC servos, the central column

of Figure 13 shows that our tests cover the saturation range between 0% and 90% for all DC servo

versions. Similarly as for the actuator saturation, higher percentages of sensor saturation could

be reached for inputs with amplitude larger than 𝐴max, but are not interesting since they are

known to be outside of the sensor range (equal to 𝐴max). From the plots, we can see that the

tests exposing sensor saturation (purple markers) are the ones characterised by large amplitudes

and low frequencies. Intuitively, at high frequencies, the filtering behaviour (which reduces the
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Fig. 13. This figure presents the quantified non-linear phenomena occurrences in the different DC servo
tests, measured using the defined metrics. Each row corresponds to a version of the DC servo. The columns
correspond to the different non-linearities: the first two show the actuator and sensor saturation analogously
to Figure 12. The rightmost column shows the injected non-linearity in the friction (second and third rows) or
in the actuation (fourth and fifth rows). The first row reports the DC servo without injected non-linearity,
hence the plot is empty. For each marker, the colour gradient indicates the quantified non-linear phenomenon
occurrence: green are zero values and purple are higher ones. The boxplot overlaying the colourbar highlights
median, minimum, maximum and quartiles of the non-linear phenomena occurrence in the tests.
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amount of input signal that is found in the output and hence reduces its amplitude) prevents the

sensor saturation from happening. Furthermore, it is interesting to note that the tests show a

sudden transition from tests where the sensor saturation does not appear to tests where the sensor

saturation appears to a large extent. This is also confirmed by the boxplots that show a distribution

biased toward the lower values of the metric used to quantify the sensor saturation occurrence.

Such a behaviour is explained by the control algorithm being unable to bring back the DC servo

in a state where the sensor is not saturated once the saturation occurs, therefore keeping it in a

saturated state for the rest of the test. Therefore, we can observe that, thanks to the combination

of frequency and amplitude coverage, our approach is effective at generating test cases within

practically relevant ranges (i.e., smaller than 𝐴max) that trigger the saturation of sensors.

Lastly, we look at the other non-linear phenomena that we inject in the different versions of the

DC servo. Those are shown in the right-most column of Figure 13. We observe that the coulomb

friction and the input dead-zone and backlash are present in all tests to a high degree. This can be

seen both from the boxplots that are all skewed toward the right-hand side of the colorbar, but also

from the scatter plots that are mostly purple. The reason is that such non-linearities affect every

movement in the DC servo and therefore are triggered in every test. The only exception is the

backlash that appears less in tests characterised by low frequencies (Figure 13, bottom-right plot).

In fact, the backlash affects the changes of direction of the input. Hence, for slowly changing signals

(low frequencies), there are fewer changes of direction. Differently from the other injected non-

linearities, the quadratic friction appears to various degrees across the different tests. In Figure 13,

we can see that this variety is achieved mostly by the coverage of the frequency axis. In fact,

the colour gradient changes mostly when moving horizontally rather than vertically. Intuitively,

friction is a phenomenon related to the rate of change of the system, which is associated to the

frequency axis. The quadratic friction is exposed the most around 0.2Hz and 0.3Hz, which, as seen
in Figure 17, is the closed-loop bandwidth of the system. At this frequency the system is behaving

the “fastest”, causing friction to be the largest and hence the difference between quadratic and

linear friction to be maximised. We recall that friction is a function of the speed of motion. Above

𝑓𝑏 , the input is filtered, and the non-linearity is exposed less. This further exemplifies the relevance

of sampling the frequency axis to trigger the different non-linear phenomena.

To summarise, our experiments show that the tests generated by our testing approach effectively

trigger the non-linearities present in the SUT. This is done under the constraint of using input

values within valid bounds (i.e., smaller than 𝐴max). The saturation of actuators and sensors, as

well as quadratic friction, are exposed to various degrees. Notably, the tests highlight that such

non-linearities appear for specific ranges of frequency and amplitude values, hence providing

evidence for the relevance of such characterisation of the inputs when testing a CPS. On the other

hand, coulomb friction, dead-zone, and backlash are easily triggered in every execution of the SUT

in our tests. Such phenomena appear for every movement of the DC servo. Accordingly, they are

easily exposed and do not require a dedicated testing approach.

6.4 RQ2 - Relevance of Metamorphic Relations

Methodology: We discuss this RQ separately for the different MRs. For each MR, we visually

inspect the output of our testing approach (Figures 14 to 19). We then identify the tests for which

the MRs are not satisfied and discuss the causes. For the MRs to be practically relevant, the test

cases that do not fulfil them should highlight phenomena that limit the SUT design scope.

Reading Guide for 𝔡nl and 𝔡f Plots: We now present figures reporting the 𝔡nl and the 𝔡f values
computed for the tests executed when applying our testing approach to the SUTs, as well as how

the MRs can be evaluated in such plots. In Figures 14 and 15, we present the plots for the drone.
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Fig. 14. Degree of non-linearity of the drone test cases divided by shapes. For each test, the main component
is plotted on the frequency-amplitude plane. Each point is coloured according to the measured 𝔡nl : green
corresponds to 𝔡nl = 0 and purple corresponds to 𝔡nl = 𝔱nl or greater.
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Fig. 15. The figure reports the 𝔡f values for all frequency-amplitude components of the tests that show
linear behaviour (identified with 𝔡nl < 𝔱nl ). Since MR2 and MR3 do not depend on the test amplitude
for tests exposing linear behaviour, we plot the 𝔡f of each component as a function of their frequency
coordinate. The plots are also used to identify the closed-loop bandwidth in the tests made with different
shapes. The bandwidth is identified as the frequency where the 𝔡f becomes larger than the 0.5 threshold,
which is highlighted by the red dashed line. Besides some ramp tests most of the results indicate a bandwidth
𝑓𝑏 ≈ 0.6Hz.

In Figures 16 and 17, we present the plots for the DC servo. In Figures 18 and 19, we present the

plots for the lightweight aircraft. The figures are based on the execution of Step 3 of the approach

(Section 5.3).

Figures 14, 16, and 18 report the measured 𝔡nl of every executed test. Figure 14 reports the 𝔡nl
results for the drone, Figure 16 for the different DC servo versions (where the rows correspond

to the different versions of the SUT), Figures 18 for the lightweight aircraft. Since MR1 (the MR

concerning the 𝔡nl) discusses tests with the same shape, we separate these plots by shape in the

different columns. As suggested in the approach description, we plot the main frequency-amplitude

component of each test on the frequency-amplitude plane. This representation is analogous to the

non-linear phenomena occurrence plots. However, to distinguish them, we use here a different

marker, a cross. In fact, as discussed in Section 4.2.2, the 𝔡nl metric aims to detect the impact of non-

linear phenomena on the CPS, not their sole occurrence. Like in Figure 7, we use a logarithmic scale
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Fig. 16. Evaluation of the 𝔡nl metric for the tests with different shapes (the columns) on the different versions
of the DC servo (the rows). For each test, we plot the frequency-amplitude main component and colour it
according to the measured 𝔡nl . The colour gradient has the same interpretation in every plot and goes from
green that corresponds to 𝔡nl = 0 to purple that corresponds to 𝔡nl ≥ 𝔱nl .

on both axes for readability. For each point, the colouring corresponds to the 𝔡nl value measured in

the test. Green corresponds to 𝔡nl = 0 (linear tests within the design scope) and purple corresponds

to 𝔡nl ≥ 0.15 (non-linear tests outside of the design scope). Different from the non-linear phenomena

occurrence plots, the colour gradient is the same in all of these plots. MR1 states that the 𝔡nl value
should increase when moving to the right or up in the frequency-amplitude plane. Practically, this

corresponds to the colour gradient transitioning from green to purple for increasing amplitudes

and frequencies (i.e., when moving away from the origin).
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Fig. 17. The figure reports the 𝔡f values for all frequency-amplitude components of the DC servo tests
showing linear behaviour (identified with 𝔡nl < 𝔱nl ). The tests are separated into different plots according to
the considered version of the DC servo (the rows) and the shape used in the tests (the columns). Since MR2
and MR3 do not depend on the test amplitude for tests exposing linear behaviour, we plot the 𝔡f value of each
component as a function of their frequency coordinate. The plots are also used to identify the closed-loop
bandwidth in the tests made with different shapes. The bandwidth is identified as the frequency where the
𝔡f becomes larger than the 0.5 threshold, which is highlighted by the red dashed line. For most DC servo
versions the tests indicate a bandwidth 𝑓𝑏 ≈ 0.9Hz, the only exception being DC3 that exposes a bandwidth
around 𝑓𝑏 ≈ 0.4Hz.
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Fig. 18. Evaluation of the 𝔡nl metric for the tests with different shapes on the altitude control of the lightweight
aircraft. For each test, we plot the frequency-amplitude main component and colour it according to the
measured 𝔡nl . The colour gradient has the same interpretation in every plot and goes from green that
corresponds to 𝔡nl = 0 to purple that corresponds to 𝔡nl = 𝔱nl .
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Fig. 19. The figure reports the 𝔡f values for all frequency-amplitude components of the lightweight aircarft
tests that show linear behaviour (identified with 𝔡nl < 𝔱nl ). Since MR2 and MR3 do not depend on the
test amplitude for tests exposing linear behaviour, we plot the 𝔡f of each component as a function of their
frequency coordinate. The plots are also used to identify the closed-loop bandwidth in the tests made with
different shapes. The bandwidth is identified as the frequency where the 𝔡f becomes larger than the 0.5
threshold, which is highlighted by the red dashed line. The tests indicate a bandwidth 𝑓𝑏 ≈ 0.15Hz.

Figures 15, 17, and 19 report the 𝔡f values measured for all the frequency-amplitude points

of the linear tests, for which 𝔡nl < 𝔱nl . Figure 15 reports the 𝔡f values for the drone, Figure 16

for the DC servo (where again the rows correspond to the different versions of the SUT) and

Figure 19 for the lightweight aircraft. Since MR2 discusses tests with the same shape and MR3

compares the evaluation of the bandwidth across different shapes, we present the 𝔡f plots by shape

(corresponding again to the different columns). Since MR2 and MR3 do not concern the amplitude,

we plot the 𝔡f value (the vertical coordinate) of each point as a function of its frequency content

(the horizontal coordinate). Different from the previous figures, we use here a linear scale on both

axes. In order to ease the identification of the closed-loop bandwidth 𝑓𝑏 , we highlight with a red

dashed line the 0.5 threshold for the 𝔡f metric. MR2 states that high frequency content should

correspond to the appearance of filtering behaviour. Practically, this corresponds to an increasing

𝔡f for increasing frequencies. Using the 𝔡f metric, we can also evaluate MR3. To fulfil MR3, the
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frequency at which the 𝔡f value becomes larger than 0.5 has to be similar across the different

shapes.

Results - MR1: For the drone (Figure 14), we observe that MR1 holds for low frequencies (lower

than 1Hz) across the different shapes. However, for frequencies higher than 1Hz, we observe

that an increasing number of tests show linear behaviour (green points) and do not comply with

MR1. This appears clearly for tests with steps and triangular shapes, and, to a lesser extent, for

the remaining shapes. Despite the quantified occurrence of non-linear phenomena depicted in

Figure 12a shows that the actuators are fully saturated in that frequency range (practically all

markers are purple above 1Hz), the 𝔡nl value in such tests is low. This is due to the filtering action

that mitigates the response of the control loop and prevents the non-linearity from introducing new

frequency content in the output. This statement can be further verified by observing in Figure 15

that the inputs in the frequency range above 1Hz all show a 𝔡f value close to 1.

Concerning the DC servo (Figure 16), we observe a similar pattern to the one for the drone tests

with the steps shape (as well as some of the high-frequency ramp tests). We note that across shapes,

except for the trapezoidal tests, tests at the low frequencies and high amplitudes (top-left of the

plots) expose a higher 𝔡nl value and do not comply with MR1. By comparing with the quantification

of the non-linear phenomena occurrence in Figure 13, we can observe that the high 𝔡nl value is due
to the combination of sensor and actuator saturation (first and second column). As such tests do

not comply with MR1, they provide evidence about using 𝔡nl for detecting non-linear phenomena

that can limit the CPS design scope.

Among the DC servo tests, it is notable that almost all of the ramp tests show high 𝔡nl though
the proposed metrics, which quantify the occurrence of non-linear phenomena (Figure 13), do not

detect a specific non-linear phenomenon. The likely reason for this discrepancy with the other

shapes is that the ramp is the shape with the highest number of relevant frequency components

(i.e., the frequency-amplitude components selected by Equation 1). This larger number of relevant

frequency components shows that such input exercises more the SUT by feeding more frequencies

at the same time to the system. Furthermore, we recall that, in the system, there are other non-linear

phenomena that could not be quantified (i.e., pulse-width modulation and quantisation). Hence, we

can suppose that these tests fail because of such phenomena, or a combination of them. On the

other hand, we note that for lower amplitudes and frequencies some ramp tests yield a lower 𝔡nl .
This still partially supports the validity of MR1.

For the lightweight aircraft, we note similar patterns as for the other case studies. First, we

observe that most of the tests with steps and ramp shapes show non-linear behaviour. As for the

DC servo, this is likely due to the large number of main frequency components that characterise

such signals. We can also observe that tests in the low frequency range and low amplitudes show a

low 𝔡nl value. As for DC servo, this supports the validity of MR1. Second, similar to the drone, we

also observe that some high-frequency tests retain a lower 𝔡nl despite the occurrence of actuator
saturation (Figure 12b). This can be attributed to the filtering action that reduces the stress on the

SUT and helps retain linear behaviour.

To conclude, our tests results show that MR1 does not always hold. According to our experiments,

the two things that can invalidate MR1 are the unpredictable nature of non-linear phenomena

(like the sensor saturation for low frequencies in the DC servo) and the filtering action at high

frequencies (as observed for the drone and lightweight aircraft). The falsification of MR1 contradicts

the qualitative characterisation in Figure 5. Practically, this implies that a testing strategy leveraging

the frequency and amplitude dimensions to expose non-linear behaviours cannot only aim at

exploring large amplitude and frequency values. Instead, it is also important to cover the whole

input range (e.g., the low frequency range tests in the DC servo that cause sensor saturation).
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Most notably, we observe that the 𝔡nl metric is successful in distinguishing the scenarios in which

the non-linear phenomena impact the CPS behaviour (hence bringing the CPS out of its design

scope) from the scenarios where they do not (e.g., when the filtering action helps retain the linear

behaviour despite the actuator saturation).

Results - MR2: In order to verify if MR2 applies to our tests results, we inspect Figures 15 for

the drone, Figure 17 for the DC servo, and Figure 19 for the lightweight aircraft. We observe

that, in general, 𝔡f shows an increasing value for increasing frequencies, hence fulfilling the MR.

The exceptions are some ramp tests that show an high 𝔡f for low frequency for all the DC servo

versions, as well as some step tests on the DC servo injected with quadratic friction. Furthermore,

some trapezoidal low-frequency tests for the lightweight aircraft also show high 𝔡f values for low
frequency components. Upon manual inspection, we observe for the DC servo that those tests

are all characterised by large amplitudes that cause saturation (of both sensors and actuators) to

occur. However, in those tests, the output neither follows the reference (hence the high 𝔡f ) nor
exposes new frequency components. For this reason, those tests do not have a high 𝔡nl and were

not excluded by the analysis. For the lightweight aircraft, the trapezoidal tests associated with

such points mostly expose a linear tracking behaviour, meaning that they overall follow the input

reference. However, these tests also show unexpected deviations during flight, specifically when

transitioning from a constantly increasing input to a constant one. Such deviations are not detected

by the 𝔡nl metric as they are small relative to the input amplitude
25
but they do reduce in amplitude

one of the components in the low frequency range, and are hence detected using the 𝔡f metric.

Given the limited knowledge that we have about the lightweight aircraft, we are not able to identify

the root cause of the failure of such tests. However, it is apparent that such tests show misbehaviour

and require further investigation by the engineers who develop the CPS.

Such tests expose a limitation of the 𝔡nl metric regarding its capacity to highlight tests that push

the system outside of the control design scope. However, our results show that the verification
of MR2 can compensate for this limitation and be used to complement the 𝔡nl metric. In fact, the

verification of MR2 highlights test cases in which the low frequency components (i.e., frequencies

below the bandwidth that should be tracked) are not tracked.

Results - MR3: To evaluate MR3, we examine the 𝔡f plots for our different case studies. We

observe that, for each of the SUTs, the crossing of the 0.5 threshold happens around the same

frequency independently of the specific input shape considered for most of the tests. This frequency

value is around 0.6Hz for the drone, just below 1Hz for all the versions of the DC servo (with

the exception of DC3 where it is below 0.5Hz26) and around 0.15Hz for the lightweight aircraft.
For the drone, among the various input shapes, the only exceptions are some of the ramp tests

that show a bandwidth lower than the other shapes. We identify the tests that invalidate MR3 as

those tests that show components with a 𝔡f greater than 0.5 at frequencies lower than 0.6Hz. Upon
inspection, we observe that in such tests the drone hits the ground. However, hitting the ground

limits the drone’s movements but does not introduce any new components in its output. Hence,

this phenomenon cannot be detected using the 𝔡nl metric. This is similar to what we observed in

some of the ramp tests for the DC servo when evaluating MR2.

In the case of the lightweight aircraft, we observe that in some trapezoidal and triangular tests

the CPS is able to track frequencies higher than the bandwidth of 0.15Hz. We identify such tests as

having a component with 𝔡f smaller than 0.5 for frequency higher than 0.2Hz. When manually

inspecting such tests, we observe that they are characterised by small amplitude values (in the

order of tens of meters, when the inputs can take values up to several hundreds of meters). This

25
Recall that the metric is normalised over the input amplitude.

26
Intuitively, the quadratic friction present in DC3 makes the DC servo slower.
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suggests that the ability of the lightweight aircraft to track fast reference inputs can depend on

the input amplitude, invalidating MR3 and indicating non-linear behaviour.
27
Conversely, for the

steps and ramp shapes, we observe some tests that seem to show a lower closed-loop bandwidth.

We identify such tests as having a component with 𝔡f larger than 0.6 for frequency lower than

0.15Hz. When manually inspecting such tests we observe that, similarly to the trapezoidal tests

discussed for MR2, they are characterised by the appearance of some undesired behaviours that are

however relatively small compared to the input and do not cause the 𝔡nl value to become larger

than 0.15. Therefore, similar to MR2, we can observe that MR3 holds in most of the tests and when

it is invalidated, it complements the 𝔡nl metric in detecting tests where the SUT goes out of the

design scope.

To summarise, we observe from our tests that MR1 generally holds but can be invalidated by

(1) the filtering action at high frequencies (that increases the robustness of the CPS to non-linear

phenomena by reducing their reaction to the reference changes, like for the drone), or (2) by

specific non-linear phenomena (that cause unpredictable behaviour of the CPS, like for the sensor

saturation in the DC servos). This latter point supports the use of MR1 for the detection of test

cases associated with the appearance of non-linear phenomena specific to the SUT. MR2 and MR3

hold in the majority of our tests. When they do not hold, our tests show that they can be used to

complement the 𝔡nl metric to detect test cases that push the system outside of the design scope.

Hence these MRs compensate for the observed limitations of the 𝔡nl metric.

6.5 Threats to Validity
We discuss the threats to the validity of our work in terms of external and internal validity.

Concerning the external validity, we discuss the generalisability of our observations to other

CPSs. We developed the CPS models of the drone and the DC servo used in our case studies, and

hence might have biased the results. However, we built these CPS models based on the actual

documentation of the real implementations of the CPSs. This supports the claim that our case

studies are representative of real-world applications. Furthermore, we complement these two case

studies with the lightweight aircraft that was independently developed. Notably, the observations

that we can draw for this latter case study are the same as for the two previous ones. This further

supports the general validity of the findings and their applicability to other CPSs.

Concerning internal validity, we discuss the limitations of our research methodology. It can be

noted that we based significant part of the discussions of the RQs on our own understanding of

what the non-linear phenomena that affect our SUTs are, especially for the drone and the DC servo.

Since we developed these simulation models based on the actual physical systems (both available to

us), we are confident in our complete understanding of the behaviour of these systems. Furthermore,

having access to the physical systems allowed us to compare to the actual implementation of the

CPSs when uncertain about the model design choices (e.g., the specific quantisation of the sensors

and the parameters of the control algorithms).

Finally, it can be noted that we used manual inspections of frequency-amplitude plots to evaluate

the satisfaction of our MRs. However, analysing such plots is rather intuitive and helped associate

the physical phenomena with the features of the input (e.g., the quadratic friction affecting more

the fast-changing inputs). This enabled a deeper understanding of how the non-linear phenomena

can limit the design scope of the CPS under test. Nevertheless, an automated inspection method of

our MRs is desirable. We leave the development of such method to future work.

27
Given our limited knowledge of the SUT, we cannot identify the specific phenomenon causing this. Intuitively, in some

systems, tracking inputs with small amplitude values is easier than tracking inputs with large amplitude values.
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6.6 Data Availability
The code of the SUT models and the code implementing the testing approach are available at the

following repositories:

• Crazyflie: https://doi.org/10.5281/zenodo.7994669,
• DC servo and Lightweight Aircraft: https://doi.org/10.5281/zenodo.7994698.

These repositories come with instructions to reproduce all of the experiments. Since the tests take

some time to execute, we provide the test output traces that can be used to obtain the figures of the

article.

• Crazyflie: https://doi.org/10.5281/zenodo.8043446,
• DC servo: https://doi.org/10.5281/zenodo.8043260,
• Lightweight Aircraft: https://doi.org/10.5281/zenodo.8043351.

7 APPROACH APPLICABILITY AND LIMITATIONS
Our experiments show that the proposed testing approach is able to generate stress test cases for

individual control loops of control-based CPSs. More specifically, our testing approach generates

scenarios that falsify the design assumptions associated with the linearisation of the physics

models (RQ1). Furthermore, the proposed metrics (𝔡nl and 𝔡f ), together with the falsification of the

associated MRs, are able to identify the tests in which the non-linear phenomena actually impact

the CPS ability to track the input reference. We now discuss the technical aspects that impact the

practical applicability of the approach, as well as its applicability to different CPSs.

7.1 Identification of Non-Linear Phenomena in Practice
In practical scenarios, evaluating the occurrence of non-linear phenomena (e.g., Figures 12a and 13)

requires detailed knowledge and understanding of the SUT, which may not always be available.

Even more importantly, even if the phenomena are known, it can be hard to know a priori which

of them actually limits the CPS design scope. For example, in the DC servo, it cannot be known a

priori that the sensor and actuator saturation will appear and push the CPS out of its design scope.

Conversely, the coulomb friction, the dead-zone, and the backlash non-linearities are triggered in

the tests, but they do not affect the CPS design scope. To identify the test cases where non-linear

phenomena appear and limit the design scope of the control algorithm, we showed, for our SUTs,

that 𝔡nl and MR1 can be used (RQ2-MR1). Our experiments also showed a limitation in the detection

of the design scope based on the quantification of new frequency components in the output (RQ2-

MR2, and RQ2-MR3). This is because, in some specific cases, the non-linear phenomena might not

introduce large enough new frequency components, causing the 𝔡nl metric to take small values.

However, such tests are detected using MR2 and MR3 since they invalidate the MRs by exposing

filtering behaviour at low frequencies (where we would instead expect tracking behaviour) or

an inconsistency in the observed closed-loop bandwidth. This shows that the 𝔡f metric and the

associated MRs can compensate for the limitation of 𝔡nl and support the detection of test cases that

push the SUT out of its design scope.

7.2 Campaign Duration
Concerning test case generation, we note that the proposed rules of thumb for the required input of

the approach (Section 5.3, Step 0) generate a high number of test cases (Table 3). To limit the number

of tests, Step 1 of the approach aims at reducing the number of test cases needed to cover the input

space by restricting the amplitudes ranges to be tested. Across SUTs, this step is effective for the

drone and the lightweight aircraft but not for the DC servo versions. In fact, for all the versions of
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the DC servo, the entire amplitude input range can show linear behaviour, which is a desirable

property of the system (see the tests with the trapezoidal and triangular shapes in Figure 16).

The high number of tests can be a limiting factor when considering that we are testing only one

control loop of a CPS, which typically has several control loops. In practice, not as many tests are

needed, and similar conclusions about the SUT could drawn with fewer frequency-amplitude points

in Figures from 14 to 19. For example, in Figure 16 not as many green and purple points are needed

to identify the areas where non-linear phenomena impact the CPS performance. We leave to future

work the challenge of minimising the number of test cases needed to stress test a control loop.

The problem of minimising the number of test cases can be seen as a testing coverage or stopping

criterion problem in the frequency-amplitude plane. In this work, instead, we focus on generating

effective test cases that falsify the design assumptions of the SUT. However, as reported above, the

execution of the testing campaign for our SUTs took some hours for the drone and the lightweight

aircraft, and still no more than a day for the DC servo versions. Therefore, despite the large number

of tests, for our case studies, the duration times do not hinder the practical applicability of our

testing approach.

7.3 On the use of Different Shapes
We conclude the technical part of this discussion by noting the difference in results for the different

shapes of the tests. This is expected since these shapes can alter the way the SUT is exercised

and hence expose different behaviour. Interestingly, the ramp and step tests more easily expose

non-linear behaviour. As mentioned above, this is likely due to the large number of frequency-

amplitude components that are included in a ramp and step test. Furthermore, we can also note

that there is a similarity between trapezoidal and triangular tests: in fact, they both map to one

larger lower-frequency component and a number of higher-frequency components with smaller

amplitude. While the investigation of relevant patterns of frequency-amplitude components for

the definition of shapes is an interesting aspect that needs further research, we can observe that,

with the proposed shapes, the testing approach already shows promising results regarding the

exposition of the CPS design scope.

7.4 General Applicability of the Approach
To evaluate the general applicability of the approach, we discuss how the answers to the RQs

change across different SUTs and non-linear phenomena. We note that our case studies include both

the same CPS with different non-linear phenomena (the DC servo) as well as the same non-linear

phenomenon in different CPS: the actuator saturation in fact appears in each of our CPS. The

variety of non-linear phenomena is important as we want the approach to be able to trigger each

of them. The same non-linear phenomenon in different CPS is also important as specific features

of the CPS can change its impact on the design scope. Concerning RQ1, across all three case

studies, the approach has been able to generate test cases that expose non-linear phenomena. More

specifically, saturations and quadratic friction are exposed to various degrees, while the remaining

non-linearities are always exposed to a high degree in all tests. The sensor saturation was detected

in only a small number of test cases (for all the versions of the DC servo). As discussed, this is

possibly a consequence of the choice of the input parameter 𝐴max. Increasing this parameter value

could increase the number of tests that cause sensor saturation. However, such tests would be

“trivially” outside of the DC servo’s design scope, as they correspond to reference values outside

of the range of the sensor.
28
The input and friction non-linearities, on the other hand, are easily

28
Such test cases should be considered instead for robustness testing (with invalid inputs). In this work we focus instead on

valid inputs.
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triggered in every test. However, as they are not associated with high 𝔡nl or the falsification of the

MRs associated with the 𝔡f metric, we observe that they do not impair the CPS design scope.
29

Concerning RQ2, MR1 shows different validity and gives different types of insights across SUTs.

For the actuator saturation of the drone and the lightweight aircraft, MR1 is violated because of

the robustness introduced by the filtering action. Such robustness also appears in the DC servo

studies, although to a smaller degree. For the DC servo, the sensor saturation invalidates MR1, as

𝔡nl increases for decreasing frequencies, specifically, when going from 0.1Hz to 0.01Hz in Figure 16.

In contrast, the verification of both MR2 and MR3 (as a complement to the 𝔡nl) does not show
significant differences across our SUTs. Most notably, the ramp tests that do not satisfy MR2 were

similar across all of the SUTs.

To summarise, in our case studies, the effectiveness of our stress test case generation (RQ1)

and the validity of MR2 and MR3 do not depend on the specific SUT. However, the verification of

MR1 shows differences related to the specific design bounds of the different SUTs. Specifically, it

highlights the high-frequency robustness to saturations of the drone and the issues with sensor

saturation for low frequency in the DC servo. This is desirable as it helps identify the relevant

phenomena that characterise a given SUT. As the results obtained from testing the three SUTs are

consistent and promising, we believe our approach can be applied to other SUTs.

7.5 Practical Implications of the Design Scope
We conclude this discussion by addressing the practical implications of the proposed testing

approach. We believe that the CPS design scope information provided by our testing approach can

be used both for CPS verification and validation, as well as for CPS development. Concerning the

verification and validation, the identification of the design scope can be used to distinguish relevant

tests for which the requirements need to be evaluated. More practically, if a test is outside of the

CPS design scope, then it will trivially not fulfil the requirements and hence is not interesting for

the verification of the requirements. Such tests can be considered invalid inputs. Furthermore, the

design scope information can be used for runtime verification to implement checks on reference

sequences that might push the CPS out of its design scope (e.g., large step changes in the case of

the lightweight aircraft). Leveraging such runtime checks, the software can either automatically

re-shape the signals or raise warnings to the user.

Regarding the development of the CPS, the proposed approach can provide feedback on the

design choices that limit the design scope. For example, if the observed design scope does not

contain scenarios in which the CPS is expected to perform in a predictable way, then there is a

need for re-designing the system to enlarge its scope. Using this information, the engineers can

therefore assess if the system achieves the desired performance or if some of its components (e.g.,

actuators, senors, or sensor signal filters) need to be re-designed.

8 RELATEDWORK
The topic of testing control-based CPS software is not new in the software engineering literature.

In fact, control systems are seen as a class of CPSs in which most of the added value is placed

in the software part [12]. Accordingly, recent works highlighted interesting research directions

at the intersection of control and software engineering [5, 8]. One highlighted direction is the

relation between control models and the software implementation of the CPS. Our work explores

this direction by testing the CPS implementation to identify the practical validity of the control

models (i.e., the design scope).

29
It is important to note, however, that such non-linearities (coulomb friction, dead-zone and backlash) can still impair

other aspects of system performance, e.g., the accuracy of the reference tracking.
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Testing of control systems has been approached in the literature in the form of model testing,

falsification, and runtime verification. Given the widespread industrial use of tools like Mathworks

Simulink, model testing has received significant attention in the last decade [9]. Recent work

showed the complementarity of model testing and model checking for the verification of CPS

requirements [43]. Generation of test traces is one of the main topics in CPS model testing. Very

different types of algorithms are used for the generation of input sequences: search algorithms [2,

28, 35–37], classification trees [30], and system-identification based refinements [39]. We also

note a number of application-specific works in the avionics [44, 47, 53] and automotive [10, 11]

domains. In contrast to previous work, this article is the first one to propose a test-case generation

approach based on a frequency-amplitude description of the input space. Among the previous

works on model-testing, we highlight as closely related the work by Matinnejad et al. [38], which

puts significant emphasis on the exploration of different values of the first and second derivatives

(see [38, Fig. 2]). The derivative values are directly connected to the frequency and amplitude

dimensions of this article. In fact, the derivative is the ratio between the change in a function input

and output: changing the output amplitude or scaling the time automatically (as we do in our

test case parametrisation, Equation 4) directly enables the exploration of different values for the

derivatives. As improvement with respect to this previous work, our explicit use of the frequency-

amplitude characterisation enables leveraging control-theoretical knowledge and specifically the

definition of our proposed qualitative characterisation and MRs.

CPS falsification (as the generation of test cases that falsify a given requirement) is also an

active research direction. In a recent work [55] the authors use deep reinforcement learning to

perform robustness-guided falsification. Interestingly, they note the importance of making the

system internal dynamics available to the reinforcement learning algorithm, which highlights

the possible benefits of leveraging control-design information during the testing. Furthermore, a

combination of model checking and path planning can be used to invalidate linear-temporal-logic

formulas [45]. Similar problems can be addressed with rapid exploration of random trees [20]. With

respect to previous work on the falsification of CPS requirements, in this article we propose the

novel perspective on the falsification of the control design assumptions.

The verification of CPSs has been addressed in the software engineering literature also from

the point of view of the runtime verification. Most notably, we remark some works that expand

traditional logic (e.g., signal temporal logic) with frequency-domain descriptions of signals under

the motivation of verifying data-flow languages (such as Simulink) [13, 19]. Such works are aligned

with this article, highlighting the relevance of the frequency-domain description of signals for CPSs

and complement it with its application to runtime verification. Another recent work highlights

the need to expand the runtime verification theory for its application to CPSs, and proposes a new

Hybrid Logic of Signals to express desired CPS properties that concern both the cyber and physical

components [41]. This logic has been extended to include also source-code-level specifications [17].

To conclude the discussion on runtime verification, we report on a first work that leverages system

dynamics (expressed as differential equations, i.e., the same type of models used at control design

time) to either terminate the monitoring early, or to skip samples of the signal [1]. While runtime

verification is out of the scope of this article, the cited works highlight the relevance of the frequency

description of signals, the need to extend software engineering tools for CPSs, and the potential of

leveraging control models.

The control and robotics communities show growing awareness of the impact of the software

implementation of control algorithms on their performance [49, 57]. Zimmer et al. [57] discuss

a case study on the consequences of implementation choices for the control performance. In

robotics, software-in-the-loop simulations (i.e., simulations that include the actual control soft-

ware implementation) can be effective in exposing bugs in the software design of quadcopter
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controllers [49, 51]. However, such works remain isolated efforts and the leveraging of control

theory during the testing process remains limited.

We conclude the discussion of the related literature by discussing the few works that leverage

control-theoretical knowledge in the testing of control-based CPSs [2, 26, 39]. In these works,

system identification [6] (a field very close to, if not part of, control theory) is used to reduce

the number of tests that have to be executed in order to find faults [39], to reduce the parameter

definition effort required by genetic algorithms [2], or to define oracles [26]. In these approaches,

system identification is used as part of the testing process itself, and not to obtain knowledge on the

SUT. We therefore highlight that none of these works explicitly leverages the control-theoretical

design of the SUT or integrates control knowledge in the definition of the software testing problem.

In this article, we are the first to introduce a control engineering perspective in the CPS test-

ing problem definition, with the discussion of the control design assumptions and the resulting

limitation of the CPS design scope. Furthermore, we show how to use the frequency domain to

(i) perform test case generation for CPS as well as (ii) leverage control-theory knowledge to define

metamorphic relations for CPSs. Such contributions extend the state of the art that was mostly

characterised by requirement-driven testing approaches and time-domain descriptions of the input

space and behaviour of CPSs.

9 CONCLUSION
In this article we have defined the problem of stress testing control-based, cyber-physical systems

(CPS). For this class of CPSs, developed with the use of control theory, we have highlighted the

different types of assumptions that the control engineers make during the design of the CPS control

layer software. Once the CPS is implemented, such assumptions are not always valid. Accordingly,

they can limit the set of scenarios in which the SUT is able to fulfil its requirements. To help

engineers identify such scenarios, we have developed a testing approach that pushes the system at

the validity boundaries of the linearity design assumptions (i.e., the design assumption needed by

control engineers to use linearised versions of the physical models). We have provided a qualitative

characterisation of the CPS control layer input space and proposed a novel test case parametrisation.

Leveraging our test case parametrisation, we use the qualitative characterisation to generate test

cases that cover the frequency-amplitude plane, propose a novel metric to identify stress test

cases, and define metamorphic relations describing the expected CPS behaviour (filtering, linear,

non-linear). We have applied the proposed approach to six case studies and evaluated the output

of the testing process. Our results show that our testing approach effectively generates test cases

that falsify the linearity design assumptions and push the SUT at the bounds of its design scope.

Furthermore, the proposed behaviour metrics 𝔡nl and 𝔡f , together with the metamorphic relations,

help identify stress test cases, and especially those outside of the CPS design scope.

FutureWork: Future work has to investigate the impact of the use of different input shapes on test

case generation. Furthermore, as discussed in Section 7, it may be possible to reduce the number of

tests while obtaining similar results. Hence, improved sampling strategies (e.g., adaptive ones [15])

should be investigated. Another technical extension of this work should involve developing a

method to assess whether a test, which does not necessarily consist of a repeated input sequence,

belongs to the design scope of the CPS or not. More specifically, this would require a study on the

generalisability of the proposed metrics and MRs in handling arbitrary signals.

On a higher level, the main contribution of this work is to open a new perspective on the testing

of control-based CPSs: stress testing driven by control design assumptions. In future work, we

plan to extend this approach to the testing of other assumptions not considered here, such as

not accounting for the control mode changes and the interaction between different control loops.
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Furthermore, another important research direction is testing the combined falsification of the

different assumptions, e.g., when the falsification of the linearised model is combined with the

falsification of the mode changes, and investigate how such combinations affect the design scope

of the SUT.
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