191 research outputs found

    Universal Image Steganalytic Method

    Get PDF
    In the paper we introduce a new universal steganalytic method in JPEG file format that is detecting well-known and also newly developed steganographic methods. The steganalytic model is trained by MHF-DZ steganographic algorithm previously designed by the same authors. The calibration technique with the Feature Based Steganalysis (FBS) was employed in order to identify statistical changes caused by embedding a secret data into original image. The steganalyzer concept utilizes Support Vector Machine (SVM) classification for training a model that is later used by the same steganalyzer in order to identify between a clean (cover) and steganographic image. The aim of the paper was to analyze the variety in accuracy of detection results (ACR) while detecting testing steganographic algorithms as F5, Outguess, Model Based Steganography without deblocking, JP Hide&Seek which represent the generally used steganographic tools. The comparison of four feature vectors with different lengths FBS (22), FBS (66) FBS(274) and FBS(285) shows promising results of proposed universal steganalytic method comparing to binary methods

    Performance Evaluation of Different Universal Steganalysis Techniques in JPG Files

    Get PDF
    Steganalysis is the art of detecting the presence of hidden data in files. In the last few years, there have been a lot of methods provided for steganalysis. Each method gives a good result depending on the hiding method. This paper aims at the evaluation of five universal steganalysis techniques which are “Wavelet based steganalysis”, “Feature Based Steganalysis”, “Moments of characteristic function using wavelet decomposition based steganalysis”, “Empirical Transition Matrix in DCT Domain based steganalysis”, and “Statistical Moment using jpeg2D array and 2D characteristic function”. A large Dataset of Images -1000 images- are subjected to three types of steganographic techniques which are “Outguess”, “F5” and “Model Based” with the embedding rate of 0.05, 0.1, and 0.2. It was followed by extracting the steganalysis feature used by each steganalysis technique for the stego images as well as the cover image. Then half of the images are devoted to train the classifier. The Support vector machine with a linear kernel is used in this study. The trained classifier is then used to test the other half of images, and the reading is reported The “Empirical Transition Matrix in DCT Domain based steganalysis” achieves the highest values among all the properties measured and it becomes the first choice for the universal steganalysis technique

    Aligned and Non-Aligned Double JPEG Detection Using Convolutional Neural Networks

    Full text link
    Due to the wide diffusion of JPEG coding standard, the image forensic community has devoted significant attention to the development of double JPEG (DJPEG) compression detectors through the years. The ability of detecting whether an image has been compressed twice provides paramount information toward image authenticity assessment. Given the trend recently gained by convolutional neural networks (CNN) in many computer vision tasks, in this paper we propose to use CNNs for aligned and non-aligned double JPEG compression detection. In particular, we explore the capability of CNNs to capture DJPEG artifacts directly from images. Results show that the proposed CNN-based detectors achieve good performance even with small size images (i.e., 64x64), outperforming state-of-the-art solutions, especially in the non-aligned case. Besides, good results are also achieved in the commonly-recognized challenging case in which the first quality factor is larger than the second one.Comment: Submitted to Journal of Visual Communication and Image Representation (first submission: March 20, 2017; second submission: August 2, 2017

    Information similarity metrics in information security and forensics

    Get PDF
    We study two information similarity measures, relative entropy and the similarity metric, and methods for estimating them. Relative entropy can be readily estimated with existing algorithms based on compression. The similarity metric, based on algorithmic complexity, proves to be more difficult to estimate due to the fact that algorithmic complexity itself is not computable. We again turn to compression for estimating the similarity metric. Previous studies rely on the compression ratio as an indicator for choosing compressors to estimate the similarity metric. This assumption, however, is fundamentally flawed. We propose a new method to benchmark compressors for estimating the similarity metric. To demonstrate its use, we propose to quantify the security of a stegosystem using the similarity metric. Unlike other measures of steganographic security, the similarity metric is not only a true distance metric, but it is also universal in the sense that it is asymptotically minimal among all computable metrics between two objects. Therefore, it accounts for all similarities between two objects. In contrast, relative entropy, a widely accepted steganographic security definition, only takes into consideration the statistical similarity between two random variables. As an application, we present a general method for benchmarking stegosystems. The method is general in the sense that it is not restricted to any covertext medium and therefore, can be applied to a wide range of stegosystems. For demonstration, we analyze several image stegosystems using the newly proposed similarity metric as the security metric. The results show the true security limits of stegosystems regardless of the chosen security metric or the existence of steganalysis detectors. In other words, this makes it possible to show that a stegosystem with a large similarity metric is inherently insecure, even if it has not yet been broken

    Steganography Images Detection using Different Steganalysis Techniques with Markov Chain Features

    Get PDF
    Steganography is the art of covered or hidden writing It is used for criminal activities applications environment In this paper we focus on implementation of effective detection technique is an essential task in digital images Previously many number of detection techniques are available for steganography images After implementation of all approaches also again some challenges are available This paper presents comparative study in between different steganalysis techniques Different techniques are providing different results Analyze of all techniques detection and embedding performance results Finally we can decide one best steganalysis technique It saves time and increases accuracy compare to all previous method
    • 

    corecore