9 research outputs found

    Maintaining Path Stability with Node Failure in Mobile Ad Hoc Networks

    Get PDF
    AbstractAs the demand for mobile ad hoc wireless network (MANET) applications grows, so does their use for many important services where reliability and stability of the communication paths are of great importance. Therefore, a MANET must be able to establish reliable communication channels which are protected by failure recovery protocols. One approach for existing failure recovery protocols is based on using backup paths, or multi-paths. This technique provides for more stable communication channels for wireless services, in particular for MANET applications. But work on such multi-path protocols has focused on stability in the presence of link failure for MANETs. In this paper, we extend such protocols to maintain connection stability in the presence of node failure. Our work is focused on protecting the route of mobile wireless communications in the presence of node failure in order to improve their use in MANETs applications by discovering efficient stable communication channels with longer lifetimes and increased number of packets delivered

    Implementation and Comparison of Mobility Models in NS-2

    Get PDF
    In the performance evaluation of a protocol for an ad hoc network, the protocol should be tested under realistic conditions including, but not limited to, a sensible transmission range, limited buffer space for the storage of messages, representative data traffic models, and realistic movements of the mobile users (i.e., a mobility model). Simulation is universally considered the most effective method of designing and evaluating new network protocols. When developing protocols for mobile networking, the chosen mobility model is one of the key determinants in the success of an accurate simulation. The main role of a mobility model is to mimic the movement behaviors of actual users. Given the critical role of the mobility model in supporting realistic and accurate protocol simulations, its correct design and selection is essential .We have described 3 mobility models that represent mobile nodes whose movements are independent of each other (i.e., entity mobility models). Lastly, we present simulation results that illustrate the importance of choosing a mobility model in the simulation of an ad hoc network protocol. Specifically, we illustrate how the performance results of an ad hoc network protocol drastically change as a result of changing the mobility model simulated

    Analysis of User Mobility Models Based on Outdoor Measurement Data and Literature Surveys

    Get PDF
    The main objectives of the presented work are to study the various existing human mobility models based on literature reviews and to select an appropriate and simplified mobility model fit to the available measurement data. This thesis work is mainly processing a part of “Big Data” that was collected from large number of people, known as Mobile Data Challenge (MDC). MDC is large scale data collection from Smartphone based research. The thesis also addressed the fact that appropriate mobility models could be utilized in many important practical applications, such as in public health care units, for elderly care and monitoring, to improve the localization algorithms, in cellular communications networks to avoid traffic congestion, for designing of such systems that can predict prior users location, in economic forecasting, for public transportation systems and for developing social mobile applications. Basically, mobility models indicate the movement patterns of users and how their position, velocity and acceleration vary with respect to time. Such models can be widely used in the investigation of advanced communication and navigation techniques. These human mobility models are normally classified into two main models, namely; entity mobility models and group mobility models. The presented work focuses on the entity mobility models. The analysis was done in Matlab, based on the measurement data available in MDC database, the several parameters of Global Positioning System (GPS) data were extracted, such as time, latitude, longitude, altitude, speed, horizontal accuracy, horizontal Dilution of Precision (DOP), vertical accuracy, vertical DOP, speed accuracy etc. Parts of these parameters, namely the time, latitude, longitude, altitude and speed were further investigated in the context of basic random walk mobility model. The data extracted from the measurements was compared with the 2-D random walk mobility model. The main findings of the thesis are that the random walk model is not a perfect fit for the available user measurement data, but can be used as a starting point in analyzing the user mobility models

    Performance metrics and routing in vehicular ad hoc networks

    Get PDF
    The aim of this thesis is to propose a method for enhancing the performance of Vehicular Ad hoc Networks (VANETs). The focus is on a routing protocol where performance metrics are used to inform the routing decisions made. The thesis begins by analysing routing protocols in a random mobility scenario with a wide range of node densities. A Cellular Automata algorithm is subsequently applied in order to create a mobility model of a highway, and wide range of density and transmission range are tested. Performance metrics are introduced to assist the prediction of likely route failure. The Good Link Availability (GLA) and Good Route Availability (GRA) metrics are proposed which can be used for a pre-emptive action that has the potential to give better performance. The implementation framework for this method using the AODV routing protocol is also discussed. The main outcomes of this research can be summarised as identifying and formulating methods for pre-emptive actions using a Cellular Automata with NS-2 to simulate VANETs, and the implementation method within the AODV routing protocol

    可量化的移动Ad Hoc网络时空动态特性评估方法

    Get PDF
    移动模型是Ad Hoc网络区别于其他形式网络的重要标志,对其产生的动态网络特性(简称动态特性)进行评估,是研究Ad Hoc网络的协议仿真和网络相关技术(如拓扑控制和网络性能测量等)的基础性问题.在已有研究的基础上,改进了网络的模型化描述,克服了以往模型无法很好地描述相关联的时空动态特性的缺陷,并在此基础上,提出了移动模型通用的可量化时空动态特性评估方法.通过构建节点空间位置分布,建立网络拓扑时空动态特性的分析模型,深入研究了几种移动模型的动态性.提出一种圆周曲线移动模型,弥补了以往移动模型难以描述现实的曲线移动场景.仿真实验结果表明,该方法能够有效地对现有移动模型的动态性进行评估.实验结果表明,圆周曲线移动模型与以往移动模型相比,具有良好的时空动态特性

    Investigations of outdoor mobility patterns of taxicabs in urban scenarios

    Get PDF
    This thesis investigates various outdoor mobility patterns of taxicabs in urban environments based on open-data real traces and it proposes a suitable outdoor mobility model to fit the provided measurement data. This thesis is processing user traces of taxicabs of two major cities: Rome and San Francisco downloaded from CRAWDAD open-source repository, which is responsible for sharing data from real networks and real mobile users across the various research communities around the world. There are numerous sources of collecting traces of users in a city, such as mobile devices, vehicles, smart cards, floating sensors etc. This thesis presents a comparative analysis of the mobility patterns of various taxicabs from Rome and San Francisco cities based on data collected via GPS-enabled mobile devices. Finding suitable mobility models of taxicabs to represent the travelling patterns of users moving from one location to another with respect to their varying time, location and speed can be quite helpful for the advanced researches in the diverse fields of wireless communications, such as better network planning, more efficient smart city design, improved traffic flows in cities. Also other applications such as weather forecasting, cellular coverage planning, e-health services, prediction of tourist areas, intelligent transport systems can benefit from the information hidden in user traces and from being able to find out statistically valid mobility models. The work here focused on extracting various mobility parameters from the crowdsourced open-source data and trying to model them according to various mobility models existing in the literature. The measurement analysis of this thesis work was completed in Matlab

    Investigations of outdoor mobility patterns of taxicabs in urban scenarios

    Get PDF
    This thesis investigates various outdoor mobility patterns of taxicabs in urban environments based on open-data real traces and it proposes a suitable outdoor mobility model to fit the provided measurement data. This thesis is processing user traces of taxicabs of two major cities: Rome and San Francisco downloaded from CRAWDAD open-source repository, which is responsible for sharing data from real networks and real mobile users across the various research communities around the world. There are numerous sources of collecting traces of users in a city, such as mobile devices, vehicles, smart cards, floating sensors etc. This thesis presents a comparative analysis of the mobility patterns of various taxicabs from Rome and San Francisco cities based on data collected via GPS-enabled mobile devices. Finding suitable mobility models of taxicabs to represent the travelling patterns of users moving from one location to another with respect to their varying time, location and speed can be quite helpful for the advanced researches in the diverse fields of wireless communications, such as better network planning, more efficient smart city design, improved traffic flows in cities. Also other applications such as weather forecasting, cellular coverage planning, e-health services, prediction of tourist areas, intelligent transport systems can benefit from the information hidden in user traces and from being able to find out statistically valid mobility models. The work here focused on extracting various mobility parameters from the crowdsourced open-source data and trying to model them according to various mobility models existing in the literature. The measurement analysis of this thesis work was completed in Matlab

    Kooperative Angriffserkennung in drahtlosen Ad-hoc- und Infrastrukturnetzen: Anforderungsanalyse, Systementwurf und Umsetzung

    Get PDF
    Mit der zunehmenden Verbreitung mobiler Endgeräte und Dienste ergeben sich auch neue Herausforderungen für ihre Sicherheit. Diese lassen sich nur teilweise mit herkömmlichen Sicherheitsparadigmen und -mechanismen meistern. Die Gründe hierfür sind in den veränderten Voraussetzungen durch die inhärenten Eigenschaften mobiler Systeme zu suchen. Die vorliegende Arbeit thematisiert am Beispiel von Wireless LANs die Entwicklung von Sicherheitsmechanismen für drahtlose Ad-hoc- und Infrastrukturnetze. Sie stellt dabei den umfassenden Schutz der einzelnen Endgeräte in den Vordergrund, die zur Kompensation fehlender infrastruktureller Sicherheitsmaßnahmen miteinander kooperieren. Den Ausgangspunkt der Arbeit bildet eine Analyse der Charakteristika mobiler Umgebungen, um grundlegende Anforderungen an eine Sicherheitslösung zu identifizieren. Anhand dieser werden existierende Lösungen bewertet und miteinander verglichen. Der so gewonnene Einblick in die Vor- und Nachteile präventiver, reaktiver und angriffstoleranter Mechanismen führt zu der Konzeption einer hybriden universellen Rahmenarchitektur zur Integration beliebiger Sicherheitsmechanismen in einem kooperativen Verbund. Die Validierung des Systementwurfs erfolgt anhand einer zweigeteilten prototypischen Implementierung. Den ersten Teil bildet die Realisierung eines verteilten Network Intrusion Detection Systems als Beispiel für einen Sicherheitsmechanismus. Hierzu wird eine Methodik beschrieben, um anomalie- und missbrauchserkennende Strategien auf beliebige Netzprotokolle anzuwenden. Die Machbarkeit des geschilderten Ansatzes wird am Beispiel von infrastrukturellem WLAN nach IEEE 802.11 demonstriert. Den zweiten Teil der Validierung bildet der Prototyp einer Kooperations-Middleware auf Basis von Peer-to-Peer-Technologien für die gemeinsame Angriffserkennung lose gekoppelter Endgeräte. Dieser kompensiert bisher fehlende Mechanismen zur optimierten Abbildung des Overlay-Netzes auf die physische Struktur drahtloser Netze, indem er nachträglich die räumliche Position mobiler Knoten in die Auswahl eines Kooperationspartners einbezieht. Die zusätzlich definierte Schnittstelle zu einem Vertrauensmanagementsystem ermöglicht die Etablierung von Vertrauensbeziehungen auf Kooperationsebene als wichtige Voraussetzung für den Einsatz in realen Umgebungen. Als Beispiel für ein Vertrauensmanagementsystem wird der Einsatz von Reputationssystemen zur Bewertung der Verlässlichkeit eines mobilen Knotens diskutiert. Neben einem kurzen Abriss zum Stand der Forschung in diesem Gebiet werden dazu zwei Vorschläge für die Gestaltung eines solchen Systems für mobile Ad-hoc-Netze gemacht.The increasing deployment of mobile devices and accompanying services leads to new security challenges. Due to the changed premises caused by particular features of mobile systems, these obstacles cannot be solved solely by traditional security paradigms and mechanisms. Drawing on the example of wireless LANs, this thesis examines the development of security mechanisms for wireless ad hoc and infrastructural networks. It places special emphasis on the comprehensive protection of each single device as well as compensating missing infrastructural security means by cooperation. As a starting point this thesis analyses the characteristics of mobile environments to identify basic requirements for a security solution. Based on these requirements existing preventive, reactive and intrusion tolerant approaches are evaluated. This leads to the conception of a hybrid and universal framework to integrate arbitrary security mechanisms within cooperative formations. The resulting system design is then validated by a twofold prototype implementation. The first part consists of a distributed network intrusion detection system as an example for a security mechanism. After describing a methodology for applying anomaly- as well as misuse-based detection strategies to arbitrary network protocols, the feasibility of this approach is demonstrated for IEEE 802.11 infrastructural wireless LAN. The second part of the validation is represented by the prototype of a P2P-based cooperation middleware for collaborative intrusion detection by loosely coupled devices. Missing mechanisms for the improved mapping of overlay and physical network structures are compensated by subsequently considering the spatial position of a mobile node when choosing a cooperation partner. Furthermore, an additional interface to an external trust management system enables the establishment of trust relationships as a prerequisite for a deployment in real world scenarios. Reputation systems serve as an example of such a trust management system that can be used to estimate the reliability of a mobile node. After outlining the state of the art, two design patterns of a reputation system for mobile ad hoc networks are presented

    A Critique of Mobility Models for Wireless Network Simulation

    No full text
    corecore