6,220 research outputs found

    BriskStream: Scaling Data Stream Processing on Shared-Memory Multicore Architectures

    Full text link
    We introduce BriskStream, an in-memory data stream processing system (DSPSs) specifically designed for modern shared-memory multicore architectures. BriskStream's key contribution is an execution plan optimization paradigm, namely RLAS, which takes relative-location (i.e., NUMA distance) of each pair of producer-consumer operators into consideration. We propose a branch and bound based approach with three heuristics to resolve the resulting nontrivial optimization problem. The experimental evaluations demonstrate that BriskStream yields much higher throughput and better scalability than existing DSPSs on multi-core architectures when processing different types of workloads.Comment: To appear in SIGMOD'1

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    Analytical response time estimation in parallel relational database systems

    Get PDF
    Techniques for performance estimation in parallel database systems are well established for parameters such as throughput, bottlenecks and resource utilisation. However, response time estimation is a complex activity which is difficult to predict and has attracted research for a number of years. Simulation is one option for predicting response time but this is a costly process. Analytical modelling is a less expensive option but requires approximations and assumptions about the queueing networks built up in real parallel database machines which are often questionable and few of the papers on analytical approaches are backed by results from validation against real machines. This paper describes a new analytical approach for response time estimation that is based on a detailed study of different approaches and assumptions. The approach has been validated against two commercial parallel DBMSs running on actual parallel machines and is shown to produce acceptable accuracy

    Scientific Computing Meets Big Data Technology: An Astronomy Use Case

    Full text link
    Scientific analyses commonly compose multiple single-process programs into a dataflow. An end-to-end dataflow of single-process programs is known as a many-task application. Typically, tools from the HPC software stack are used to parallelize these analyses. In this work, we investigate an alternate approach that uses Apache Spark -- a modern big data platform -- to parallelize many-task applications. We present Kira, a flexible and distributed astronomy image processing toolkit using Apache Spark. We then use the Kira toolkit to implement a Source Extractor application for astronomy images, called Kira SE. With Kira SE as the use case, we study the programming flexibility, dataflow richness, scheduling capacity and performance of Apache Spark running on the EC2 cloud. By exploiting data locality, Kira SE achieves a 2.5x speedup over an equivalent C program when analyzing a 1TB dataset using 512 cores on the Amazon EC2 cloud. Furthermore, we show that by leveraging software originally designed for big data infrastructure, Kira SE achieves competitive performance to the C implementation running on the NERSC Edison supercomputer. Our experience with Kira indicates that emerging Big Data platforms such as Apache Spark are a performant alternative for many-task scientific applications

    Speculative Approximations for Terascale Analytics

    Full text link
    Model calibration is a major challenge faced by the plethora of statistical analytics packages that are increasingly used in Big Data applications. Identifying the optimal model parameters is a time-consuming process that has to be executed from scratch for every dataset/model combination even by experienced data scientists. We argue that the incapacity to evaluate multiple parameter configurations simultaneously and the lack of support to quickly identify sub-optimal configurations are the principal causes. In this paper, we develop two database-inspired techniques for efficient model calibration. Speculative parameter testing applies advanced parallel multi-query processing methods to evaluate several configurations concurrently. The number of configurations is determined adaptively at runtime, while the configurations themselves are extracted from a distribution that is continuously learned following a Bayesian process. Online aggregation is applied to identify sub-optimal configurations early in the processing by incrementally sampling the training dataset and estimating the objective function corresponding to each configuration. We design concurrent online aggregation estimators and define halting conditions to accurately and timely stop the execution. We apply the proposed techniques to distributed gradient descent optimization -- batch and incremental -- for support vector machines and logistic regression models. We implement the resulting solutions in GLADE PF-OLA -- a state-of-the-art Big Data analytics system -- and evaluate their performance over terascale-size synthetic and real datasets. The results confirm that as many as 32 configurations can be evaluated concurrently almost as fast as one, while sub-optimal configurations are detected accurately in as little as a 1/20th1/20^{\text{th}} fraction of the time
    corecore