13,997 research outputs found

    Towards a Mobile Learning Environment using Reference Architectures

    Get PDF
    Mobile learning environments have emerged as a way to support the m-learning initiatives, providing benefits to learners, teachers and tutors. However, despite their relevance, the development of mobile learning environments present problems and challenges that must be investigated, especially with respect to the definition and adoption of architectural patterns. Motivated by this scenario, in this paper we discuss the development of a mobile learning environment, called ICMC MLE, following the precepts of a specific reference architecture for mobile learning. ICMC MLE was also evaluated through an experiment; the results showed a high level of satisfaction and convenience in relation to the use of ICMC MLE in real learning scenarios

    Open Cell-less Network Architecture and Radio Resource Management for Future Wireless Communication Systems

    Get PDF
    In recent times, the immense growth of wireless traffic data generated from massive mobile devices, services, and applications results in an ever-increasing demand for huge bandwidth and very low latency, with the future networks going in the direction of achieving extreme system capacity and ultra reliable low latency communication (URLLC). Several consortia comprising major international mobile operators, infrastructure manufacturers, and academic institutions are working to develop and evolve the current generation of wireless communication systems, i.e., fifth generation (5G) towards a sixth generation (6G) to support improved data rates, reliability, and latency. Existing 5G networks are facing the latency challenges in a high-density and high-load scenario for an URLLC network which may coexist with enhanced mobile broadband (eMBB) services. At the same time, the evolution of mobile communications faces the important challenge of increased network power consumption. Thus, energy efficient solutions are expected to be deployed in the network in order to reduce power consumption while fulfilling user demands for various user densities. Moreover, the network architecture should be dynamic according to the new use cases and applications. Also, there are network migration challenges for the multi-architecture coexistence networks. Recently, the open radio access network (O-RAN) alliance was formed to evolve RANs with its core principles being intelligence and openness. It aims to drive the mobile industry towards an ecosystem of innovative, multi-vendor, interoperable, and autonomous RAN, with reduced cost, improved performance and greater agility. However, this is not standardized yet and still lacks interoperability. On the other hand, the cell-less radio access network (RAN) was introduced to boost the system performance required for the new services. However, the concept of cell-less RAN is still under consideration from the deployment point of view with the legacy cellular networks. The virtualization, centralization and cooperative communication which enables the cell-less RAN can further benefit from O-RAN based architecture. This thesis addresses the research challenges facing 5G and beyond networks towards 6G networks in regard to new architectures, spectral efficiency, latency, and energy efficiency. Different system models are stated according to the problem and several solution schemes are proposed and developed to overcome these challenges. This thesis contributes as follows. Firstly, the cell-less technology is proposed to be implemented through an Open RAN architecture, which could be supervised with the near real-time RAN intelligent controller (near-RT-RIC). The cooperation is enabled for intelligent and smart resource allocation for the entire RAN. Secondly, an efficient radio resource optimization mechanism is proposed for the cell-less architecture to improve the system capacity of the future 6G networks. Thirdly, an optimized and novel resource scheduling scheme is presented that reduces latency for the URLLC users in an efficient resource utilization manner to support scenarios with high user density. At the same time, this radio resource management (RRM) scheme, while minimizing the latency, also overcomes another important challenge of eMBB users, namely the throughput of those who coexist in such a highly loaded scenario with URLLC users. Fourthly, a novel energy-efficiency enhancement scheme, i.e., (3 × E) is designed to increase the transmission rate per energy unit, with stable performance within the cell-less RAN architecture. Our proposed (3 × E) scheme activates two-step sleep modes (i.e., certain phase and conditional phase) through the intelligent interference management for temporarily switching access points (APs) to sleep, optimizing the network energy efficiency (EE) in highly loaded scenarios, as well as in scenarios with lower load. Finally, a multi-architecture coexistence (MACO) network model is proposed to enable inter-connection of different architectures through coexistence and cooperation logical switches in order to enable smooth deployment of a cell-less architecture within the legacy networks. The research presented in this thesis therefore contributes new knowledge in the cellless RAN architecture domain of the future generation wireless networks and makes important contributions to this field by investigating different system models and proposing solutions to significant issues.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidenta: Matilde Pilar Sánchez Fernández.- Secretario: Alberto Álvarez Polegre.- Vocal: José Francisco Monserrat del Rí

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Life Cycle Engineering 4.0: A Proposal to Conceive Manufacturing Systems for Industry 4.0 Centred on the Human Factor (DfHFinI4.0)

    Get PDF
    Engineering 4.0 environments are characterised by the digitisation, virtualisation, and connectivity of products, processes, and facilities composed of reconfigurable and adaptive socio-technical cyber-physical manufacturing systems (SCMS), in which Operator 4.0 works in real time in VUCA (volatile, uncertain, complex and ambiguous) contexts and markets. This situation gives rise to the interest in developing a framework for the conception of SCMS that allows the integration of the human factor, management, training, and development of the competencies of Operator 4.0 as fundamental aspects of the aforementioned system. The present paper is focused on answering how to conceive the adaptive manufacturing systems of Industry 4.0 through the operation, growth, and development of human talent in VUCA contexts. With this objective, exploratory research is carried, out whose contribution is specified in a framework called Design for the Human Factor in Industry 4.0 (DfHFinI4.0). From among the conceptual frameworks employed therein, the connectivist paradigm, Ashby's law of requisite variety and Vigotsky's activity theory are taken into consideration, in order to enable the affective-cognitive and timeless integration of the human factor within the SCMS. DfHFinI4.0 can be integrated into the life cycle engineering of the enterprise reference architectures, thereby obtaining manufacturing systems for Industry 4.0 focused on the human factor. The suggested framework is illustrated as a case study for the Purdue Enterprise Reference Architecture (PERA) methodology, which transforms it into PERA 4.0

    Coherent, automatic address resolution for vehicular ad hoc networks

    Get PDF
    Published in: Int. J. of Ad Hoc and Ubiquitous Computing, 2017 Vol.25, No.3, pp.163 - 179. DOI: 10.1504/IJAHUC.2017.10001935The interest in vehicular communications has increased notably. In this paper, the use of the address resolution (AR) procedures is studied for vehicular ad hoc networks (VANETs). We analyse the poor performance of AR transactions in such networks and we present a new proposal called coherent, automatic address resolution (CAAR). Our approach inhibits the use of AR transactions and instead increases the usefulness of routing signalling to automatically match the IP and MAC addresses. Through extensive simulations in realistic VANET scenarios using the Estinet simulator, we compare our proposal CAAR to classical AR and to another of our proposals that enhances AR for mobile wireless networks, called AR+. In addition, we present a performance evaluation of the behaviour of CAAR, AR and AR+ with unicast traffic of a reporting service for VANETs. Results show that CAAR outperforms the other two solutions in terms of packet losses and furthermore, it does not introduce additional overhead.Postprint (published version

    Architecture of a cognitive non-line-of-sight backhaul for 5G outdoor urban small cells

    Get PDF
    Densely deployed small cell networks will address the growing demand for broadband mobile connectivity, by increasing access network capacity and coverage. However, most potential small cell base station (SCBS) locations do not have existing telecommunication infrastructure. Providing backhaul connectivity to core networks is therefore a challenge. Millimeter wave (mmW) technologies operated at 30-90GHz are currently being considered to provide low-cost, flexible, high-capacity and reliable backhaul solutions using existing roof-mounted backhaul aggregation sites. Using intelligent mmW radio devices and massive multiple-input multiple-output (MIMO), for enabling point-to-multipoint (PtMP) operation, is considered in this research. The core aim of this research is to develop an architecture of an intelligent non-line-sight (NLOS) small cell backhaul (SCB) system based on mmW and massive MIMO technologies, and supporting intelligent algorithms to facilitate reliable NLOS street-to-rooftop NLOS SCB connectivity. In the proposed architecture, diffraction points are used as signal anchor points between backhaul radio devices. In the new architecture the integration of these technologies is considered. This involves the design of efficient artificial intelligence algorithms to enable backhaul radio devices to autonomously select suitable NLOS propagation paths, find an optimal number of links that meet the backhaul performance requirements and determine an optimal number of diffractions points capable of covering predetermined SCB locations. Throughout the thesis, a number of algorithms are developed and simulated using the MATLAB application. This thesis mainly investigates three key issues: First, a novel intelligent NLOS SCB architecture, termed the cognitive NLOS SCB (CNSCB) system is proposed to enable street-to-rooftop NLOS connectivity using predetermined diffraction points located on roof edges. Second, an algorithm to enable the autonomous creation of multiple-paths, evaluate the performance of each link and determine an optimal number of possible paths per backhaul link is developed. Third, an algorithm to determine the optimal number of diffraction points that can cover an identified SCBS location is also developed. Also, another investigated issue related to the operation of the proposed architecture is its energy efficiency, and its performance is compared to that of a point-to-point (PtP) architecture. The proposed solutions were examined using analytical models, simulations and experimental work to determine the strength of the street-to-rooftop backhaul links and their ability to meet current and future SCB requirements. The results obtained showed that reliable multiple NLOS links can be achieved using device intelligence to guide radio signals along the propagation path. Furthermore, the PtMP architecture is found to be more energy efficient than the PtP architecture. The proposed architecture and algorithms offer a novel backhaul solution for outdoor urban small cells. Finally, this research shows that traditional techniques of addressing the demand for connectivity, which consisted of improving or evolving existing solutions, may nolonger be applicable in emerging communication technologies. There is therefore need to consider new ways of solving the emerging challenges
    corecore