981 research outputs found

    An Incentive Compatible Multi-Armed-Bandit Crowdsourcing Mechanism with Quality Assurance

    Full text link
    Consider a requester who wishes to crowdsource a series of identical binary labeling tasks to a pool of workers so as to achieve an assured accuracy for each task, in a cost optimal way. The workers are heterogeneous with unknown but fixed qualities and their costs are private. The problem is to select for each task an optimal subset of workers so that the outcome obtained from the selected workers guarantees a target accuracy level. The problem is a challenging one even in a non strategic setting since the accuracy of aggregated label depends on unknown qualities. We develop a novel multi-armed bandit (MAB) mechanism for solving this problem. First, we propose a framework, Assured Accuracy Bandit (AAB), which leads to an MAB algorithm, Constrained Confidence Bound for a Non Strategic setting (CCB-NS). We derive an upper bound on the number of time steps the algorithm chooses a sub-optimal set that depends on the target accuracy level and true qualities. A more challenging situation arises when the requester not only has to learn the qualities of the workers but also elicit their true costs. We modify the CCB-NS algorithm to obtain an adaptive exploration separated algorithm which we call { \em Constrained Confidence Bound for a Strategic setting (CCB-S)}. CCB-S algorithm produces an ex-post monotone allocation rule and thus can be transformed into an ex-post incentive compatible and ex-post individually rational mechanism that learns the qualities of the workers and guarantees a given target accuracy level in a cost optimal way. We provide a lower bound on the number of times any algorithm should select a sub-optimal set and we see that the lower bound matches our upper bound upto a constant factor. We provide insights on the practical implementation of this framework through an illustrative example and we show the efficacy of our algorithms through simulations

    Optimal Crowdsourcing Contests

    Full text link
    We study the design and approximation of optimal crowdsourcing contests. Crowdsourcing contests can be modeled as all-pay auctions because entrants must exert effort up-front to enter. Unlike all-pay auctions where a usual design objective would be to maximize revenue, in crowdsourcing contests, the principal only benefits from the submission with the highest quality. We give a theory for optimal crowdsourcing contests that mirrors the theory of optimal auction design: the optimal crowdsourcing contest is a virtual valuation optimizer (the virtual valuation function depends on the distribution of contestant skills and the number of contestants). We also compare crowdsourcing contests with more conventional means of procurement. In this comparison, crowdsourcing contests are relatively disadvantaged because the effort of losing contestants is wasted. Nonetheless, we show that crowdsourcing contests are 2-approximations to conventional methods for a large family of "regular" distributions, and 4-approximations, otherwise.Comment: The paper has 17 pages and 1 figure. It is to appear in the proceedings of ACM-SIAM Symposium on Discrete Algorithms 201

    Information Gathering with Peers: Submodular Optimization with Peer-Prediction Constraints

    Full text link
    We study a problem of optimal information gathering from multiple data providers that need to be incentivized to provide accurate information. This problem arises in many real world applications that rely on crowdsourced data sets, but where the process of obtaining data is costly. A notable example of such a scenario is crowd sensing. To this end, we formulate the problem of optimal information gathering as maximization of a submodular function under a budget constraint, where the budget represents the total expected payment to data providers. Contrary to the existing approaches, we base our payments on incentives for accuracy and truthfulness, in particular, {\em peer-prediction} methods that score each of the selected data providers against its best peer, while ensuring that the minimum expected payment is above a given threshold. We first show that the problem at hand is hard to approximate within a constant factor that is not dependent on the properties of the payment function. However, for given topological and analytical properties of the instance, we construct two greedy algorithms, respectively called PPCGreedy and PPCGreedyIter, and establish theoretical bounds on their performance w.r.t. the optimal solution. Finally, we evaluate our methods using a realistic crowd sensing testbed.Comment: Longer version of AAAI'18 pape

    Efficient crowdsourcing for multi-class labeling

    Get PDF
    Crowdsourcing systems like Amazon's Mechanical Turk have emerged as an effective large-scale human-powered platform for performing tasks in domains such as image classification, data entry, recommendation, and proofreading. Since workers are low-paid (a few cents per task) and tasks performed are monotonous, the answers obtained are noisy and hence unreliable. To obtain reliable estimates, it is essential to utilize appropriate inference algorithms (e.g. Majority voting) coupled with structured redundancy through task assignment. Our goal is to obtain the best possible trade-off between reliability and redundancy. In this paper, we consider a general probabilistic model for noisy observations for crowd-sourcing systems and pose the problem of minimizing the total price (i.e. redundancy) that must be paid to achieve a target overall reliability. Concretely, we show that it is possible to obtain an answer to each task correctly with probability 1-ε as long as the redundancy per task is O((K/q) log (K/ε)), where each task can have any of the KK distinct answers equally likely, q is the crowd-quality parameter that is defined through a probabilistic model. Further, effectively this is the best possible redundancy-accuracy trade-off any system design can achieve. Such a single-parameter crisp characterization of the (order-)optimal trade-off between redundancy and reliability has various useful operational consequences. Further, we analyze the robustness of our approach in the presence of adversarial workers and provide a bound on their influence on the redundancy-accuracy trade-off. Unlike recent prior work [GKM11, KOS11, KOS11], our result applies to non-binary (i.e. K>2) tasks. In effect, we utilize algorithms for binary tasks (with inhomogeneous error model unlike that in [GKM11, KOS11, KOS11]) as key subroutine to obtain answers for K-ary tasks. Technically, the algorithm is based on low-rank approximation of weighted adjacency matrix for a random regular bipartite graph, weighted according to the answers provided by the workers.National Science Foundation (U.S.

    Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems

    Get PDF
    Crowdsourcing systems, in which numerous tasks are electronically distributed to numerous "information piece-workers", have emerged as an effective paradigm for human-powered solving of large scale problems in domains such as image classification, data entry, optical character recognition, recommendation, and proofreading. Because these low-paid workers can be unreliable, nearly all such systems must devise schemes to increase confidence in their answers, typically by assigning each task multiple times and combining the answers in an appropriate manner, e.g. majority voting. In this paper, we consider a general model of such crowdsourcing tasks and pose the problem of minimizing the total price (i.e., number of task assignments) that must be paid to achieve a target overall reliability. We give a new algorithm for deciding which tasks to assign to which workers and for inferring correct answers from the workers' answers. We show that our algorithm, inspired by belief propagation and low-rank matrix approximation, significantly outperforms majority voting and, in fact, is optimal through comparison to an oracle that knows the reliability of every worker. Further, we compare our approach with a more general class of algorithms which can dynamically assign tasks. By adaptively deciding which questions to ask to the next arriving worker, one might hope to reduce uncertainty more efficiently. We show that, perhaps surprisingly, the minimum price necessary to achieve a target reliability scales in the same manner under both adaptive and non-adaptive scenarios. Hence, our non-adaptive approach is order-optimal under both scenarios. This strongly relies on the fact that workers are fleeting and can not be exploited. Therefore, architecturally, our results suggest that building a reliable worker-reputation system is essential to fully harnessing the potential of adaptive designs.Comment: 38 pages, 4 figur
    • …
    corecore