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ABSTRACT
Crowdsourcing systems like Amazon’s Mechanical Turk have
emerged as an effective large-scale human-powered platform
for performing tasks in domains such as image classifica-
tion, data entry, recommendation, and proofreading. Since
workers are low-paid (a few cents per task) and tasks per-
formed are monotonous, the answers obtained are noisy and
hence unreliable. To obtain reliable estimates, it is essential
to utilize appropriate inference algorithms (e.g. Majority
voting) coupled with structured redundancy through task
assignment. Our goal is to obtain the best possible trade-off
between reliability and redundancy.

In this paper, we consider a general probabilistic model
for noisy observations for crowd-sourcing systems and pose
the problem of minimizing the total price (i.e. redundancy)
that must be paid to achieve a target overall reliability. Con-
cretely, we show that it is possible to obtain an answer to
each task correctly with probability 1− ε as long as the re-
dundancy per task is O

(
(K/q) log(K/ε)

)
, where each task

can have any of the K distinct answers equally likely, q is
the crowd-quality parameter that is defined through a prob-
abilistic model. Further, effectively this is the best pos-
sible redundancy-accuracy trade-off any system design can
achieve. Such a single-parameter crisp characterization of
the (order-)optimal trade-off between redundancy and relia-
bility has various useful operational consequences. Further,
we analyze the robustness of our approach in the presence of
adversarial workers and provide a bound on their influence
on the redundancy-accuracy trade-off.

Unlike recent prior work [13, 17, 19], our result applies
to non-binary (i.e. K > 2) tasks. In effect, we utilize al-
gorithms for binary tasks (with inhomogeneous error model
unlike that in [13, 17, 19]) as key subroutine to obtain an-
swers for K-ary tasks. Technically, the algorithm is based
on low-rank approximation of weighted adjacency matrix for
a random regular bipartite graph, weighted according to the
answers provided by the workers.
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1. INTRODUCTION
In this paper, we are interested in designing crowd-sourcing

systems that are efficient in the sense of achieving reliability
at the minimal cost of redundancy. We will provide appro-
priate definitions of redundancy and reliability later in this
section. More generally, this work is aimed at addressing
the following scenarios.

Scenario One. Using MTurk1 platform for obtaining count
of cancerous tumor cells in each microscope image for a very
large collection of images leads to answers that are noisy –
a good fraction of answers are either nearly correct or arbi-
trary (cf. see [14]) as the workers either make honest mis-
takes or they are not making any effort.

Scenario Two. Clinicians collect and record medical his-
tory of patients by asking them various questions and clas-
sifying the patients’ symptoms for type, severity, and dura-
tion. Such medical opinions are subject to observer errors
and different clinicians may give different values due to va-
riety of reasons (cf. see [9]) such as different wording of
questions, different interpretation of the scales, etc.

Scenario Three. Scores are collected from reviewers in
the reviewing process of conferences such as Sigmetrics 2013.
Each paper, though may have an innate score, receives vary-
ing scores from different reviewers for reasons such as differ-
ent reviews have different subjective interpretation of score-
scale, or value the contribution of papers differently.

In all of the above scenarios, we have numerous ‘multiple
choice’ tasks at hand and means to collect noisy answers on
those tasks by either assigning the tasks using MTurk, get-
ting medical opinions from clinicians, or asking reviewers to
review papers. If we are parsimonious and collect only one
opinion per task, then we have no other way than to trust
that opinion which could be erroneous. To increase reliabil-
ity, a common practice is to utilize redundancy – each task is
assigned to multiple MTurk workers, clinicians or reviewers.
Naturally, the more redundancy we introduce, the better
accuracy we can hope to achieve. The goal of this paper

1http://www.mturk.com
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is to get the most accurate estimates from given amount of
redundancy. To this end, we develop an algorithm for decid-
ing which tasks to assign to which workers, and estimating
the answers to the tasks from noisy answers collected from
those assigned workers.

Model and problem formulation. Our interest is in find-
ing answers to the tasks, each of which has one true answer
from a set of K possible choices denoted by K ≡ {1, . . . ,K}.
Each worker, when given a task with true answer k, pro-
vides an answer ` ∈ K with probability πk`; by definition∑
`∈K πk` = 1 for all k ∈ K. We call π = [πk`] ∈ [0, 1]K×K to

be the confusion (probability) matrix of that worker. With-
out loss of generality2, let each task have correct answer
equal to k with probability θk independently and let worker
have confusion matrix π drawn from a distribution D on
space of confusion matrices. As one example, we can de-
fine a generalization of the spammer-hammer model from
[18], where each worker is either a ‘hammer’ with probabil-
ity q or is a ‘spammer’ with probability 1 − q. A ham-
mer, who always gives the correct answer, has the iden-
tity confusion matrix π = IK×K , where I is the identity
matrix. A spammer, who gives answers that are indepen-
dent of the true answers, has a uniform confusion matrix
π = (1/K)1K · pT , where 1 is the vector of all ones, and
pT denoted the transpose of a probability vector p. For ex-
ample, a spammer might always answer ‘one’ for any tasks,
in which case p = [1, 0, . . . , 0], or give uniformly random
answers, in which case p = (1/K)[1, 1, . . . , 1]. We use ti
to denote the groundtruth answer to the i-th task (which
we assume is drawn randomly from a distribution θ), and

π(j) for the confusion matrix of the j-th worker (which we
assume is drawn randomly from a distribution D).

Given this setting, we wish to find answers to a given set
of n tasks using m workers so that we are confident that
answer to any particular task is correctly with probability
at least 1 − ε for some small positive ε, and hence reliable.
Indeed, if a given task is assigned to only one worker, the
probability of making an error is given by∑

1≤`≤K

θ`(1− E[π``]),

where expectation in E[π``] is with respect to D. To further
reduce error down to 1 − ε for any ε, one might choose to
assign the same task to multiple workers and then take ma-
jority of the received answers. Such an approach can lead
to reduced error at the cost of increase in the redundancy,
i.e. the average number of answers received per task. In
practice, increase in redundancy typically leads to increase
in the cost, e.g., payment to MTurk workers or time to finish
reviews.

In general, consider the case when we have n tasks to
complete and m workers available. Assigning tasks can be
viewed as constructing a bipartite graph G = (T,W,E) with
T = {t1, . . . , tn} representing tasks, W = {w1, . . . , wm} rep-
resenting workers and E ⊂ T ×W representing task assign-
ment: (ti, wj) ∈ E if task ti is assigned to worker wj . In
this case, the per task redundancy is |E|/n, that is, the av-
erage degree of task vertices in graph G. Once tasks are as-

2This is without loss of generality, as the results stated in
this paper hold even if we use the empirical distribution in
place of the distribution assumed for prior on tasks as well
as worker confusion matrices.

signed according to a graph G, the workers provide answers
A = [Aij ] ∈ {K ∪ null}n×m where Aij = null if (ti, wj) /∈ E,
i.e. worker wj is not assigned to task ti, and it is equal
to the answer provided by the worker wj to the task ti if
(ti, wj) ∈ E. Once all the answers {Aij}(i,j)∈E are col-
lected, we want to estimate the true answers to the tasks.
With abuse of notation, we shall use ti to represent both
node in bipartite graph G and the true answer (in K) to the
i-th task. Let t̂i ∈ K be the estimation produced. Then, the
probability of error is defined as

Perr =
1

n

n∑
i=1

P(ti 6= t̂i), (1)

where the probability is taken over all realizations of {ti},
{π(j)}, {Aij}, and any randomness in the task assignment
and inference algorithm.

The goal in designing a reliable and cost-efficient crowd-
sourcing system is to obtain Perr smaller than given tar-
get ε ∈ (0, 1/2) with minimal redundancy by appropriately
choosing task assignment graph G and the inference algo-
rithm to estimate {t̂i}.

Next, we define a few quantities that will be useful to
describe the result precisely in the subsequent text (readers
may skip these definitions till “summary of results”). For
any task i and worker j, define the following probabilities

p+
k ≡ P(Aij > k|ti > k) =

∑
k<`≤K

∑
k<`′≤K

θ` π
(j)

``′

θ>k
,

p−k ≡ P(Aij ≤ k|ti ≤ k) =
∑

1≤`≤k

∑
1≤`′≤k

θ` π
(j)

``′

1− θ>k
, (2)

where θ>k =
∑
k<`≤K θ`. Also define qk ≡ E[(p+

k +p−k −1)2]
for 1 ≤ k < K where the expectation is with respect to
the distribution D of the confusion matrix. Define crowd-
quality parameter q = min1≤k<K qk. For example, under
the spammer-hammer model, a hammer has p+

k = p−k = 1
and a spammer has p+

k + p−k = 1 for all k. If a randomly
drawn worker is a hammer with probability q̃ and a spammer
otherwise, we have qk = q̃ for all k and qk = q̃.

Define the maximum bias of the true answers as |s̄| =
maxK−1

k=1 |s̄
k|, where s̄k = 2θ>k − 1 is the bias in the a priori

distribution of the true answers in binary classification task
“is ti larger than k?”. For uniform prior θ` = 1/K and hence
the maximum bias is 1− 2/K. We will see that in order to
achieve average probability of error less than ε, we need
to have redundancy that scales as (1/(q(1 − |s̄|))) log(K/ε)
which in the case of uniform prior scales as (K/q) log(K/ε).

Prior work. Though crowd-sourcing is a recent phenomenon,
similar questions were considered by Dawid and Skene [9] in
the context of Scenario Two described earlier. They intro-
duced an iterative algorithm for inferring the solutions and
reliability of workers, based on the expectation maximiza-
tion (EM) [10]. EM is a heuristic inference algorithm that
iteratively does the following: given workers’ answers to the
tasks, the algorithm attempts to estimate the reliability of
the workers and given estimation of reliability (error proba-
bilities) of workers, it estimates the solution of the tasks; and
repeat. Due to particular simplicity of the EM algorithm,
it has been widely applied in classification problems where
the training data is annotated by low-cost noisy ‘labelers’
[16, 23]. Sheng et al. [26] have extensively studied the al-



gorithm’s performance empirically. Now EM algorithm has
various shortcomings: (i) it is a heuristic and there are no
rigorous guarantees known about its correctness or overall
performance; (ii) a priori it is not clear that for this partic-
ular problem EM is convergent; and (iii) the role of the task
allocation is not at all understood with the EM algorithm.

More rigorous approaches towards designing task assign-
ment graphs and inference algorithms were recently pro-
posed starting [13, 17]. In these work, task assignment was
done through random graphs (Erdos-Renyi in [13], random
regular in [17]) and inference was done through low-rank
approximations. They, however, assumed binary tasks (i.e.
K = 2) and homogeneous error model (i.e. π12 = π21 with
K = 2); and resulted in sub-optimal trade-off between re-
dundancy and error. This was further improved upon to
reach order-optimal error-redundancy trade-off by means of
belief propagation based iterative estimation algorithm in
[19]. This algorithm uses weighted majority voting where
the weights are computed by an approximate belief propa-
gation. Our approach is similar but the weights are com-
puted by singular value decomposition (SVD). The major
difference is that SVD based approach generalizes to more
general probabilistic models we study in this paper, whereas
the belief propagation based approach only works for a sim-
pler model where the underlying structure is a rank one
matrix. More recently, it was shown that the resulting de-
sign and inference algorithm are optimal even with respect
to adaptive system design [18]. The key limitation of all of
the above, definitely very impressive, results is applicability
to binary tasks with homogeneous error model.

Given graphical models such as the one studied in these
prior work, one can solve the inference problem using a stan-
dard belief propagation. The main challenge in such an ap-
proach is that the inference algorithm requires the priors
from which the distribution of the quality of the workers are
drawn. In this paper, we do not assume any knowledge of
the prior. However, it was shown through experiments on
real and simulated datasets in [21] that when the prior is
known, improved performance can be achieved.

It should be noted that crowdsourcing is currently ex-
tremely active research area in terms of designing actual
platforms like [2, 3, 1, 4, 5], empirical results based on ex-
periments like [16, 7, 23, 6, 28, 27] and deciding on issues
like pricing such as results in [22, 15]. The main focus of this
paper is rigorous treatment of crowdsourcing system design
and hence we only provide a limited coverage of prior work
related to general crowdsourcing. In particular, we do not
address some practical questions such as embedding golden
questions which you know the answers to, screening work-
ers with accuracy thresholds, and paying only on accurate
responses.

Summary of results. As the main result of this paper,
we provide a crowdsourcing system design that is asymp-
totically order-optimal for the general noise model consid-
ered here for K-ary tasks for any K ≥ 2. This is the first
rigorous result for K-ary (even for K = 2) tasks with non-
homogeneous error model. In a sense, it resolves the ques-
tion raised by Dawid and Skene [9] in the context of medical
record collection or more generally noisy computation. For-
mally, we show that it is possible to achieve Perr ≤ ε for
any ε ∈ (0, 1) with per task redundancy O

(
1

q(1−|s̄|) log K
ε

)
.

The minimum bias |s̄| depends on the prior distribution

(θ1, . . . , θK); for uniform prior, it is such that 1−|s̄| = 2/K.
That is, effectively, for uniform prior, our result states that
redundancy requirement scales as O

(
K
q

log K
ε

)
. And, (using

result of [17, 19]) for any system to achieve Perr ≤ ε, redun-
dancy of Ω

(
1
q

log 1
ε

)
is needed. Thus, for any fixed K (i.e.

treating K as a constant), with respect to q, ε → 0 asymp-
totic, our system design is order optimal; non-asymptotically
off by (K/q) logK.

2. MAIN RESULT
In this section, we describe our task allocation and in-

ference algorithm accompanied by theorems describing it’s
performance.

2.1 Task allocation
Given n tasks, to utilize redundancy of ` × R per task,

we shall utilize n× R workers. Specifically, we shall choose
R distinct (`, `) random regular graph G1, . . . , GR for task
allocation – in each of these R graphs, we, of course, use the
same n tasks but use distinct n workers; thus utilizing n×R
total workers. Each graph Gr, 1 ≤ r ≤ R is generated as
per the scheme known as the configuration model, cf. [8, 24].
Intuitively, the random regular graphs are good choice be-
cause they are known to be good ‘expanders’ and therefore
allows us to efficiently extract the true answers from noisy
data matrix using low-rank approximation. We will make
independent estimates of the tasks (using low-rank matrix
approximations) based on each of these R datasets collected
independently. For each task, we will combine these R esti-
mates (using majority voting) to further refine our estimate
and guarantee order optimal performance.

2.2 Inference algorithm
Let A(r) = [Aij(r)] ∈

(
{null} ∪ K

)n×n
be the noisy an-

swers obtained using the r-th, random (`, `)-regular task al-
location graph Gr, for 1 ≤ r ≤ R. From these datasets
on the answers {A(r)}1≤r≤R, we wish to obtain estimates
{t̂i} ∈ Kn on what the true answers are for all n tasks. We
shall utilize combination of low-rank matrix approximation
and majority voting to obtain estimates as described below.

We first reduce the K-ary classification tasks into a se-
ries of K − 1 simple binary classification tasks. Using each
dataset A(r) for 1 ≤ r ≤ R, we first produce binary esti-
mates t̂k(r) = [t̂ki (r)] ∈ {−1, 1}n for 1 ≤ k < K where

t̂ki (r) =

{
−1 if we believe that ti ≤ k based on A(r) ,
+1 if we believe that ti > k based on A(r) .

The low-rank matrix approximation algorithm for estimat-
ing t̂ki (r) based on A(r) is explained later in this section in
detail. Based on these binary estimates on each independent
datasets A(r), we further refine our estimates by combin-
ing our estimates using majority aggregation over the whole
data {A(r)}1≤r≤R, to get t̂k = [t̂ki ]. The estimate t̂ki for the
i-th task is our estimated answer to the question “is ti larger
than k?”, determined through majority voting as

t̂ki = sign
( R∑

r=1

t̂ki (r)
)

(3)

where sign(x) = 1 if x ≥ 0 and −1 if x < 0. As we will
show in Section 3.1, the main reason we use R independent
datasets is to use concentration inequalities to get a tighter
bound on the probability of error.



Focusing on a particular task i, if our estimates t̂ki are
accurate for all k ∈ K, then we expect them to have a single
switch at the true answer k = ti:

(t̂1i , . . . , t̂
ti−1
i , t̂tii , . . . , t̂

K
i ) = (+1, . . . ,+1︸ ︷︷ ︸

ti−1

,−1 . . . ,−1︸ ︷︷ ︸
K−ti+1

) ,

where we define t̂Ki = −1 for all i. This naturally defines
the following rule for producing our final estimates t̂ = [t̂i]:

t̂i = min
{
k : t̂ki = −1

}
. (4)

Other methods for aggregating the binary estimates to get a
full K-ary estimates are t̂i = (1/2)(2+K+

∑K
k=1 t̂

k
i ) or find-

ing the index that minimize the inconsistencies: mink |{a <
k : t̂ai = −1} ∪ {a ≥ k : t̂ai = +1}|. However, the simple
aggregation rule above is powerful enough to ensure that we
achieve order-optimal performance.

Now we describe how A(r) is used to produce t̂k(r), for
1 ≤ k < K. Define matrices Ak(r) = [Akij(r)] for 1 ≤ k < K
where

Akij(r) =


0 if Aij(r) = null

1 if k < Aij(r) ≤ K
−1 if 1 ≤ Aij(r) ≤ k.

(5)

That is, entries of matrix Ak(r) converts (quantizes) the
answers A(r) into greater than k (+1), less or equal to k
(−1), and null (0). Define an n× n projection matrix L as

L ≡ I− 1

n
11T , (6)

where I is the identity matrix and 1 is the all-ones vector.
Consider the projected matrices Bk(r) = LAk(r). Let uk(r),
vk(r) be the pair of normalized (unit norm) left and right
singular vectors respectively of Bk(r) corresponding to the
largest singular value of Bk(r). Produce quantized estimates
of tasks t̂k(r) = [t̂ki (r)] as

t̂k(r) =

{
sign(uk(r)) if

∑
j:vkj (r)≥0(vkj (r))2 ≥ 1/2 ,

sign(−uk(r)) if
∑
j:vkj (r)≥0(vkj (r))2 < 1/2 ,

(7)

where sign(·) is a function that outputs entry-wise sign of a
vector, such that sign(x) = [sign(xi)]. Even when the largest
singular value is unique, the left singular vector uk(r) is only
determined up to a sign. To resolve this ambiguity we use
the right singular vector vk(r) to determine the sign of our
final estimate. We can also use other means of resolving this
ambiguity up to a sign, such as asking golden questions with
known answers, if we have them available.

We can also interpret (7) as a weighted majority voting
with the right singular vector as the weights. Since uk(r) =
Ak(r)vk(r), our estimate for the i-th task is

t̂ki (r) = sign(uki (r))

= sign
( ∑

j

Akij(r) v
k
j (r)

)
,

assuming we have resolved the ambiguity in sign. Effectively,
we are weighting each response, Akij(r), by how reliable each

worker is, vkj (r). In proving the main results, we will show

in (14) that vkj (r) is an estimate for (p+
k + p−k − 1) for the

j-th worker. Intuitively, the larger vkj (r) is the more reliable
the worker j is.

2.3 Performance
Here we describe the performance of the algorithm intro-

duced above. For this, define the maximum bias of the true
answers as |s̄| = maxK−1

k=1 |s̄
k|, where s̄k = 2θ>k − 1 is the

bias in the a priori distribution of the true answers in binary
classification task “is ti larger than k?”. For results below to
hold, we shall assume that the random variables p+

k and p−k
defined in (2) satisfy p+

k + p−k ≥ 1 for all 1 ≤ k < K with
probability one according to the the distribution D of the
confusion matrix. However, this assumption is only neces-
sary to ensure that we can resolve the ambiguity of the sign
in deciding whether to use uk(r) or −uk(r) for our inference
in (7). If we have alternative way of resolving this ambi-
guity, for instance embedding golden questions with known
answers, then the following theorem holds for any D.

Theorem 2.1. For any ε ∈ (0, 1/2) and a choice of ` =
Θ
(

1
q(1−|s̄|)3

)
and R = Θ

(
log(K/ε)

)
, there exists a N(ε, `, s̄, q)

that depends on ε, `, s̄, and q such that for all n ≥ N(ε, `, s̄, q),
we have

Perr =
1

n

n∑
i=1

P(t̂i 6= ti) ≤ ε,

where the probability is over the randomness in the choice
of task allocation graph, true answers to the tasks, worker
confusion matrices, and the the realization of the answers
submitted by the workers.

In terms of the redundancy and reliability trade-off, the above
theorem states that we need to collect `R = Θ

(
1

q(1−|s̄|)3 log(K/ε)
)

answers per task to ensure that we achieve error rate less
than ε.

Dealing with s̄. Let us discuss the dependence of the
required redundancy on s̄. When we have uniformly dis-
tributed true answers, θ` = 1/K for 1 ≤ ` ≤ K, then
|1 − s̄| = 2/K leading to the redundancy dependence scale
as O

(
(K3/q) log(K/ε)

)
in Theorem 2.1. While K is treated

as a constant, for moderate size of K, this is terrible depen-
dence. It is, indeed, possible to improve this dependence
on s̄ by modifying the estimation step (7) as follows: let

ûk(r) = uk(r) + s̄k√
(1−(s̄k)2)n

1, then

t̂k(r) =

{
sign(ûk(r)) if

∑
j:vkj (r)≥0(vkj (r))2 ≥ 1/2

sign(−ûk(r)) if
∑
j:vkj (r)≥0(vkj (r))2 < 1/2

(8)

The above estimation step, however, requires knowledge of
s̄k which is quite feasible as it’s population level aggregation
(i.e. knowledge of θ`, 1 ≤ ` ≤ K). With the above estima-
tion, we get the following improved bound with change of
` = Θ(1/q(1− |s̄|)) in place of ` = Θ

(
1/q(1− |s̄|)3

)
.

Theorem 2.2. Under the hypotheses of Theorem 2.1, for
any ε ∈ (0, 1/2) and a choice of ` = Θ

(
1

q(1−|s̄|)

)
and R =

Θ
(

log(K/ε)
)
, there exists a N(ε, `, s̄, q) such that for all n ≥

N(ε, `, s̄, q), the estimates in (8) achieve Perr ≤ ε.

When designing a task assignment, we choose how much
redundancy we want to add per task, which is the average
number of answers we are collecting per task. Let γ = `R
denote the redundancy per task. According to the above
theorem, to achieve an average error probability less than
ε, we need the redundancy per task that scales as γ =



O((1/q(1−|s̄|)) log(K/ε)). Then, this implies that the prob-
ability of error achieved by our approach is upper bounded
by Perr ≤ Ke−Cγq(1−|s̄|) for a positive constant C. Figure 1
illustrates this exponential dependency of Perr on the redun-
dancy γ for fixed K, q and |s̄|. Compared to an algorithm-
independent analytical lower bound, this shows that the con-
stant C in the error exponent is very close to the optimal
one, since the slop of the error probability is very close to
that of the lower bound.
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Figure 1: Average probability of error decreases ex-
ponentially as redundancy increases and is weakly
dependent on the alphabet size K.

For this example, we used uniform prior of θk = 1/K
and the spammer-hammer model described in Section 1 to
generate the data with q = qk = 0.3. We plot the average
number of errors over 1000 tasks averaged over 50 random
instances of this problem. As we increase the alphabet size,
the slop of the (log) probability of error does not change. If
our upper bound on Perr was tight, we expect the slop to
scale as (1− |s̄|), which in this numerical example is 1/K.

Optimality. In [17, 19], it was shown that for binary model
(K = 2) with homogeneous noise model (i.e. π12 = π21 for
all π), to obtain Perr ≤ ε, the per task redundancy must
scale as Ω

(
1
q

log( 1
ε
)
)
. This lower-bound on redundancy re-

quirement is independent of the choice of any task-allocation
and inference algorithm. Clearly, this is a special case of our
general model and hence applies to our setting. From The-
orem 2.2, it follows that our algorithm is within a factor
of K of optimal redundancy requirement for K = O(1/ε).
Equivalently, in the asymptotic of ε, q → 0, our algorithm
is order-optimal, since the dependencies on ε and q are the
same as the optimal budget requirement.

Running time of algorithm. The key step in our in-
ference algorithm is obtaining rank-1 approximation of the
n × n matrices LAk(r) for 1 ≤ k < K and 1 ≤ r ≤ R. In
practice, n is the number of papers submitted to a confer-
ence, number of patients, or the number of images we want
to label, and it is likely to be very large. Standard iterative
methods, such as the power iteration or the Lanczos method
can be used to compute the leading singular vector of such
large matrices. These iterative methods only rely on the
matrix-vector product, which can be done quite efficiently
by exploiting the structure of LAk(r).

The standard power-iteration algorithm leads to identifi-
cation of rank-1 approximation (i.e. left, right singular vec-

tors) within error of δ with number of iterationsO
( log(n/δ)

log(σ1/σ2)

)
,

where σ1, σ2 are the largest and second largest singular val-
ues of matrix LAk(r). In the process of establishing Theo-
rem 2.1, we shall show that σ2/σ1 = O(1/

√
`qk), and with

` = Θ(1/qk) this can be made as small as we want.
At each iteration of the power iteration algorithm, we

compute matrix-vector multiplication of

x(t+1) = LAk(r) (Ak(r))T Lx(t) ,

and it is known that x(t) eventually converges to the left
singular vector of matrix LAk(r) up to a normalization.
Each computation of this multiplication can be done ef-
ficiently in O(n`) time. Since Ak(r) is a sparse matrix
with n` non-zero entries, we can compute (Ak(r))T y with
O(n`) operations. Since L = I− (1/n)11T , we can compute
Ly = y − (1/n)11T y in O(n) operations.

Finally, we only need to compute an approximate singular
vector up to a certain error. Let u be the left singular vector
of LAk(r) and define tk = [tki ] to be the true answer for a
binary classification problem:

tki =

{
−1 if ti ≤ k ,
+1 if ti > k .

In the process of establishing Theorem 2.1, we will utilize the
fact that the singular vector u is at most distance C/

√
`qk

from the true answers that we want: ‖u − (1/
√
n)tk‖ ≤

C/
√
`qk. Hence, we only need an approximate singular vec-

tor up to error δ = C/
√
`qk and the same result holds with

this approximate singular vector. Therefore, total computa-
tion cost of computing the top left singular vector of LAk(r)

scales as O
(
n` log(n`qk)

log(`qk)

)
(this is assuming `qk > 1).

Operational implications. Here we discuss a few concrete
and highly attractive operational implications of crisp result
we obtain in Theorem 2.1. Suppose there are M classes of
worker: workers of class m, 1 ≤ m ≤ M , have confusion
matrix distribution Dm such that the corresponding quality
parameter is qm and each of them requires payment of ck to
perform a task. Theorem 2.1 immediately suggests that we
should hire the worker class m∗ that maximizes qm/cm over
1 ≤ m ≤M .

The next variation is on the assumed knowledge of q.
When designing the regular bipartite graph for task assign-
ment, it requires selecting the degree ` = Θ(1/q(1 − |s̄|)).
This assumes that we know a priori the value of q. One
way to overcome this limitation is to do binary search for
appropriate value of `. This results in a cost of additional
constant factor in the budget, i.e. scaling of cost per task
still remains Θ( (1/q(1−|s̄|)) log(K/ε) ). Use following itera-
tive procedure to test the system with q = 2−a at iteration a,
and we stop if the resulting estimates are consistent in the
following sense. At iteration a, design two replicas of the
system for q = 2−a, and compare the estimates obtained
by these two replicas for all n tasks. If they agree amongst
n(1 − 2ε) tasks, then we stop and declare that as the final
answer. Or else, we increase a to a + 1 and repeat. Note
that by our main result, it follows that if 2−a is less than the
actual q then the iteration must stop with high probability.

Robustness against adversarial attacks. We consider
two scenarios: first case is where the malicious workers are
able to choose their own confusion matrix but still give an-
swers according to our probabilistic model, and second case
is where malicious workers are able to give any answers they



want. We want to see how robust our approach is when α
proportion of the workers are adversarial, that is when αnR
workers are adversarial among total nR workers.

Under the first scenario, it follows from Theorem 2.1 that
the effect of such adversarial workers is fully captured in
q′k, where now each worker with probability 1 − α has π(j)

coming from D and with probability α has π(j) chosen by
the adversary. Then, even in the worst case, q′k ≥ (1 −
α)ED[(p+

k + p−k − 1)2]]. The new ‘crowd quality’ is now de-
graded to q′ ≥ (1 − α)q. In terms of the redundancy nec-
essary to achieve error rate of ε, we now need a factor of
1/(1 − α) more redundancy to achieve the same error rate
with the presence of α proportion of adversarial workers.
This suggests that our approach is robust, since this is the
best dependency on α one can hope for. Let M be the num-
ber of workers necessary under non-adversarial setting. If
we have adversaries among the workers, and let us even as-
sume that we can detect any adversary, even then we need
M/(1− α) total workers to get M non-adversarial workers.
Our approach requires the same number of ‘good’ workers
as the one that can detect all adversaries. A similar analy-
sis, in the case of binary tasks (i.e., K=2) and homogeneous
error model (i.e., π12 = π21 with K = 2) was provided in
[13].

Under the second scenario, we assume that αnR workers
are adversarial as before, but those adversarial workers can
submit any answers they want. In particular, this model
includes the adversaries who are colluding to manipulate
our crowdsourcing system. We want to prove a bound on
how much the performance of our algorithm degrades as the
number of such adversaries increases. The following theorem
proves that our algorithm is robust, in the sense that the
same guarantee is achieved with redundancy that scales in
the same way as when there are no adversaries, as long as
the proportion of adversaries is bounded by α = cq(1−|s̄k|)
for some positive constant c.

Theorem 2.3. Under the hypotheses of Theorem 2.1, there
exists a constant c such that when the proportion of the
adversarial workers is α ≤ cq(1 − |s̄k|)3, our estimates in
(7) aggregated as in (3) achieve Perr ≤ ε with a choice of
` = Θ

(
1

q(1−|s̄|)3
)

and R = Θ
(

log(K/ε)
)

for n ≥ N(ε, `, s̄, q).

Further, if we use estimates in (8), then the same guarantee
holds with α ≤ cq(1− |s̄k|) and ` = Θ

(
1

q(1−|s̄|)

)
.

3. PROOF OF MAIN RESULTS
In this section, we provide the proofs of the main results

and technical lemmas.

3.1 Proof of Theorem 2.1
First we consider a single binary estimation problem on a

single dataset A(r) and a classification threshold k ∈ K. We
will show that, with choice of ` = Θ(1/(q(1−|s̄k|)3)), we can
get good estimates from each dataset A(r) on each binary
classification task such that the probability of making an
error on each task is less than 1/4:

p+
e ≡ P(t̂ki (r) = −1|tki = +1) ≤ 1/4 , and

p−e ≡ P(t̂ki (r) = +1|tki = −1) ≤ 1/4 .

By symmetry p+
e and p−e do not depend on r or i, but it does

depend on k. However, the upper bound holds for any k and
we omit the dependence on k to lighten the notations. We

can achieve a significantly improved accuracy by repeating
the data collection and estimation process R times on in-
dependently chosen task assignment graph and completely
different set of workers. These R estimates then can be ag-

gregated using (3): t̂ki = sign
( ∑R

r=1 t̂
k
i (r)

)
. We claim that

each t̂ki (r) are independent estimates with error probability
less than 1/4. Applying Hoeffding’s inequality, we have

P
(
t̂ki 6= tki

)
≤ θ>k P

( R∑
r=1

t̂ki (r) ≤ 0
∣∣∣ tki = +1

)
+ θ≤k P

( R∑
r=1

t̂ki (r) ≥ 0
∣∣∣ tki = −1

)
≤ θ>k exp

{
− 2(2p+

e − 1)2R2

4R

}
+ θ≤k exp

{
− 2(2p−e − 1)2R2

4R

}
≤ exp{−R/8} ,

where we used the fact that p+
e ≤ 1/4 and p−e ≤ 1/4.

For each task i, if we did not make any errors in the K−1
binary estimations, than we correctly recover the true an-
swer to this task as per rule (4). This happens with probabil-

ity at least 1−Ke−R/8, which follows from the union bound
over k ∈ K. It follows that the average error probability
over all n tasks is also bounded by

Perr ≤ Ke−R/8 .

Setting R = 8 log(K/ε), the average error probability is
guaranteed to be less than ε for any ε ∈ (0, 1/2). This
finishes the proof of Theorem 2.1.

Now we are left to prove that error probabilities on a single
dataset are bounded by 1/4. Recall that tki = −1 if ti ≤ k,
and +1 if ti > k. Given a single dataset A(r), we ‘quantize’
this matrix to get Ak(r) as defined in (5). Then we multiply
this matrix on the left by a projection L defined in (6), and
let Bk(r) = LAk(r) be the resulting matrix. We use the top
left singular vector of this matrix Bk(r), to get an estimate
of tki as defined in (7). This can be formulated as a general
binary estimation problem with heterogeneous error model
as follows: when tki = +1, the ‘quantized’ answer of a worker
is +1 if actual answer is greater than k. This happens with
probability

P
(
‘quantized’ answer = +1|tki = +1

)
=
∑
`>k

P
(
‘actual’ answer = `|tki = +1

)
=
∑
`,`′>k

P
(
‘actual’ answer = `, ti = `′|tki = +1

)
=
∑
`,`′>k

π`′`
θ`′

θ>k
≡ p+

k . (9)

Similarly, when tki = −1,

P
(
‘quantized’ answer = −1|tki = −1

)
=
∑
`,`′≤k

π`′`
θ`′

1− θ>k
≡ p−k . (10)

Thus, the probability of receiving correct answer for such
binary tasks (i.e. > k or ≤ k) depends on whether the true
answer is +1 (i.e. > k) or −1 (i.e. ≤ k) and they are p+

k and



p−k respectively. In the prior works [13, 17, 19], the binary
task model considers a setting where p+

k = p−k . In that
sense, in this paper, we shall extend the results for binary
tasks when p+

k need not be equal to p−k .
For such problem of tasks with binary answers with het-

erogeneous probability of correct answers, the following lemma
provides an upper bound on the probability of error (tech-
nically, this is the key contribution of this work).

Lemma 3.1. There exists positive numerical constants C
and C′ such that

1

n

n∑
i=1

I
(
t̂ki (r) 6= tki

)
≤ C

`qk(1− |s̄k|)2
(11)

with probability at least 1−2e−n(1−|s̄k|)2/8−e−q
2
kn/2−n−C

′√`

where s̄k and qk are parameters defined earlier. The prob-
ability is over all the realization of the random graphs, the
answers submitted by the workers, worker confusion matri-
ces, and the true answers to the tasks.

Since q ≡ mink qk and s̄ = maxk |s̄k|, with our choice of
` = Ω(1/(q(1− s̄)3)) and for n large enough (dependent on
q, |s̄| and ε), we can guarantee that the probability of error
is upper bounded by:

1

n

n∑
i=1

P
(
t̂ki (r) 6= tki

)
≤ 1− |s̄k|

8
. (12)

By the symmetry of the problem, the probability of error for
all the positive tasks are the same and the error probability
for all the negative tasks are also the same. Let p+

e and
p−e denote these error probability for positive and negative
tasks respectively. Then p+

e cannot be larger than 1/4, since
even if we make no mistake on the negative tasks, there
are (1/2)(1 + s̄k)n positive tasks with equal probability of
error. From the upper bound on average error probability
in (12), we get that p+

e (1/2)(1 + s̄k) ≤ (1 − |s̄k|)/8. Since
1− |s̄k| ≤ 1 + s̄k, this implies that p+

e ≤ 1/4. Similarly, we
can also show that p−e ≤ 1/4.

3.2 Proof of lemma 3.1
A rank-1 approximation of our data matrixBk(r) = LAk(r)

can be easily computed using singular value decomposition
(SVD). Let the singular value decomposition of Bk(r) be

Bk(r) =

n∑
i=1

u(i)σi(v
(i))T ,

where u(i) ∈ Rn and v(i) ∈ Rn are the i-th left and right
singular vectors, and σi ∈ R is the i-th singular value. Here
and after, (·)T denotes the transpose of a matrix or a vec-

tor. For simplicity, we use u = u(1) for the first left singu-
lar vector and v = v(1) for the first right singular vector.
Singular values are typically assumed to be sorted in a non-
increasing order satisfying σ1 ≥ σ2 ≥ · · · ≥ 0. Then, the
optimal rank-1 approximation is given by a rank-1 projec-
tor P1(·) : Rm×n → Rm×n such that

P1(Bk(r)) = σ1uv
T , (13)

It is a well known fact that P1(Bk(r)) minimizes the mean
squared error. In formula,

P1(Bk(r)) = arg min
X:rank(X)≤1

∑
i,j

(Bk(r)ij −Xij)2

Let π(j) be a K × K confusion matrix for worker j ∈
{1, . . . , n}. In this section, we use p+ to denote the n-
dimensional vector such that p+

j is the probability that worker

j makes an error on a positive task: p+
j =

∑
a>k,b≤k π

(j)
ab .

Similarly, we let p−j =
∑
a≤k,b>k π

(j)
ab . We use tk = [tki ] ∈

{−1,+1}n to denote the n-dimensional vector of true an-
swers.

Recall that conditioned on a given vectors p+, p−, and
a true answer vector tk, the conditional expectation of the
responses results in a matrix

E[Ak(r)|tk, p+, p−] =

`

n
tk(p+ + p− − 1n)T +

`

n
1n(p+ + p−)T .

Since this is a sum of two rank-1 matrices, the rank of the
conditional expectation is at most two. One way to recover
vector tk from this expectation is to apply a projection that
eliminates the contributions from the second term, which
gives

E[LAk(r)|tk, p+, p−] =
`

n
(tk − t̄k1n)(p+ + p− − 1n)T , (14)

where L = I−(1/n)1n1
T
n , t̄k = (1/n)

∑
i t
k
i , and we used the

fact that L1n = 0. In the following, we will prove that when
Ak(r) is close to its expectation E[Ak(r)] in an appropriate
spectral distance, then the top left singular vector of LAk(r)
provides us a good estimate for tk.

Let u be the left singular vector of LAk(r) correspond-
ing to the leading singular value. Ideally, we want to track
each entry ui for most realizations of the random matrix
Ak(r), which is difficult. Instead, our strategy is to upper
bound the spectral radius of L(Ak(r)−E[Ak(r)|tk, p+, p−]),
and use it to upper bound the Euclidean distance between
the left top singular vectors of those two matrices: u and
(1/‖tk − t̄k1‖)(tk − t̄k1). Once we have this, we can related
the average number of errors to the Euclidean distance be-
tween two singular vectors using the following series of in-
equalities:

1

n

∑
i

I(tki 6= sign(ui)) ≤
1

n

∑
i

I(tki ui ≤ 0)

≤ 1

n

∑
i

(1 + |t̄k|
1− |t̄k|

)(√
nui −

tki − t̄k√
1− (t̄k)2

)2

=
(1 + |t̄k|

1− |t̄k|

)∥∥∥u− tk − t̄k1
‖tk − t̄k1‖

∥∥∥2

, (15)

where we used the fact that ‖tk − t̄k1‖ =
√
n(1− (t̄k)2)

which follows from the definition t̄k = (1/n)
∑
i t
k
i .

To upper bound the Euclidean distance in (15), we apply
the next lemma to two rank-1 matrices: P1(LAk(r)) and
E[LAk(r)|tk, p+p−] where P1(LAk(r)) is the best rank-1 ap-
proximation of the matrix LAk(r). This lemma states that
if two rank-1 matrices are close in Frobenius norm, then the
top singular vectors are also close in the Euclidean distance.
For the proof of this lemma, we refer Section 3.3.

Lemma 3.2. For two rank-1 matrices with singular value
decomposition M = xσyT and M ′ = x′σ′(y′)T , we have

min
{
‖x+ x′‖ , ‖x− x′‖

}
≤
√

2 ‖M −M ′‖F
max{σ, σ′} ,



where ‖x‖ =
√∑

i x
2
i denotes the Euclidean norm and ‖X‖F =√∑

i,j(Xij)
2 denotes the Frobenius norm.

Define a random variable q = (1/n)
∑n
j=1(p+

j + p−j − 1)2

such that E[q] = qk. Then, the conditional expectation
matrix E[LAk(r)|tk, p+, p−] has top singular value of

`

n
‖tk − t̄k1‖‖p+ + p− − 1‖ =

`

n

√
n(1− (t̄k)2)

√
nq

=
√
`2q(1− (t̄k)2)

and the corresponding left and right singular vectors are
(1/‖tk− t̄k1‖)(tk− t̄k1) and (1/‖p+ +p−−1‖)(p+ +p−−1).
Before we apply the above lemma to this matrix together
with P1(LAk(r)), notice that we have two choices for the left
singular vector. Both u and −u are valid singular vectors of
P1(LAk(r)) and we do not know a priori which one is closer
to (tk− t̄k1). For now, let us assume that u is the one closer
to the correct solution, such that ‖u − (1/‖tk − t̄k1‖)(tk −
t̄k1)‖ ≤ ‖u+(1/‖tk− t̄k1‖)(tk− t̄k1)‖. Later in this section,
we will explain how we can identify u with high probability
of success. Then, from Lemma 3.2, we get∥∥∥ 1

‖tk − t̄k1‖ (tk − t̄k1)− u
∥∥∥ ≤ (16)√

2

`2q(1− (t̄k)2)

∥∥∥E[LAk(r)|tk, p+, p−]− P1(LAk(r))
∥∥∥
F
.

In the following we will prove that the Frobenius norm of
the difference ‖E[LAk(r)|tk, p+, p−]−P1(LAk(r))‖F is upper

bounded by C
√
` with probability at least 1 − n−C

′√` for
some positive constants C and C′. Together with (16) and
(15), this implies

1

n

n∑
i=1

I
(
tk)i 6= sign(ui)

)
≤ C

`q(1− |t̄k|)2
.

Next, we use standard concentration inequalities to relate
random quantities q and t̄k to qk and s̄k. By standard con-
centration results, we know that

P
(
q− qk < −qk/2

)
≤ e−q

2
kn/2 .

Hence, with probability at least 1 − e−q
2
kn/2, we have q ≥

q/2. Similarly, for t̄k = (1/n)
∑
i t
k
i , and assuming without

loss of generality that s̄k = 2θ>k − 1 is positive,

P
(
1− |t̄k| < (1/2)(1− s̄k)

)
= P

(
| 1
n

∑
i

tki | > (1/2)(1 + |s̄k)
)

≤ 2e−n(1−s̄k)2/8 .

Hence, it follows that with probability at least 1−2e−n(1−s̄k)2/8−
e−q

2
kn/2 − n−C

′√`,

1

n

n∑
i=1

I
(
tk)i 6= sign(ui)

)
≤ C

`qk(1− |s̄k|)2
.

This proves Lemma 3.1.
Now, we are left to prove an upper bound on the Frobe-

nius norm in (16). Notice that for any matrix X of rank-2,
‖X‖F ≤

√
2‖X‖2, where ‖X‖2 ≡ max‖x‖,‖y‖≤1 x

TXy de-

notes the operator norm. Therefore, by triangular inequity,∥∥E[LAk(r)|tk, p+, p−]− P1(LAk(r))
∥∥
F

≤
√

2
∥∥E[LAk(r)|tk, p+p−]− P1(LAk(r))

∥∥
2

≤
√

2
∥∥E[LAk(r)|tk, p+, p−]− LAk(r)

∥∥
2

+
√

2
∥∥LAk(r)− P1(LAk(r))

∥∥
2

≤ 2
√

2
∥∥E[LAk(r)|tk, p+, p−]− LAk(r)

∥∥
2

≤ 2
√

2
∥∥E[Ak(r)|tk, p+, p−]−Ak(r)

∥∥
2
, (17)

where in the last inequity we used the fact that P1(LAk(r))
is the minimizer of ‖LAk(r) − X‖2 among all matrices X
of rank one, whence ‖LAk(r)−P1(LAk(r))‖2 ≤ ‖LAk(r)−
E[LAk(r)|tk, p+, p−]‖2.

The following key technical lemma provides a bound on
the operator norm of the difference between random matrix
Ak(r) and its (conditional) expectation. This lemma gener-
alizes a celebrated bound on the second largest eigenvalue of
d-regular random graphs by Friedman-Kahn-Szemerédi [12,
11, 20]. The proof of this lemma is provided in Section 3.4.

Lemma 3.3. Assume that an (`, `)-regular random bipar-
tite graph G with n left and right nodes is generated ac-
cording to the configuration model. Ak(r) is the weighted
adjacency matrix of G with random weight Ak(r)ij assigned

to each edge (i, j) ∈ E. With probability at least 1−n−Ω(
√
`),

‖Ak(r)− E[Ak(r)|tk, p+, p−]‖2 ≤ C′Amax

√
` , (18)

for all realizations of tk, p+, and p−, where |Ak(r)ij | ≤ Amax

almost surely and C′ is a universal constant.

Under our model, Amax = 1 since Ak(r)ij ∈ {±1}. We
then apply this lemma to each realization of p+ and p− and
substitute this bound in (17). Together with (16) and (15),
this finishes the proof Lemma 3.1.

Now, we are left to prove that between u and −u, we can
determine which one is closer to (1/‖tk − t̄k1‖)(tk − t̄k1).
Given a rank-1 matrix P1(LAk(r)), there are two possible
pairs of left and right ‘normalized’ singular vectors: (u, v)
and (−u,−v). Let P+(·) : Rn 7→ Rn denote the projection
onto the positive orthant such that P+(v)i = I(vi ≥ 0)vi.
Our strategy is to choose u to be our estimate if ‖P+(v)‖2 ≥
1/2 (and −u otherwise). We claim that with high probabil-
ity the pair (u, v) chosen according to our strategy satisfies∥∥∥ 1

‖tk − t̄k1‖ (tk − t̄k1)− u
∥∥∥ ≤ ∥∥∥ 1

‖tk − t̄k1‖ (tk − t̄k1) + u
∥∥∥ . (19)

Assume that the pair (u, v) is the one satisfying the above
inequality. Denote the singular vectors of E[Ak(r)|tk, p+, p−]
by x = (1/‖tk − t̄k1‖)(tk − t̄k1) and y = (1/‖p+ + p− −
1n‖)(p++p−−1n), and singular value σ′ = ‖E[Ak(r)|tk, p+, p−]‖2.
Let σ = ‖P1(Ak(r))‖2. Then, by triangular inequality,

‖y − v‖ =
∥∥∥ 1

σ′
E[Ak(r)|tk, p+, p−]Tx− 1

σ
P1(Ak(r))Tu

∥∥∥
≤
∥∥∥ 1

σ′
E[Ak(r)|tk, p+, p−]T (x− u)

∥∥∥
+
∥∥∥ 1

σ′
(E[Ak(r)|tk, p+, p−]− P1(Ak(r)))Tu

∥∥∥
+
∥∥∥( 1

σ′
− 1

σ

)
P1(Ak(r))Tu

∥∥∥
≤ C1√

`q(1− (t̄k)2)
.



The first term in the second line is upper bounded by

‖(1/σ′)E[Ak(r)|tk, p+, p−]T (x− u)‖ ≤ ‖x− u‖ ,

which is again upper bounded by C2/(`qk(1−(t̄k)2))1/2 using
(16). The second term is upper bounded by

‖(1/σ′)(E[Ak(r)|tk, p+, p−]− P1(Ak(r)))Tu‖

≤ (1/σ′)‖E[Ak(r)|tk, p+, p−]− P1(Ak(r))‖2 ,

which is again upper bounded by C3/(`qk(1−(t̄k)2))1/2 using

(18) and σ′ ≥
√

(1/2)`2qk(1− (t̄k)2). The third term is

upper bounded by ‖
(

1
σ′ − 1

σ

)
P1(Ak(r))Tu‖ ≤ |σ − σ′|/σ′,

which is again upper bounded by C4/(`qk(1−(t̄k)2))1/2 using
the following triangular inequality:

1

σ′
∣∣‖E[Ak(r)|tk, p+, p−]‖2 − ‖P1(Ak(r))‖2

∣∣
≤ 1

σ′
‖E[Ak(r)|tk, p+, p−]− P1(Ak(r))‖2 .

Since we assume that p+
j + p−j ≥ 1, we have yj = p+

j +

p−j − 1 ≥ 0 for all j. It follows that ‖y − P+(v)‖ ≤ ‖y − v‖
for any vector v. This implies that

‖P+(v)‖ ≥ ‖y‖ − ‖y − P+(v)‖
≥ 1− ‖y − v‖

≥ 1− C1

(`q(1− (t̄k)2))1/2
.

Notice that we can increase the constant C in the bound
(11) of the main theorem such that we only need to restrict

our attention to (`q(1− (t̄k)2))1/2 > 4C1. This proves that
the pair (u, v) chosen according to our strategy satisfy (19),
which is all we need in order to prove Lemma 3.1.

3.3 Proof of Lemma 3.2
A more general statement for general low-rank matrices is

proved in [20, Remark 6.3]. Here we provide a proof of a spe-
cial case when both matrices have rank one. For two rank-
1 matrices with singular value decomposition M = xσyT

and M ′ = x′σ′(y′)T , we want to upper bound min
{
‖x +

x′‖ , ‖x − x′‖
}

. Define the angle between the two vectors

to be θ = arccos(|xTx′|) such that min
{
‖x + x′‖ , ‖x −

x′‖
}

= 2 sin(θ/2) and mina ‖x − ax′‖ = sin θ. It follows

from 2 sin(θ/2) = (1/ cos(θ/2)) sin θ ≤
√

2 sin θ for all θ ∈
[0, (1/2)π] that

min
{
‖x+ x′‖ , ‖x− x′‖

}
≤
√

2 min
a
‖x− ax′‖ .

Define the inner product of two vectors or matrices as 〈A,B〉 =

Trace(ATB). We take a∗ = (σ′/σ)yT y′. Then,

min
{
‖x+ x′‖ , ‖x− x′‖

}
≤
√

2‖x− a∗x′‖

≤ max
u∈Rn,‖u‖≤1

√
2〈u, x− a∗x′〉

≤ max
u∈Rn,‖u‖≤1

√
2〈u, x− (σ′/σ)yT y′x′〉

≤ max
u∈Rn,‖u‖≤1

√
2〈u, (1/σ)

(
σxyT − σ′x′(y′)T

)
y〉

≤ max
u∈Rn,‖u‖≤1

(
√

2/σ)〈uyT , σxyT − σ′x′(y′)T 〉

≤ max
u∈Rn,‖u‖≤1

(
√

2/σ)‖uyT ‖F ‖M −M ′‖F

≤
√

2 ‖M −M ′‖F
σ

.

By symmetry, the same inequality holds with σ′ in the de-
nominator. This proves the desired claim.

3.4 Proof of Lemma 3.3
Since the proof does not depend on the specific realizations

of tk, p+, and p−, we will drop the conditions on these vari-
ables in this section and write E[Ak(r)] for E[Ak(r)|tk, p+, p−].
Define an `2-ball Bn ≡ {x ∈ Rn : ‖x‖ ≤ 1} in n-dimensions.
We want to show that, with high probability,

|xT (Ak(r)− E[Ak(r)])y| ≤ C′Amax

√
` , (20)

for all x ∈ Bn and y ∈ Bn. The technical challenge is that
the left-hand side of (20) is a random variable indexed by
x and y each belonging to a set with infinite number of ele-
ments. Our strategy, which is inspired by [12] and is similar
to the techniques used in [11, 20], is as follows:
(i) Reduce x, y belonging to a finite discrete set Tn;
(ii) Bound the contribution of light couples using concentra-
tion of measure result on a random variable

Z ≡
∑

(i,j)∈L

xiA
k(r)ijyj − xTE[Ak(r)]y

and applying union bound over (exponentially many but fi-
nite) choices of x and y;
(iii) Bound the contribution of heavy couples using discrep-
ancy property of the random graph G.
The definitions of light and heavy couples and discrepancy
property is provided later in this section.
Discretization. Fix some ∆ ∈ (0, 1) and define a dis-
cretization of Bn as

Tn ≡
{
x ∈

{ ∆√
n
Z
}n

: ‖x‖ ≤ 1

}
.

Next proposition allows us to restrict our attention to dis-
cretized x and y and is proved in [12, 11].

Proposition 3.4. Let M ∈ Rn×n be a matrix. If |xTMy| ≤
B for all x ∈ Tn and y ∈ Tn, then |x′TMy′| ≤ (1 −∆)−2B
for all x′ ∈ Bn and y′ ∈ Bn.

It is thus enough to show that the bound (20) holds with
high probability for all x, y ∈ Tn. A naive approach would be
to apply tail bound on the random variable

∑
i,j xi(A

k(r)ij−
E[Ak(r)ij ])yj . However, this approach fails when x or y have

entries of value much larger than the typical size O(n−1/2).
Hence, we need to separate the contribution into two parts.



Define a set of light couples L ⊆ [n]× [n] as

L ≡

{
(i, j) : |xiyj | ≤

√
`

n

}
,

and the set of heavy couples L as its complement. Using
this definition, we can separate the contribution from light
and heavy couples.∣∣∣xT (Ak(r)− E[Ak(r)])y

∣∣∣ ≤∣∣∣∣∣∣
∑

(i,j)∈L

xiA
k(r)ijyj − xTE[Ak(r)]y

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

(i,a)∈L

xiA
k(r)ijyj

∣∣∣∣∣∣ .
In the following, we prove that both of these contributions
are upper bounded by (C′/2)Amax

√
` for all x, y ∈ Tn. By

Proposition 3.4, this finishes the proof of Lemma 3.3.

Bounding the contribution of light couples. Let Z =∑
(i,j)∈L xiA

k(r)ijyj − xTE[Ak(r)]y. Using the fact that

E[Z] = −
∑

(i,j)∈L xiE[Ak(r)ij ]yj , we get

|E[Z]| ≤
∑

(i,j)∈L

|E[Ak(r)ij ]|(xiyj)2

|xiyj |

≤ n√
`
max
i,j
|E[Ak(r)ij ]| ≤ Amax

√
` , (21)

where, in the second inequality, we used |xiyj | ≥
√
`/n for

any (i, j) ∈ L, and the last inequality follows from the fact
that |E[Ak(r)ij ]| is at most (`/n)Amax. Together with the
next lemma, this implies that when restricted to the dis-
cretized sets Tn, the contribution of light couples is bounded
by C5Amax

√
` with high probability.

Lemma 3.5. There exists numerical constants C6 and C7

such that, for any x ∈ Tn and y ∈ Tn,

P
(∣∣Z− E[Z]

∣∣ > C6Amax

√
`
)
≤ e−C7n .

If the edges were selected independently, this lemma can
be proved using routine tail bounds. In the case of (l, r)-
regular graphs, we can use a martingale construction known
as Doob’s martingale process [25]. The proof follows closely
the technique used in the proof of [12, Lemma 2.4], where an
analogous statement is proved for unweighted non-bipartite
random d-regular graphs. For the proof of this lemma, we
refer to a journal version of this paper.

Cardinality of the discrete set Tn can be bounded us-
ing a simple volume argument: |Tn| ≤ (10/∆)n [11]. In
Lemma 3.5, we can choose a large enough C6 such that
C7 > 2 log(10/∆). Applying union bound over all x, y ∈ Tn,
this proves that the contribution of light couples is bounded
by C5Amax

√
` uniformly for all x, y ∈ Tn with probability

1− e−Ω(n).

Bounding the contribution of heavy couples. Let
Q ∈ {0, 1}m×n denote the standard (unweighted) adjacency
matrix corresponding to the bipartite graph G. Then,∣∣∣∣∣∣

∑
(i,j)∈L

xiAijyj

∣∣∣∣∣∣ ≤ Amax

( ∑
(i,j)∈L

Qij |xiyj |
)
. (22)

We can upper bound the right-hand side using discrepancy
property of random graphs. It is a well-known result in

graph theory that a random graph does not contain an un-
expectedly dense subgraph with high probability. This dis-
crepancy property plays an important role in the proof of
structural properties such as expansion and spectrum of ran-
dom graphs.

• Bounded discrepancy. We say that G (equivalently, the
adjacency matrix Q) has bounded discrepancy prop-
erty if, for any pair L ⊆ [n] and R ⊆ [n], (at least) one
of the following is true. Here, e(L,R) = |{(i, j) ∈ E :
i ∈ L, j ∈ R}| denotes the number of edges between a
subset L of left nodes and a subset R of right nodes,
and µ(L,R) ≡ |L||R||E|/n2 denotes the average num-
ber of edges between L and R.

(i) e(L,R) ≤ C1µ(L,R) ,

(ii) |L|, |R|, and e(L,R) are all at most C2

√
` ,

(iii) e(L,R) log
( e(L,R)

µ(L,R)

)
≤ C3 max{|L|, |R|} log

( n

max{|L|, |R|}

)
,

for some constants C1, C2, and C3 which only depend
on m/n.

• Bounded degree. The graph G has degree of the left
nodes bounded by ` and the right nodes also by `.

For a random (`, `)-regular graph G, the bounded degree
property is always satisfied. Next lemma shows that G also
satisfies the discrepancy property [12, Lemma 2.5].

Lemma 3.6. For an (`, `)-regular random graph G, with

probability 1− nΩ(
√
`), every pair L ⊆ [n] and R ⊆ [n] satis-

fies the bounded discrepancy property.

Together with (22) and Lemma 3.6, the next lemma im-
plies that the contribution of heavy couples is upper bounded

by C4Amax

√
` with probability 1− nΩ(

√
`).

Lemma 3.7. If a bipartite graph G satisfies the bounded
degree and bounded discrepancy properties, then there exists
a positive constant C4 such that for any x, y ∈ Tn the adja-
cency matrix Q satisfy∑

(i,j)∈L

|xiQijyj | ≤ C4

√
` .

A similar statement was proved in [20, Remark 4.5] for
Erd os-Renyi graph. Due to a space constraint, the proof
is omitted here.

3.5 Proof of Theorem 2.2
The proof follows closely the techniques we used in proving

Theorem 2.1. In fact, the only difference is in the following
key technical lemma. This lemma improves the upper bound
in Lemma 3.1 by a factor of (1− |s̄k|)2. Once we have this,
we can use the same arguments as in Section 3.1 to get the
improved bound on error probability as in Theorem 2.2.

Lemma 3.8. There exists positive numerical constants C
and C′ such that the estimates of (8) achieve

1

n

n∑
i=1

I
(
t̂ki (r) 6= tki

)
≤ C

`qk
(23)

with probability at least 1−2e−n(1−|s̄k|)2/8−e−q
2
kn/2−n−C

′√`

where s̄k and qk are parameters defined earlier.



Proof. In proving Theorem 2.1, we are using the left sin-
gular vectors of Ak(r), which we denote by uk(r). Assuming
for simplicity that

∑
j:vkj (r)≥0(vkj (r))2 ≥ 1/2, we make a de-

cision on whether tki is more likely to be a positive task or a
negative task based on whether uk(r)i is positive or negative:
t̂k(r)i = sign(uk(r)i). Effectively, we are using a threshold of
zero to classify the tasks using uk(r)i as a noisy observation
of that task.

If we have a good estimate of s̄k, we can use it to get a
better threshold of −s̄k/

√
(1− (s̄k)2)n. This gives a new

decision rule of (8): t̂k(r)i = sign
(
uk(r)i + s̄k√

(1−(s̄k)2)n

)
,

when
∑
j:vkj (r)≥0(vkj (r))2 ≥ 1/2. We can prove that with this

new threshold, the bound on the number of errors improve
by a factor of (1− |s̄k|)2. The analysis of follows closely the
proof of Lemma 3.1.

Let u be the left singular vector of LAk(r) correspond-
ing to the leading singular value. From Section 3.2, we
know that the Euclidean distance between u and (1/‖tk −
t̄k1‖)(tk − t̄k1) is upper bounded by

√
C/(`qk(1− (t̄k)2)).

We can use the following series of inequalities to related
this bound to the average number of errors. From ‖tk −
t̄k1‖ =

√
n(1− (t̄k)2) which follows from the definition t̄k =

(1/n)
∑
i t
k
i , we have

1

n

∑
i

I
(
tki 6= sign

(
ui +

t̄k√
(1− (t̄k)2)n)

) )
≤ 1

n

∑
i

I
(
tki
(
ui +

t̄k√
(1− (t̄k)2)n)

)
≤ 0
)

≤ 1

n

∑
i

(
1− (t̄k)2)(√nui − tki − t̄k√

1− (t̄k)2

)2

=
(
1− (t̄k)2) ∥∥∥u− tk − t̄k1

‖tk − t̄k1‖

∥∥∥2

≤ C

`qk
.

2

3.6 Proof of Theorem 2.3
Let us focus on a dataset A(r) that is collected from n

workers, αn of which are are adversarial. Since we assign
tasks according to a random graph, the performance does
not depend on the indices assigned to particular workers,
and hence we let the first αn workers be the adversarial
ones. Let Ãk(r) ∈ {null,+1,−1}n×n be the n × n matrix
of ‘quantized’ answers when adversaries are present. Define
a random matrix Ak(r) to be the answers we would get on
the same graph and same set of non-adversarial workers for
the last (1 − α)n workers but this time replacing all of the
adversarial workers with randomly chosen non-adversarial
workers with confusion matrix drawn from D. The dataset
Ak(r) represent the answers we would get if there were no
adversaries. We want to bound the effect of adversaries
on our estimate, by bounding difference, in spectral norm,
between the random matrix Ãk(r) and conditional expec-
tation of non-adversarial answers E[Ak(r)|tk, p+

k , p
−
k ]. We

claim that∥∥ Ãk(r)− E[Ak(r)|tk, p+
k , p

−
k ]
∥∥

2
≤ C(

√
`+ `

√
α) .(24)

Once we have this bound, we can finish our analysis following
closely the proof of Theorem 2.1. Let u be the top left
singular vector of the matrix Ãk(r). From Section 3.2, we

know that

1

n

n∑
i=1

I(tki 6= sign(ui)) ≤
16
∥∥ Ãk(r)− E[Ak(r)|tk, p+

k , p
−
k ]
∥∥2

2

`2qk(1− |s̄k|)2

Substituting (24) into the above, and using the fact that
(a+ b)2 ≤ 2a2 + 2b2, we get

1

n

n∑
i=1

I(tki 6= sign(ui)) ≤ C (1 + α`)

`qk(1− |s̄k|)2
.

Further, in a similar way as we proved Theorem 2.2, if we
have a good estimate of s̄k, then we can find a better thresh-
old as in (8) and improve the upper bound as

1

n

n∑
i=1

I
(
tki 6= sign

(
ui +

t̄k√
(1− (t̄k)2)n)

))
≤ C (1 + α`)

`qk
.

Substituting this bound in Lemma 3.1 from Section 3.1 and
following the same argument, this finishes the proof of The-
orem 2.3.

Now, we are left to prove the upper bound in (24). Let

Ãka(r) denote the answers from adversarial workers and Ãkg(r)
denote the answer from the non-adversarial workers such
that Ãk(r) = [ Ãka(r) Ãkg(r) ]. Let B = E[Ak(r)|tk, p+

k , p
−
k ]

be the conditional expectation of non-adversarial data. We
use B0 to denote the first αn columns of B and B1 for the
last (1−α)n columns of B, such that B = [B0 B1 ]. By the
triangular inequality, we get∥∥ Ãk(r)−B

∥∥
2

=
∥∥ [ Ãka(r) Ãkg(r) ]− [B0 B1 ]

∥∥
2

≤
∥∥ Ãkg(r)−B1

∥∥
2

+
∥∥B0

∥∥
2

+
∥∥ Ãka(r)

∥∥
2
.

To upper bounded the first term, notice that it is a projec-
tion of a n× n matrix where the projection P sets the first
αn columns to zeros: Ãkg(r) − B1 = P (Ãk(r) − B). Since
a projection can only decrease the spectral radius, we have∥∥Ãkg(r)−B1

∥∥
2
≤
∥∥Ãk(r)−B

∥∥
2
. From Lemma 3.3 we know

that this is upper bounded by C
√
`. For the second term,

recall that B0 = (`/n)1n1
T
αn. This gives ‖B0‖2 = `

√
α.

To upper bound the last term, let Mα be an n× αn ma-
trix that have the same pattern as Ãka(r), but all the non-
zero entries are set to one. Statistically, this is the first αn
columns of the adjacency matrix of a random (`, `)-regular
graph. Since Mα is a result of taking the absolute value of
the matrix Ãka(r), we have

∥∥ Ãka(r)
∥∥

2
≤
∥∥Mα

∥∥
2
. By trian-

gular inequality,
∥∥Mα

∥∥
2
≤
∥∥E[Mα]

∥∥
2

+
∥∥Mα − E[Mα]

∥∥
2
.

The first term is bounded by
∥∥E[Mα]

∥∥
2

= ‖B0‖2 = `
√
α.

To bound the second term, we use the same technique of
projection. Let M be an n × n adjacency matrix of a ran-
dom (`, `)-regular graph such that the first αn columns are
equal to Mα. Then,

∥∥AMα − E[Mα]
∥∥

2
≤ ‖M − E[M ]‖2.

Friedman, Kahn, and Szemeredie [12] proved that this is

upper bounded by C
√
` with probability at least 1− n−C

′`.
Collecting all the terms, this proves the upper bound in (24).

4. CONCLUSIONS
In this paper, we considered the question of designing

crowd-sourcing platform with the aim of obtaining best trade-
off between reliability and redundancy (equivalently, bud-
get). Operationally, this boiled down to developing appro-
priate task allocation (worker-task assignment) and estima-
tion of task answers from noisy responses of workers. We



presented task allocation based on random regular bipartite
graph and estimation algorithm based on low-rank approx-
imation of appropriate matrices. We established that the
design we have presented achieves (order-)optimal perfor-
mance for the generic model of crowd-sourcing (cf. model
considered by Dawid and Skene [9]).

Ours is the first rigorous result for crowd-sourcing system
design for generic K-ary tasks with general noise model.
The algorithms presented are entirely data-driven and hence
useful for the setting even when the precise probabilistic
model is not obeyed.

One limitation of the current model is that the tasks are
assumed to be equally difficult. It is of great practical in-
terest to accommodate differences in task difficulties. Our
approach exploits low-rank structure inherent in the prob-
abilistic model studied in this paper. However, more gen-
eral models proposed in crowdsourcing literature lack such
low-rank structures, and it is an interesting future research
direction to understand the accuracy-redundancy trade-offs
for more general class of models.
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