
Budget-Optimal Task Allocation

for Reliable Crowdsourcing Systems

David R. Karger∗, Sewoong Oh†, and Devavrat Shah‡

March 27, 2013

Abstract

Crowdsourcing systems, in which numerous tasks are electronically distributed to numerous
“information piece-workers”, have emerged as an effective paradigm for human-powered solving
of large scale problems in domains such as image classification, data entry, optical character
recognition, recommendation, and proofreading. Because these low-paid workers can be un-
reliable, nearly all such systems must devise schemes to increase confidence in their answers,
typically by assigning each task multiple times and combining the answers in an appropriate
manner, e.g. majority voting.

In this paper, we consider a general model of such crowdsourcing tasks and pose the problem
of minimizing the total price (i.e., number of task assignments) that must be paid to achieve
a target overall reliability. We give a new algorithm for deciding which tasks to assign to
which workers and for inferring correct answers from the workers’ answers. We show that
our algorithm, inspired by belief propagation and low-rank matrix approximation, significantly
outperforms majority voting and, in fact, is optimal through comparison to an oracle that knows
the reliability of every worker. Further, we compare our approach with a more general class of
algorithms which can dynamically assign tasks. By adaptively deciding which questions to ask
to the next arriving worker, one might hope to reduce uncertainty more efficiently. We show
that, perhaps surprisingly, the minimum price necessary to achieve a target reliability scales
in the same manner under both adaptive and non-adaptive scenarios. Hence, our non-adaptive
approach is order-optimal under both scenarios. This strongly relies on the fact that workers are
fleeting and can not be exploited. Therefore, architecturally, our results suggest that building
a reliable worker-reputation system is essential to fully harnessing the potential of adaptive
designs.

∗Computer Science and Artificial Intelligence Laboratory and Department of EECS at Massachusetts Institute of
Technology. Email: karger@mit.edu
†Department of Industrial and Enterprise Systems Engineering at University of Illinois at Urbana-Champaign.

Email: swoh@illinois.edu
‡Laboratory for Information and Decision Systems and Department of EECS at Massachusetts Institute of Tech-

nology. Email: devavrat@mit.edu. This work was supported in parts by NSF EMT project, AFOSR Complex
Networks project and Army Research Office under MURI Award 58153-MA-MUR.

1

ar
X

iv
:1

11
0.

35
64

v4
 [

cs
.L

G
]

 2
6

M
ar

 2
01

3
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78052344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Background. Crowdsourcing systems have emerged as an effective paradigm for human-powered
problem solving and are now in widespread use for large-scale data-processing tasks such as im-
age classification, video annotation, form data entry, optical character recognition, translation,
recommendation, and proofreading. Crowdsourcing systems such as Amazon Mechanical Turk1,
establish a market where a “taskmaster” can submit batches of small tasks to be completed for a
small fee by any worker choosing to pick them up. For example a worker may be able to earn a
few cents by indicating which images from a set of 30 are suitable for children (one of the benefits
of crowdsourcing is its applicability to such highly subjective questions).

Because these crowdsourced tasks are tedious and the pay is low, errors are common even among
workers who make an effort. At the extreme, some workers are “spammers”, submitting arbitrary
answers independent of the question in order to collect their fee. Thus, all crowdsourcers need
strategies to ensure the reliability of their answers. When the system allows the crowdsourcers to
identify and reuse particular workers, a common approach is to manage a pool of reliable workers in
an explore/exploit fashion. However in many crowdsourcing platforms such as Amazon Mechanical
Turk, the worker crowd is large, anonymous, and transient, and it is generally difficult to build up
a trust relationship with particular workers.2 It is also difficult to condition payment on correct
answers, as the correct answer may never truly be known and delaying payment can annoy workers
and make it harder to recruit them to your task next time. Instead, most crowdsourcers resort
to redundancy, giving each task to multiple workers, paying them all irrespective of their answers,
and aggregating the results by some method such as majority voting.

For such systems there is a natural core optimization problem to be solved. Assuming the
taskmaster wishes to achieve a certain reliability in her answers, how can she do so at minimum
cost (which is equivalent to asking how she can do so while asking the fewest possible questions)?

Several characteristics of crowdsourcing systems make this problem interesting. Workers are
neither persistent nor identifiable; each batch of tasks will be solved by a worker who may be
completely new and who you may never see again. Thus one cannot identify and reuse particularly
reliable workers. Nonetheless, by comparing one worker’s answer to others’ on the same question,
it is possible to draw conclusions about a worker’s reliability, which can be used to weight their
answers to other questions in their batch. However, batches must be of manageable size, obeying
limits on the number of tasks that can be given to a single worker.

Another interesting aspect of this problem is the choice of task assignments. Unlike many
inference tasks which makes inferences based on a fixed set of signals, our algorithm can choose
which signals to measure by deciding which questions to include in which batches. In addition,
there are several plausible options: for example, we might choose to ask a few “pilot questions”
to each worker (just like a qualifying exam) to decide on the reliability of the worker. Another
possibility is to first ask few questions and based on the answers decide to ask more questions
or not. We would like to understand the role of all such variations in the overall optimization of
budget for reliable task processing.

In the remainder of this section, we will define a formal probabilistic model that captures these
aspects of the problem. We consider both a non-adaptive scenario, in which all questions are

1http://www.mturk.com
2For certain high-value tasks, crowdsourcers can use entrance exams to “prequalify” workers and block spammers,

but this increases the cost of the task and still provides no guarantee that the workers will try hard after qualification.

2

asked simultaneously and all the responses are collected simultaneously, and an adaptive scenario,
in which one may adaptively choose which tasks to assign to the next arriving worker based on
all the previous answers collected thus far. We provide a non-adaptive task allocation scheme
and an inference algorithm based on low-rank matrix approximations and belief propagation. We
will then show that our algorithm is order-optimal: for a given target error rate, it spends only
a constant factor times the minimum necessary to achieve that error rate. The optimality is
established through comparisons to the best possible non-adaptive task allocation scheme and an
oracle estimator that can make optimal decisions based on extra information provided by an oracle.
In particular, we derive a parameter q that characterizes the ‘collective’ reliability of the crowd,
and show that to achieve target reliability ε, it is both necessary and sufficient to replicate each
task Θ(1/q log(1/ε)) times. This leads to the next question of interest: by using adaptive task
assignment, can we ask fewer questions and still achieve the same error rate? We, somewhat
surprisingly, show that the optimal costs under this adaptive scenario scale in the same manner as
the non-adaptive scenario; asking questions adaptively does not help!

Setup. We consider the following probabilistic model for crowdsourcing. There is a set of m binary
tasks which is associated with unobserved ‘correct’ solutions: {ti}i∈[m] ∈ {±1}m. Here and after,
we use [N] to denote the set of first N integers. In the image categorization example stated earlier,
a set of tasks corresponds to labeling m images as suitable for children (+1) or not (−1). We will
be interested in finding the true solutions by querying noisy workers who arrive one at a time in
an on-line fashion.

An algorithmic solution to crowdsourcing consists of two components: a task allocation scheme
and an inference algorithm. At task allocation phase queries are made sequentially according to the
following rule. At j-th step, the task assignment scheme chooses a subset Tj ⊆ [m] of tasks to be
assigned to the next arriving noisy worker. The only constraint on the choice of the batch is that
the size |Tj | must obey some limit on the number of tasks that can be given to a single worker. Let
r denote such a limit on the number of tasks that can be assigned to a single worker, such that all
batches must satisfy |Tj | ≤ r. Then, a worker j arrives, whose latent reliability is parametrized by
pj ∈ [0, 1]. For each assigned task, this worker gives a noisy answer such that

Aij =

{
ti with probability pj ,
−ti otherwise ,

and Aij = 0 if i /∈ Tj . (Throughout this paper, we use boldface characters to denote random
variables and random matrices unless it is clear from the context.) The next assignment Tj+1 can
be chosen adaptively, taking into account all of the previous assignments and the answers collected
thus far. This process is repeated until the task assignment scheme decides to stop, typically when
the total number of queries meet a certain budget constraint. Then, in the subsequent inference
phase, an inference algorithm makes a final estimation of the true answers.

We say a task allocation scheme is adaptive if the choice of Tj depends on the answers collected
on previous steps, and it is non-adaptive if it does not depend on the answers. In practice, one might
prefer using a non-adaptive scheme, since assigning all the batches simultaneously and having all
the batches of tasks processed in parallel reduces latency. However, by switching to an adaptive task
allocation, one might be able to reduce uncertainty more efficiently. We investigate this possibility
in Section 2.4, and show that the gain from adaptation is limited.

Note here that at the time of assigning tasks Tj for a next arriving worker j, the algorithm is not
aware of the latent reliability of the worker. This is consistent with how real-world crowdsourcing

3

works, since taskmasters typically have no choice over which worker is going to pick up which
batch of tasks. Further, we make the pessimistic assumption that workers are neither persistent
nor identifiable; each batch of tasks Tj will be solved by a worker who may be completely new and
who you may never see again. Thus one cannot identify and reuse particularly reliable workers.
This is a different setting from adaptive games [LW89], where you have a sequence of trials and a
set of predictions is made at each step by a pool of experts. In adaptive games, you can identify
reliable experts from their past performance using techniques like multiplicative weights, whereas
in crowdsourcing you cannot hope to exploit any particular worker.

The latent variable pj captures how some workers are more diligent or have more expertise than
others, while some other workers might be trying to cheat. The random variable Aij is independent
of any other event given pj . The underlying assumption here is that the error probability of a worker
does not depend on the particular task and all the tasks share an equal level of difficulty. Hence,
each worker’s performance is consistent across different tasks. We discuss a possible generalization
of this model in Section 2.7.

We further assume that the reliability of workers {pj} are independent and identically dis-
tributed random variables with a given distribution on [0, 1]. As one example we define the
spammer-hammer model, where each worker is either a ‘hammer’ with probability q or is a ‘spam-
mer’ with probability 1 − q. A hammer answers all questions correctly, meaning pj = 1, and
a spammer gives random answers, meaning pj = 1/2. It should be noted that the meaning of
a ‘spammer’ might be different from its use in other literature. In this model, a spammer is a
worker who gives uniformly random labels independent of the true label. In other literature in
crowdsourcing, the word ‘spammer’ has been used, for instance, to refer to a worker who always
gives ‘+’ labels [RY12]. Another example is the beta distribution with some parameters α > 0 and
β > 0 (f(p) = pα−1(1 − p)β−1/B(α, β) for a proper normalization B(α, β)) [Hol11, RYZ+10b]. A
distribution of pj characterizes a crowd, and the following parameter plays an important role in
capturing the ‘collective quality’ of this crowd, as will be clear from our main results:

q ≡ E[(2pj − 1)2] .

A value of q close to one indicates that a large proportion of the workers are diligent, whereas
q close to zero indicates that there are many spammers in the crowd. The definition of q is
consistent with use of q in the spammer-hammer model and in the case of beta distribution, q =
1 − (4αβ/((α + β)(α + β + 1))). We will see later that our bound on the achievable error rate
depends on the distribution only through this parameter q.

When the crowd population is large enough such that we do not need to distinguish whether the
workers are ‘sampled’ with or without replacement, then it is quite realistic to assume the existence
of a prior distribution for pj . In particular, it is met if we simply randomize the order in which
we upload our task batches, since this will have the effect of randomizing which workers perform
which batches, yielding a distribution that meets our requirements. The model is therefore quite
general. On the other hand, it is not realistic to assume that we know what the prior is. To execute
our inference algorithm for a given number of iterations, we do not require any knowledge of the
distribution of the reliability. However, q is necessary in order to determine how many times a task
should be replicated and how many iterations we need to run to achieve a certain target reliability.
We discuss a simple way to overcome this limitation in Section 2.2.

The only assumption we make about the distribution is that there is a bias towards the right
answer, i.e. E[pj] > 1/2. Without this assumption, we can have a ‘perfect’ crowd with q = 1, but

4

everyone is adversarial, pj = 0. Then, there is no way we can correct for this. Another way to
justify this assumption is to define the “ground truth” of the tasks as what the majority of the
crowd agrees on. We want to learn this consensus efficiently without having to query everyone in
the crowd for every task. If we use this definition of the ground truth, then it naturally follows
that the workers are on average more likely to be correct.

Throughout this paper, we are going to assume that there is a fixed cost you need to pay for each
response you get regardless of the quality of the response, such that the total cost is proportional
to the total number of queries. When we have a given target accuracy we want to achieve, and
under the probabilistic crowdsourcing model described in this section, we want to design a task
allocation scheme and an inference algorithm that can achieve this target accuracy with minimal
cost.

Possible deviations from our model. Some of the main assumptions we make on how crowd-
sourcing systems work are (a) workers are neither identifiable nor reusable, (b) every worker is paid
the same amount regardless of their performance, and (c) each worker completes only one batch
and she completes all the tasks in that batch. In this section, we discuss common strategies used
in real crowdsourcing that might deviate from these assumptions.

First, there has been growing interest recently in developing algorithms to efficiently identify
good workers assuming that worker identities are known and workers are reusable. Imagine a
crowdsourcing platform where there are a fixed pool of identifiable workers and we can assign
the tasks to whichever worker we choose to. In this setting, adaptive schemes can be used to
significantly improve the accuracy while minimizing the total number of queries. It is natural to
expect that by first exploring to find better workers and then exploiting them in the following
rounds, one might be able to improve performance significantly. Donmez et al. [DCS09] proposed
IEThresh which simultaneously estimates worker accuracy and actively selects a subset of workers
with high accuracy. Zheng et al. [ZSD10] proposed a two-phase approach to identify good workers
in the first phase and utilize the best subset of workers in the second phase. Ertekin et al. [EHR11]
proposed using a weighted majority voting to better estimate the true labels in CrowdSense, which
is then used to identify good workers.

The power of such exploration/exploitation approaches were demonstrated on numerical ex-
periments, however none of these approaches are tested on real-world crowdsourcing. All the
experiments are done using pre-collected datasets. Given these datasets they simulate a labor mar-
ket where they can track and reuse any workers they choose to. The reason that the experiments
are done on such simulated labor markets, instead of on popular crowdsourcing platforms such as
Amazon Mechanical Turk, is that on real-world crowdsourcing platforms it is almost impossible to
track workers. Many of the popular crowdsourcing platforms are completely open labor markets
where the worker crowd is large and transient. Further, oftentimes it is the workers who choose
which tasks they want to work on, hence the taskmaster cannot reuse particular workers. For
these reasons, we assume in this paper that the workers are fleeting and provide an algorithmic
solution that works even when workers are not reusable. We show that any taskmaster who wishes
to outperform our algorithm must adopt complex worker-tracking techniques. Furthermore, no
worker-tracking technique has been developed that has been proven to be foolproof. In particu-
lar, it is impossible to prevent a worker from starting over with a new account. Many tracking
algorithms are susceptible to this attack.

Another important and closely related question that has not been formally addressed in crowd-

5

sourcing literature is how to differentiate the payment based on the inferred accuracy in order to
incentivize good workers. Regardless of whether the workers are identifiable or not, when all the
tasks are completed we get an estimate of the quality of the workers. It would be desirable to pay
the good workers more in order to incentivize them to work for us in the future tasks. For example,
bonuses are built into Amazon Mechanical Turk to be granted at the taskmaster’s discretion, but
it has not been studied how to use bonuses optimally. This could be an interesting direction for
future research.

It has been observed that increasing the cost on crowdsourcing platforms does not directly
lead to higher quality of the responses [MW10]. Instead, increasing the cost only leads to faster
responses. Mason and Watts [MW10] attributes this counterintuitive findings to an “anchoring”
effect. When the (expected) payment is higher, workers perceive the value of their work to be
greater as well. Hence, they are no more motivated than workers who are paid less. However,
these studies were done in isolated experiments, and the long term effect of taskmasters’ keeping a
good reputation still needs to be understood. Workers of Mechanical Turk can manage reputation
of the taskmasters using for instance Turkopticon3, a Firefox extension that allows you to rate
taskmasters and view ratings from other workers. Another example is Turkernation4, an on-line
forum where workers and taskmasters can discuss Mechanical Turk and leave feedback.

Finally, in Mechanical Turk, it is typically the workers who choose which tasks they want to
work on and when they want to stop. Without any regulations, they might respond to multiple
batches of your tasks or stop in the middle of a batch. It is possible to systematically prevent the
same worker from coming back and repeating more than one batch of your tasks. For example, on
Amazon’s Mechanical Turk, a worker cannot repeat the same task more than once. However, it is
difficult to guarantee that a worker completes all the tasks in a batch she started on. In practice,
there are simple ways to ensure this by, for instance, conditioning the payment on completing all
the tasks in a batch.

A problem with restricting the number of tasks assigned to each worker (as we propose in
Section 2.1) is that it might take a long time to have all the batches completed. Letting the
workers choose how many tasks they want to complete allows a few eager workers to complete
enormous amount of tasks. However, if we restrict the number of tasks assigned to each worker, we
might need to recruit more workers to complete all the tasks. This problem of tasks taking long time
to finish is not just restricted to our model, but is a very common problem in open crowdsourcing
platforms. Ipeirotis [Ipe10] studied the completion time of tasks on Mechanical Turk and observed
that it follows a heavy tail distribution according to a power law. Hence, for some tasks it takes
significant amount of time to finish. A number of strategies have been proposed to complete tasks
on time. This includes optimizing pricing policy [FHI11], continuously posting tasks to stay on
the first page [BJJ+10, CHMA10], and having a large amount of tasks available [CHMA10]. These
strategies are effective in attracting more workers fast. However, in our model, we assume there
is no restrictions on the latency and we can wait until all the batches are completed, and if we
have good strategies to reduce worker response time, such strategies could be incorporated into our
system design.

Prior work. Previous crowdsourcing system designs have focused on developing inference algo-
rithms assuming that the task assignments are fixed and the workers’ responses are already given.

3http://turkopticon.differenceengines.com
4http://turkernation.com

6

None of the prior work on crowdsourcing provides any systematic treatment of task assignment
under the crowdsourcing model considered in this paper. To the best of our knowledge, we are the
first to study both aspects of crowdsourcing together and, more importantly, establish optimality.

A naive approach to solve the inference problem, which is widely used in practice, is majority
voting. Majority voting simply follows what the majority of workers agree on. When we have
many spammers in the crowd, majority voting is error-prone since it gives the same weight to all
the responses, regardless of whether they are from a spammer or a diligent workers. We will show
in Section 2.3 that majority voting is provably sub-optimal and can be significantly improved upon.

If we know how reliable each worker is, then it is straightforward to find the maximum likelihood
estimates: compute the weighted sum of the responses weighted by the log-likelihood. Although,
in reality, we do not have this information, it is possible to learn about a worker’s reliability by
comparing one worker’s answer to others’. This idea was first proposed by Dawid and Skene, who
introduced an iterative algorithm based on expectation maximization (EM) [DS79]. They con-
sidered the problem of classifying patients based on labels obtained from multiple clinicians. They
introduce a simple probabilistic model describing the clinicians’ responses, and gave an algorithmic
solution based on EM. This model, which is described in Section 2.7, is commonly used in modern
crowdsourcing settings to explain how workers make mistakes in classification tasks [SPI08].

This heuristic algorithm iterates the following two steps. In the M-step, the algorithm estimates
the error probabilities of the workers that maximizes the likelihood using the current estimates
of the answers. In the E-step, the algorithm estimates the likelihood of the answers using the
current estimates of the error probabilities. More recently, a number of algorithms followed this
EM approach based on a variety of probabilistic models [SFB+95, WRW+09, RYZ+10a]. The
crowdsourcing model we consider in this paper is a special case of these models, and we discuss
their relationship in Section 2.7. The EM approach has also been widely applied in classification
problems, where a set of labels from low-cost noisy workers is used to find a good classifier [JG03,
RYZ+10a]. Given a fixed budget, there is a trade-off between acquiring a larger training dataset or
acquiring a smaller dataset but with more labels per data point. Through extensive experiments,
Sheng, Provost and Ipeirotis [SPI08] show that getting repeated labeling can give considerable
advantage.

Despite the popularity of the EM algorithms, the performance of these approaches are only
empirically evaluated and there is no analysis that gives performance guarantees. In particular,
EM algorithms are highly sensitive to the initialization used, making it difficult to predict the quality
of the resulting estimate. Further, the role of the task assignment is not at all understood with the
EM algorithm (or for that matter any other algorithm). We want to address both questions of task
allocation and inference together, and devise an algorithmic solution that can achieve minimum
error from a fixed budget on the total number of queries. When we have a given target accuracy,
such an algorithm will achieve this target accuracy with minimum cost. Further, we want to provide
a strong performance guarantee for this approach and show that it is close to a fundamental limit
on what the best algorithm can achieve.

Contributions. In this work, we provide the first rigorous treatment of both aspects of designing
a reliable crowdsourcing system: task allocation and inference. We provide both an order-optimal
task allocation scheme (based on random graphs) and an order-optimal algorithm for inference
(based on low-rank approximation and belief propagation) on that task assignment. We show that
our algorithm, which is non-adaptive, performs as well (for the worst-case worker distribution) as

7

the optimal oracle estimator which can use any adaptive task allocation scheme.
Concretely, given a target probability of error ε and a crowd with collective quality q, we show

that spending a budget which scales as O((1/q) log(1/ε)) is sufficient to achieve probability of error
less than ε using our approach. We give a task allocation scheme and an inference algorithm with
runtime which is linear in the total number of queries (up to a logarithmic factor). Conversely,
we also show that using the best adaptive task allocation scheme together with the best inference
algorithm, and under the worst-case worker distribution, this scaling of the budget in terms of q
and ε is unavoidable. No algorithm can achieve error less than ε with number of queries smaller
than (C/q) log(1/ε) with some positive universal constant C. This establishes that our algorithm
is worst-case optimal up to a constant factor in the required budget.

Our main results show that our non-adaptive algorithm is worst-case optimal and there is no
significant gain in using an adaptive strategy. We attribute this limit of adaptation to the fact
that, in existing platforms such as Amazon’s Mechanical Turk, the workers are fleeting and the
system does not allow for exploiting good workers. Therefore, a positive message of this result is
that a good rating system for workers is essential to truly benefit from crowdsourcing platforms
using adaptivity.

Another novel contribution of our work is the analysis technique. The iterative inference al-
gorithm we introduce operates on real-valued messages whose distribution is a priori difficult to
analyze. To overcome this challenge, we develop a novel technique of establishing that these mes-
sages are sub-Gaussian and compute the parameters recursively in a closed form. This allows us
to prove the sharp result on the error rate. This technique could be of independent interest in
analyzing a more general class of message-passing algorithms.

2 Main result

To achieve a certain reliability in our answers with minimum number of queries, we propose using
random regular graphs for task allocation and introduce a novel iterative algorithm to infer the
correct answers. While our approach is non-adaptive, we show that it is sufficient to achieve
an order-optimal performance when compared to the best possible approach using adaptive task
allocations. Precisely, we prove an upper bound on the resulting error when using our approach
and a matching lower bound on the minimax error rate achieved by the best possible adaptive task
allocation together with an optimal inference algorithm. This shows that our approach is minimax
optimal up to a constant factor: it requires only a constant factor times the minimum necessary
budget to achieve a target error rate under the worst-case worker distribution. We then present the
intuitions behind our inference algorithm through connections to low-rank matrix approximations
and belief propagation.

2.1 Algorithm

Task allocation. We use a non-adaptive scheme which makes all the task assignments before any
worker arrives. This amounts to designing a bipartite graph with one type of nodes corresponding
to each of the tasks and another set of nodes corresponding to each of the batches. An edge (i, j)
indicates that task i is included in batch Tj . Once all Tj ’s are determined according to the graph,
these batches are submitted simultaneously to the crowdsourcing platform. Each arriving worker

8

will pick up one of the batches and complete all the tasks in that batch. We denote by j the worker
working on j-th batch Tj .

To design a bipartite graph, the taskmaster first makes a choice of how many workers to assign
to each task and how many tasks to assign to each worker. The task degree ` is typically determined
by how much resources (e.g. money, time, etc.) one can spend on the tasks. The worker degree r is
typically determined by how many tasks are manageable for a worker depending on the application.
The total number of workers that we need is automatically determined as n = m`/r, since the total
number of edges has to be consistent.

We will show that with such a regular graph, you can achieve probability of error which is quite
close to a lower bound on what any inference algorithm can achieve with any task assignment. In
particular, this includes all possible graphs which might have irregular degrees or have very large
worker degrees (and small number of workers) conditioned on the total number of edges being the
same. This suggests that, among other things, there is no significant gain in using an irregular
graph.

We assume that the total cost that must be paid is proportional to the total number of edges
and not the number of workers. If we have more budget we can increase `. It is then natural to
expect the probability of error to decrease, since we are collecting more responses. We will show
that the error rate decreases exponentially in ` as ` grows. However, increasing r does not incur
increase in the cost and it is not immediately clear how it affects the performance. We will show
that with larger r we can learn more about the workers and the error rate decreases as r increases.
However, how much we can gain by increasing the worker degree is limited.

Given the task and worker degrees, there are multiple ways to generate a regular bipartite graph.
We want to choose a graph that will minimize the probability of error. Deviating slightly from
regular degrees, we propose using a simple random construction known as configuration model in
random graph literature [RU08, Bol01]. We start with [m]×[`] half-edges for task nodes and [n]×[r]
half-edges for the worker nodes, and pair all the half-edges according to a random permutation of
[m`]. The resulting graph might have multi-edges where two nodes are connected by more than one
edges. However, they are very few in thus generated random graph as long as ` � n, whence we
also have r � m. Precisely, the number of double-edges in the graph converges in distribution to
Poisson distribution with mean (`− 1)(r− 1)/2 [Bol01, Page 59 Exercise 2.12]. The only property
that we need for the main result to hold is that the resulting random graph converges locally to a
random tree in probability in the large system limit. This enables us to analyze the performance
of our inference algorithm and provide sharp bounds on the probability of error.

The intuition behind why random graphs are good for our inference problem is related to the
spectral gap of random matrices. In the following, we will use the (approximate) top singular
vector of a weighted adjacency matrix of the random graph to find the correct labels. Since, sparse
random graphs are excellent expanders with large spectral gaps, this enables us to reliably separate
the low-rank structure from the data matrix which is perturbed by random noise.

Inference algorithm. We are given a task allocation graph G
(
[m]∪ [n], E

)
where we connect an

edge (i, j) if a task i is assigned to a worker j. In the following, we will use indexes i for a i-th task
node and j for a j-th worker node. We use ∂i to denote the neighborhood of node i. Each edge
(i, j) on the graph G has a corresponding worker response Aij .

To find the correct labels from the given responses of the workers, we introduce a novel iterative
algorithm. This algorithm is inspired by the celebrated belief propagation algorithm and low-rank

9

matrix approximations. The connections are explained in detail in Section 2.5 and 2.6, along with
mathematical justifications.

The algorithm operates on real-valued task messages {xi→j}(i,j)∈E and worker messages {yj→i}(i,j)∈E .
A task message xi→j represents the log-likelihood of task i being a positive task, and a worker mes-
sage yj→i represents how reliable worker j is. We start with the worker messages initialized as
independent Gaussian random variables, although the algorithm is not sensitive to a specific ini-
tialization as long as it has a strictly positive mean. We could also initialize all the messages to
one, but then we need to add extra steps in the analysis to ensure that this is not a degenerate
case. At k-th iteration, the messages are updated according to

x
(k)
i→j =

∑
j′∈∂i\j

Aij′y
(k−1)
j′→i , for all (i, j) ∈ E , and (1)

y
(k)
j→i =

∑
i′∈∂j\i

Ai′jx
(k)
i′→j , for all (i, j) ∈ E , (2)

where ∂i is the neighborhood of the task node i and ∂j is the neighborhood of the worker node
j. At task update, we are giving more weight to the answers that came from more trustworthy
workers. At worker update, we increase our confidence in that worker if the answers she gave on
another task, Ai′j , has the same sign as what we believe, xi′→j . Intuitively, a worker message
represents our belief on how ‘reliable’ the worker is. Hence, our final estimate is a weighted sum of
the answers weighted by each worker’s reliability:

t̂
(k)
i = sign

(∑
j∈∂i

Aijy
(k−1)
j→i

)
.

Iterative Algorithm

Input: E, {Aij}(i,j)∈E , kmax

Output: Estimate t̂ ∈ {±1}m
1: For all (i, j) ∈ E do

Initialize y
(0)
j→i with random Zij ∼ N (1, 1) ;

2: For k = 1, . . . , kmax do

For all (i, j) ∈ E do x
(k)
i→j ←

∑
j′∈∂i\j Aij′y

(k−1)
j′→i ;

For all (i, j) ∈ E do y
(k)
j→i ←

∑
i′∈∂j\iAi′jx

(k)
i′→j ;

3: For all i ∈ [m] do xi ←
∑

j∈∂iAijy
(kmax−1)
j→i ;

4: Output estimate vector t̂(k) = {sign(xi)} .

While our algorithm is inspired by the standard Belief Propagation (BP) algorithm for approx-
imating max-marginals [Pea88, YFW03], our algorithm is original and overcomes a few limitations
of the standard BP for this inference problem under the crowdsourcing model. First, the iterative
algorithm does not require any knowledge of the prior distribution of pj , whereas the standard BP
requires it as explained in detail in Section 2.6. Second, the iterative algorithm is provably order-
optimal for this crowdsourcing problem. We use a standard technique, known as density evolution,
to analyze the performance of our message-passing algorithm. Although we can write down the
density evolution equations for the standard BP for crowdsourcing, it is not trivial to describe or

10

compute the densities, analytically or numerically. It is also very simple to write down the density
evolution equations (cf. (13) and (14)) for our algorithm, but it is not a priori clear how one can
analyze the densities in this case either. We develop a novel technique to analyze the densities for
our iterative algorithm and prove optimality. This technique could be of independent interest to
analyzing a broader class of message-passing algorithms.

2.2 Performance guarantee and experimental results

We provide an upper bound on the probability of error achieved by the iterative inference algorithm
and task allocation according to the configuration model. The bound decays as e−C`q with a
universal constant C. Further, an algorithm-independent lower bound that we establish suggests
that such a dependence of the error on `q is unavoidable.

2.2.1 Bound on the average error probability

To lighten the notation, let ˆ̀≡ `− 1 and r̂ ≡ r − 1, and recall that q = E[(2pj − 1)2]. Using these
notations, we define σ2

k to be the effective variance in the sub-Gaussian tail of our estimates after
k iterations of our inference algorithm:

σ2
k ≡ 2q

µ2(q2 ˆ̀̂r)k−1
+
(

3 +
1

qr̂

)1− (1/q2 ˆ̀̂r)k−1

1− (1/q2 ˆ̀̂r)
.

With this, we can prove the following upper bound on the probability of error when we run k
iterations of our inference algorithm with (`, r)-regular assignments on m tasks using a crowd with
collective quality q. We refer to Section 3.1 for the proof.

Theorem 2.1. For fixed ` > 1 and r > 1, assume that m tasks are assigned to n = m`/r workers
according to a random (`, r)-regular graph drawn from the configuration model. If the distribution
of the worker reliability satisfies µ ≡ E[2pj − 1] > 0 and q2 > 1/(ˆ̀̂r), then for any t ∈ {±1}m, the
estimate after k iterations of the iterative algorithm achieves

1

m

m∑
i=1

P
(
ti 6= t̂

(k)
i

)
≤ e−`q/(2σ

2
k) +

3`r

m
(ˆ̀̂r)2k−2 . (3)

The second term, which is the probability that the resulting graph is not locally tree-like,
vanishes for large m. Hence, the dominant term in the error bound is the first term. Further,
when q2 ˆ̀̂r > 1 as per our assumption and when we run our algorithm for large enough number of
iterations, σ2

k converges linearly to a finite limit σ2
∞ ≡ limk→∞ σ

2
k such that

σ2
∞ =

(
3 +

1

qr̂

) q2 ˆ̀̂r

q2 ˆ̀̂r − 1
.

With linear convergence of σ2
k, we only need a small number of iterations to achieve σk close to

this limit. It follows that for large enough m and k, we can prove an upper bound that does not
dependent on the problem size or the number of iterations, which is stated in the following corollary.

11

Corollary 2.2. Under the hypotheses of Theorem 2.1, there exists m0 = 3`re`q/4σ
2
∞(ˆ̀̂r)2(k−1) and

k0 = 1 +
(

log(q/µ2)/ log(ˆ̀̂rq2)
)

such that

1

m

m∑
i=1

P
(
ti 6= t̂

(k)
i

)
≤ 2e−`q/(4σ

2
∞) , (4)

for all m ≥ m0 and k ≥ k0.

Proof. For ˆ̀̂rq2 > 1 as per our assumption, k = 1 + log(q/µ2)/ log(ˆ̀̂rq2) iterations suffice to ensure
that σ2

k ≤ (2q/µ2)(ˆ̀̂rq2)−k+1 + q ˆ̀(3qr̂ + 1)/(q2 ˆ̀̂r − 1) ≤ 2σ2
∞. Also, m = 3`re`q/4σ

2
∞(ˆ̀̂r)2(k−1)

suffices to ensure that (ˆ̀̂r)2k−2(3`r)/m ≤ exp{−`q/(4σ2
∞)}. �

The required number of iterations k0 is small (only logarithmic in `, r, q, and µ) and does not
depend on the problem size m. On the other hand, the required number of tasks m0 in our main
theorem is quite large. However, numerical simulations suggest that the actual performance of our
approach is not very sensitive to the number of tasks and the bound still holds for tasks of small
size as well. For example, in Figure 1 (left), we ran numerical experiment with m = 1000, q = 0.3,
and k = 20, and the resulting error exhibits exponential decay as predicted by our theorem even
for large ` = r = 30. In this case, theoretical requirement on the number of tasks m0 is much larger
than what we used in the experiment.

Consider a set of worker distributions {F |EF [(2p − 1)2] = q} that have the same collective
quality q. These distributions that have the same value of q can give different values for µ ranging
from q to q1/2. Our main result on the error rate suggests that the error does not depend on the
value of µ. Hence, the effective second moment q is the right measure of the collective quality of
the crowd, and the effective first moment µ only affects how fast the algorithm converges, since
we need to run our inference algorithm k = Ω(1 + log(q/µ2)/ log(ˆ̀̂rq2)) iterations to guarantee the
error bound.

The iterative algorithm is efficient with run-time comparable to that of majority voting which
requires O(m`) operations. Each iteration of the iterative algorithm requires O(m`) operations, and
we need O(1+log(q/µ2)/ log(q2 ˆ̀̂r)) iterations to ensure an error bound in (4). By definition, we have
q ≤ µ ≤ √q. The run-time is the worst when µ = q, which happens under the spammer-hammer
model, and it is the smallest when µ =

√
q which happens if pj = (1 +

√
q)/2 deterministically. In

any case, we only need extra logarithmic factor that does not increase with compared to majority
voting, and this Notice that as we increase the number of iterations, the messages converge to
an eigenvector of a particular sparse matrix of dimensions m` × m`. This suggests that we can
alternatively compute the messages using other algorithms for computing the top singular vector
of large sparse matrices that are known to converge faster (e.g. Lanczos algorithm [Lan50]).

Next, we make a few remarks on the performance guarantee.
First, the assumption that µ > 0 is necessary. If there is no assumption on µ, then we cannot

distinguish if the responses came from tasks with {ti}i∈[m] and workers with {pj}j∈[n] or tasks with
{−ti}i∈[m] and workers with {1 − pj}j∈[n]. Statistically, both of them give the same output. The
hypothesis on µ allows us to distinguish which of the two is the correct solution. In the case when
we know that µ < 0, we can use the same algorithm changing the sign of the final output and get
the same performance guarantee.

Second, our algorithm does not require any information on the distribution of pj . However, in
order to generate a graph that achieves an optimal performance, we need the knowledge of q for

12

selecting the degree ` = Θ(1/q log(1/ε)). Here is a simple way to overcome this limitation at the
loss of only additional constant factor, i.e. scaling of cost per task still remains Θ(1/q log(1/ε)). To
that end, consider an incremental design in which at step a the system is designed assuming q = 2−a

for a ≥ 1. At step a, we design two replicas of the task allocation for q = 2−a. Now compare the
estimates obtained by these two replicas for all m tasks. If they agree amongst m(1−2ε) tasks, then
we stop and declare that as the final answer. Otherwise, we increase a to a + 1 and repeat. Note
that by our optimality result, it follows that if 2−a is less than the actual q then the iteration must
stop with high probability. Therefore, the total cost paid is Θ(1/q log(1/ε)) with high probability.
Thus, even lack of knowledge of q does not affect the order optimality of our algorithm.

Further, unlike previous approaches based on Expectation Maximization (EM), the iterative
algorithm is not sensitive to initialization and converges to a unique solution from a random initial-
ization with high probability. This follows from the fact that the algorithm is essentially computing
a leading eigenvector of a particular linear operator.

Finally, we observe a phase transition at ˆ̀̂rq2 = 1. Above this phase transition, when ˆ̀̂rq2 > 1,
we will show that our algorithm is order-optimal and the probability of error is significantly smaller
than majority voting. However, perhaps surprisingly, when we are below the threshold, when
ˆ̀̂rq2 < 1, we empirically observe that our algorithm exhibit a fundamentally different behavior (cf.
Figure 1). The error we get after k iterations of our algorithm increases with k. In this regime,
we are better off stopping the algorithm after 1 iteration, in which case the estimate we get is
essentially the same as the simple majority voting, and we cannot do better than majority voting.
This phase transition is universal and we observe similar behavior with other inference algorithms
including EM approaches. We provide more discussions on the choice of ` and the limitations of
having small r in the following section.

2.2.2 Minimax optimality of our approach

For a task master, the natural core optimization problem of her concern is how to achieve a certain
reliability in the answers with minimum cost. Throughout this paper, we assume that the cost is
proportional to the total number of queries. In this section, we show that if a taskmaster wants to
achieve a target error rate of ε, she can do so using our approach with budget per task scaling as
O((1/q) log(1/ε)) for a broad range of worker degree r. Compared to the necessary condition which
we provide in Section 2.3, this is within a constant factor from what is necessary using the best
non-adaptive task assignment and the best inference algorithm. Further, we show in Section 2.4
that this scaling in the budget is still necessary if we allow using the best adaptive task assignment
together with the best inference algorithm. This proves that our approach is minimax optimal up
to a constant factor in the budget.

Assuming for now that there is no restrictions on the worker degree r and we can assign as
many tasks to each worker as we want, we can get the following simplified upper bound on the
error that holds for all r ≥ 1 + 1/q. To simplify the resulting bound, let us assume for now that
ˆ̀̂rq ≥ 2. Then, we get that σ2

∞ ≤ 2(3 + 1/r̂q). Then from (4), we get the following bound:

1

m

∑
i∈[m]

P(ti 6= t̂
(k)
i) ≤ 2e−`q/32 ,

for large enough m ≥ m0. In terms of the budget or the number of queries necessary to achieve a
target accuracy, we get the following sufficient condition as a corollary.

13

Corollary 2.3. Using the non-adaptive task assignment scheme with r ≥ 1 + 1/q and the iterative
inference algorithm introduced in Section 2.1, it is sufficient to query (32/q) log(2/ε) times per task
to guarantee that the probability of error is at most ε for any ε ≤ 1/2 and for all m ≥ m0.

We provide a matching minimax necessary condition up to a constant factor for non-adaptive
algorithms in Section 2.3. When the nature can choose the worst-case worker distributions, no non-
adaptive algorithm can achieve error less than ε with budget per task smaller than (C ′/q) log(1/2ε)
with some universal positive constant C ′. This establishes that under the non-adaptive scenario,
our approach is minimax optimal up to a constant factor for large enough m. With our approach
you only need to ask (and pay for) a constant factor more than what is necessary using the best non-
adaptive task assignment scheme together with the best inference algorithm under the worst-case
worker distribution.

Perhaps surprisingly, we will show in Section 2.4 that the necessary condition does not change
even if we allow adaptive task assignments. No algorithm, adaptive or non-adaptive, can achieve
error less than ε without asking (C ′′/q) log(1/2ε) queries per task with some universal positive
constant C ′′. Hence, our non-adaptive approach achieves minimax optimal performance that can
be achieved by the best adaptive scheme.

In practice, we might not be allowed to have large r depending on the application. For different
regimes of the restrictions on the allowed worker degree r, we need different choices of `. When
we have a target accuracy ε, the following corollary establishes that we can achieve probability of
error ε with ` ≥ C(1 + 1/r̂q)(1/q) log(1/ε) for any value of r.

Corollary 2.4. Using the non-adaptive task assignment scheme with any r and the iterative in-
ference algorithm introduced in Section 2.1, it is sufficient to query (24 + 8/r̂q)(1/q) log(2/ε) times
per task to guarantee that the probability of error is at most ε for any ε ≤ 1/2 and for all m ≥ m0.

Proof. We will show that for ` ≥ max{1 + 2/(r̂q2) , 8(3 + 1/r̂q)(1/q) log(1/ε)}, the probability of
error is at most ε. Since, 1+2/(r̂q2) ≤ 8(3+1/r̂q)(1/q) log(1/ε) for ε ≤ 1/2, this proves the corollary.
Since ˆ̀̂rq2 ≥ 2 from the first condition, we get that σ2

∞ ≤ 2(3+1/r̂q). Then, the probability of error
is upper bounded by 2 exp{−`q/(24 + 8/r̂q)}. This implies that for ` ≥ (24 + 8/r̂q)(1/q) log(2/ε)
the probability of error is at most ε. �

For r ≥ C ′/q, this implies that our approach requires O((1/q) log(1/ε)) queries and it is minimax
optimal. However, for r = O(1), our approach requires O((1/q2) log(1/ε)) queries. This is due to
the fact that when r is small, we cannot efficiently learn the quality of the workers and need
significantly more questions to achieve the accuracy we desire. Hence, in practice, we want to be
able to assign more tasks to each worker when we have low-quality workers.

2.2.3 Experimental results

Figure. 1 shows the comparisons between probabilities of error achieved by different inference
algorithms, but on the same task assignment using regular bipartite random graphs. We ran 20
iterations of EM and our iterative algorithm, and also the spectral approach of using leading left
singular vector of A for estimation. The spectral approach, which we call Singular Vector in the
graph, is explained in detail in Section 2.5. The error rates are compared with those of majority
voting and the oracle estimator. The oracle estimator performance sets a lower bound on what any
inference algorithm can achieve, since it knows all the values of pj ’s. For the numerical simulation

14

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30

P
ro

b
ab

il
it

y
 o

f
er

ro
r

Number of queries per task

Majority Voting
Expectation Maximization

Singular Vector
Iterative Algorithm

Oracle Estimator
 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.1 0.2 0.3 0.4

P
ro

b
ab

il
it

y
 o

f
er

ro
r

Collective quality of the crowd = q

Majority Voting
Expectation Maximization

Singular Vector
Iterative Algorithm

Oracle Estimator

Figure 1: The iterative algorithm improves over majority voting and EM algorithm. Using the top
singular vector for inference has similar performance as our iterative approach.

on the left-hand side, we set m = 1000, ` = r and used the spammer hammer model for the
distribution of the workers with q = 0.3. According to our theorem, we expect a phase transition
at ` = 1 + 1/0.3 = 4.3333. From the figure, we observe that the iterative inference algorithm
starts to perform better than majority voting at ` = 5. For the figure on the right-hand side, we
set ` = 25. For fair comparisons with the EM approach, we used an implementation of the EM
approach in Java by Sheng et al. [SPI08], which is publicly available.

We also ran two experiments with real crowd using Amazon Mechanical Turk. In our experi-
ments, we created tasks for comparing colors; we showed three colors on each task, one on the top
and two on the bottom. We asked the crowd to indicate “if the color on the top is more similar to
the color on the left or on the right”.

The first experiment confirms that the ground truth for these color comparisons tasks are what
is expected from pairwise distances in the Lab color space. The distances in the Lab color space
between the a pair of colors are known to be a good measure of the perceived distance between the
pair [WS67]. To check the validity of this Lab distance we collected 210 responses on each of the 10
color comparison tasks. As shown in Figure. 2, for all 10 tasks, the majority of the 210 responses
were consistent with the Lab distance based ground truth.

Next, to test our approach, we created 50 of such similarity tasks and recruited 28 workers to
answer all the questions. Once we have this data, we can subsample the data to simulate what
would have happened if we collected smaller number of responses per task. The resulting average
probability of error is illustrated in Figure. 3. For this crowd from Amazon Mechanical Turk,
we can estimate the collective quality from the data, which is about q ' 0.175. Theoretically,
this indicates that phase transition should happen when (` − 1)((50/28)` − 1)q2 = 1, since we set
r = (50/28)`. With this, we expect phase transition to happen around ` ' 5. In Figure. 3, we see
that our iterative algorithm starts to perform better than majority voting around ` = 8.

2.3 Fundamental limit under the non-adaptive scenario

Under the non-adaptive scenario, we are allowed to use only non-adaptive task assignment schemes
which assign all the tasks a priori and collect all the responses simultaneously. In this section, we

15

151 59 123 87 141 69 126 84 109 101 121 89 141 69 141 69 149 61 159 51

Figure 2: Experimental results on color comparison using real data from Amazon’s Mechanical
Turk. The color on the left is closer to the one on the top in Lab distance for each triplet. The
votes from 210 workers are shown below each triplet.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4 8 12 16 20 24 28

P
ro

b
ab

il
it

y
 o

f
er

ro
r

Number of queries per task

Majority Voting
Expectation Maximization

Iterative Algorithm

Figure 3: The average probability of error on color comparisons using real data from Amazon’s
Mechanical Turk.

16

investigate the fundamental limit on how small an error can be achieved using the best possible non-
adaptive task assignment scheme together with the best possible inference algorithm. In particular,
we are interested in the minimax optimality: What is the minimum error that can be achieved under
the worst-case worker distribution? To this end, we analyze the performance of an oracle estimator
when the workers’ latent qualities are drawn from a specific distribution and provide a lower bound
on the minimax rate on the probability of error. Compared to our main result, this establishes that
our approach is minimax optimal up to a constant factor.

In terms of the budget, the natural core optimization problem of our concern is how to achieve
a certain reliability in our answers with minimum cost. Let us assume that the cost is proportional
to the total number of queries. We show that for a given target error rate ε, the total budget
sufficient to achieve this target error rate using our algorithm is within a constant factor from what
is necessary using the best non-adaptive task assignment and the best inference algorithm.

Fundamental limit. Consider a crowd characterized by worker distribution F such that pj ∼ F .
Let Fq be a set of all distributions on [0, 1], such that the collective quality is parametrized by q:

Fq =
{
F | EF [(2pj − 1)2] = q

}
.

We want to prove a lower bound on the minimax rate on the probability of error, which only
depends on q and `. Define the minimax rate as

min
τ∈T`,t̂

max
t∈{±1}m,F∈Fq

1

m

∑
i∈[m]

P
(
ti 6= t̂i

)
,

where t̂ ranges over all estimators which are measurable functions over the responses, and τ ranges
over the set T` of all task assignment schemes which are non-adaptive and ask m` queries in total.
Here the probability is taken over all realizations of pj ’s, Aij ’s, and the randomness introduced in
the task assignment and the inference.

Consider any non-adaptive scheme that assigns `i workers to the i-th task. The only constraint
is that the average number of queries is bounded by (1/m)

∑
i∈[m] `i ≤ `. To get a lower bound on

the minimum achievable error, we consider an oracle estimator that has access to all the pj ’s, and
hence can make an optimal estimation. Further, since we are proving minimax optimality and not
instance-optimality, the worst-case error rate will always be lower bounded by the error rate for any
choice of worker distribution. In particular, we prove a lower bound using the spammer-hammer
model. Concretely, we assume the pj ’s are drawn from the spammer-hammer model with perfect
hammers:

pj =

{
1/2 with probability 1− q ,

1 otherwise .

Notice that the use of q is consistent with E[(2pj − 1)2] = q. Under the spammer-hammer model,
the oracle estimator only makes a mistake on task i if it is only assigned to spammers, in which
case we flip a fair coin to achieve error probability of half. Formally,

P(t̂i 6= ti) =
1

2
(1− q)`i .

By convexity and using Jensen’s inequality, the average probability of error is lower bounded by

1

m

∑
i∈[m]

P(t̂i 6= ti) ≥
1

2
(1− q)` .

17

Since we are interested in how many more queries are necessary as the quality of the crowd dete-
riorates, we are going to assume q ≤ 2/3, in which case (1 − q) ≥ e−(q+q2). As long as total m`
queries are used, this lower bound holds regardless of how the actual tasks are assigned. And since
this lower bound holds for a particular choice of F , it holds for the worst case F as well. Hence,
for the best task assignment scheme and the best inference algorithm, we have

min
τ∈T`,t̂

max
t∈{±1}m,F∈Fq

1

m

∑
i∈[m]

P
(
ti 6= t̂i

)
≥ 1

2
e−(q+q2)` .

This lower bound on the minimax rate holds for any positive integer m, and regardless of the
number of workers or the number of queries, r, assigned to each worker. In terms of the average
number of queries necessary to achieve a target accuracy of ε, this implies the following necessary
condition.

Lemma 2.5. Assuming q ≤ 2/3 and the non-adaptive scenario, if the average number of queries
per task is less than (1/2q) log(1/2ε), then no algorithm can achieve average probability of error
less than ε for any m under the worst-case worker distribution.

To prove this worst-cased bound, we analyzed a specific distribution of the spammer-hammer
model. However, the result (up to a constant factor) seems to be quite general and can also be
proved using different distributions, e.g. when all workers have the same quality. The assumption
on q can be relaxed as much as we want, by increasing the constant in the necessary budget.
Compared to the sufficient condition in Corollary 2.3 this establishes that our approach is minimax
optimal up to a constant factor. With our approach you only need to ask (and pay for) a constant
factor more than what is necessary for any algorithm.

Majority voting. As a comparison, we can do similar analysis for the simple majority voting and
show that the performance is significantly worse than our approach. The next lemma provides a
bound on the minimax rate of majority voting. A proof of this lemma is provided in Section 3.4.

Lemma 2.6. For any C < 1, there exists a positive constant C ′ such that when q ≤ C, the error
achieved by majority voting is at least

min
τ∈T`

max
t∈{±1}m,F∈Fq

1

m

∑
i∈[m]

P
(
ti 6= t̂i

)
≥ e−C

′(`q2+1) .

In terms of the number of queries necessary to achieve a target accuracy ε using majority
voting, this implies that we need to ask at least (c/q2) log(c′/ε) queries per task for some universal
constants c and c′. Hence, majority voting is significantly more costly than our approach in terms
of budget. Our algorithm is more efficient in terms of computational complexity as well. Simple
majority voting requires O

(
(m/q2) log(1/ε)

)
operations to achieve target error rate ε in the worst

case. From Corollary 2.2, together with ` = O((1/q) log(1/ε)) and `rq2 = Ω(1), we get that our
approach requires O((m/q) log(1/q) log(1/ε)) operations in the worst case.

2.4 Fundamental limit under the adaptive scenario

In terms of the scaling of the budget necessary to achieve a target accuracy, we established that
using a non-adaptive task assignment, no algorithm can do better than our approach. One might

18

prefer a non-adaptive scheme in practice because having all the batches of tasks processed in parallel
reduces the latency. This is crucial in many applications, especially in real-time applications such
as searching, visual information processing, and document processing [BJJ+10, BLM+10, YKG10,
BBMK11]. However, by switching to an adaptive task assignment, one might hope to be more
efficient and still obtain a desired accuracy from fewer questions. On one hand, adaptation can
help improve performance. But on the other hand, it can significantly complicate system design due
to careful synchronization requirements. In this section, we want to prove an algorithm-independent
upper bound on how much one can gain by using an adaptive task allocation.

When the identities of the workers are known, one might be tempted to first identify which
workers are more reliable and then assign all the tasks to those workers in an explore/exploit
manner. However, in typical crowdsourcing platforms such as Amazon Mechanical Turk, it is
unrealistic to assume that we can identify and reuse any particular worker, since typical workers
are neither persistent nor identifiable and batches are distributed through an open-call. Hence,
exploiting a reliable worker is not possible. However, we can adaptively resubmit batches of tasks;
we can dynamically choose which subset of tasks to assign to the next arriving worker. In particular,
we can allocate tasks to the next batch based on all the information we have on all the tasks from
the responses collected thus far. For example, one might hope to reduce uncertainty more efficiently
by adaptively collecting more responses on those tasks that she is less certain about.

Fundamental limit. In this section, we show that, perhaps surprisingly, there is no significant
gain in switching from our non-adaptive approach to an adaptive strategy when the workers are
fleeting. We first prove a lower bound on the minimax error rate: the error that is achieved by
the best inference algorithm t̂ using the best adaptive task allocation scheme τ under a worst-case
worker distribution F and the worst-case true answers t. Let T̃` be the set of all task assignment
schemes that use at most m` queries in total. Then, we can show the following lower bound on the
minimax rate on the probability of error. A proof of this theorem is provided in Section 3.5.

Theorem 2.7. When q ≤ C for any constant C < 1, there exists a positive constant C ′ such that

min
τ∈T̃`,t̂

max
t∈{±1}m,F∈Fq

1

m

∑
i∈[m]

P
(
ti 6= t̂i

)
≥ 1

2
e−C

′ `q , (5)

for all m where the task assignment scheme τ ranges over all adaptive schemes that use at most
m` queries and t̂ ranges over all estimators that are measurable functions over the responses.

We cannot avoid the factor of half in the lower bound, since we can always achieve error prob-
ability of half without asking any queries (with ` = 0). In terms of the budget required to achieve
a target accuracy, the above lower bound proves that no algorithm, adaptive or non-adaptive, can
achieve an error rate less than ε with number of queries per task less than (C ′/q) log(2/ε) in the
worst case of worker distribution.

Corollary 2.8. Assuming q ≤ C for any constant C < 1 and the iterative scenario, there exists a
positive constant C ′ such that if the average number of queries is less than (C ′/q) log(1/2ε), then
no algorithm can achieve average probability of error less than ε for any m under the worst-case
worker distribution.

Compared to Corollary 2.3, we have a matching sufficient and necessary conditions up to a
constant factor. This proves that there is no significant gain in using an adaptive scheme, and our

19

approach achieves minimax-optimality up to a constant factor with a non-adaptive scheme. This
limitation of adaptation strongly relies on the fact that workers are fleeting in existing platforms and
can not be reused. Therefore, architecturally our results suggest that building a reliable reputation
system for workers would be essential to harnessing the potential of adaptive designs.

A counter example for instance-optimality. The above corollary establishes minimax-
optimality: for the worst-case worker distribution, no algorithm can improve over our approach
other than improving the constant factor in the necessary budget. However, this does not imply
instance-optimality. In fact, there exists a family of worker distributions where all non-adaptive
algorithms fail to achieve order-optimal performance whereas a trivial adaptive algorithm succeeds.
Hence, for particular instances of worker distributions, there exists a gap between what can be
achieved using non-adaptive algorithms and adaptive ones.

We will prove this in the case of the spammer-hammer model where each new worker is a
hammer (pj = 1) with probability q or a spammer (pj = 1/2) otherwise. We showed in Section 2.3
that no non-adaptive algorithm can achieve an error less than (1/2)e−C

′`q for any value of m.
In particular, this does not vanish even if we increase m. We will introduce a simple adaptive
algorithm and show that this algorithm achieves an error probability that goes to zero as m grows.

The algorithm first groups all the tasks into
√
m disjoint sets of size

√
m each. Starting with

the first group, the algorithm assigns all
√
m tasks to new arriving workers until it sees two workers

who agreed on all
√
m tasks. It declares those responses as its estimate for this group and moves

on to the next group. This process is repeated until it reaches the allowed number of queries. This
estimator makes a mistake on a group if (a) there were two spammers who agreed on all

√
m tasks

or (b) we run out of allowed number of queries before we finish the last group. Formally, we can
prove the following upper bound on the probability of error.

Lemma 2.9. Under the spammer-hammer model, when the allowed number of queries per task
` is larger than 2/q, there is an adaptive task allocation scheme and an inference algorithm that
achieves average probability of error at most m`22−

√
m + e−(2/`)(`q−2)2

√
m.

Proof. Recall that we are only allowed `m queries. Since we are allocating
√
m queries per worker,

we can only ask at most `
√
m workers. First, the probability that there is at least one pair of

spammers (among all possible pairs from `
√
m workers) who agreed an all

√
m responses is at most

m`22−
√
m. Next, given that no pairs of spammers agreed on all their responses, the probability

that we run out of all m` allowed queries is the probability that the number of hammers in `
√
m

workers is strictly less than 2
√
m (which is the number of hammers we need in order to terminate the

algorithm, conditioned on that no spammers agree with one another). By standard concentration
results, this happens with probability at most e−(2/`)(`q−2)2

√
m. �

This proves the existence of an adaptive algorithm which achieves vanishing error probability
as m grows for a board range of task degree `. Comparing the above upper bound with the known
lower bound for non-adaptive schemes, this proves that non-adaptive algorithms cannot be instance
optimal: there is a family of distributions where adaptation can significantly improve performance.
This is generally true when there is a strictly positive probability that a worker is a hammer
(pj = 1).

One might be tempted to apply the above algorithm in more general settings other than the
spammer-hammer model. However, this algorithm fails when there are no perfect workers in the

20

crowd. If we apply this algorithm in such a general setting, then it produces useless answers: the
probability of error approaches half as m grows for any finite `.

2.5 Connections to low-rank matrix approximation

In this section, we first explain why the top singular vector of the data matrix A reveals the true
answers of the tasks, where A is the m × n matrix of the responses and we fill in zeros wherever
we have no responses collected. This naturally defines a spectral algorithm for inference which
we present next. It was proven in [KOS11] that the error achieved by this spectral algorithm is
upper bounded by C/(`q) with some constant C. But numerical experiments (cf. Figure 1) suggest
that the error decays much faster, and that the gap is due to the weakness of the analysis used
in [KOS11]. Inspired by this spectral approach, we introduced a novel inference algorithm that
performs as well as the spectral algorithm (cf. Figure 1) and proved a much tighter upper bound
on the resulting error which scales as e−C

′`q with some constant C ′. Our inference algorithm is
based on power iteration, which is a well-known algorithm for computing the top singular vector of
a matrix, and Figure 1 suggests that both algorithms are equally effective and the resulting errors
are almost identical.

The data matrix A can be viewed as a rank-1 matrix that is perturbed by random noise. Since,
E[Aij |ti,pj] = (r/m)ti(2pj − 1), the conditional expectation of this matrix is

E
[
A | t,p

]
=

(r
m

)
t(2p− 1)T ,

where 1 is the all ones vector, the vector of correct solutions is t = {ti}i∈[m] and the vector of
worker reliability is p = {pj}j∈[n]. Notice that the rank of this conditional expectation matrix is
one and this matrix reveals the correct solutions exactly. We can decompose A into a low-rank
expectation plus a random perturbation:

A =
(r
m

)
t(2p− 1)T + Z ,

where Z ≡ A−E
[
A | t,p

]
is the random perturbation with zero mean. When the spectral radius of

the noise matrix Z is much smaller than the spectral radius of the signal, we can correctly extract
most of t using the leading left singular vector of A.

Under the crowdsourcing model considered in this paper, an inference algorithm using the top
left singular vector of A was introduced and analyzed by Karger et al. [KOS11]. Let u be the
top left singular vector of A. They proposed estimating t̂i = sign(ui) and proved an upper bound
on the probability of error that scales as O(1/`q). The main technique behind this result is in
analyzing the spectral gap of A. It is not difficult to see that the spectral radius of the conditional
expectation matrix is (r/m)‖t(2p−1)T ‖2 =

√
`rq, where the operator norm of a matrix is denoted

by ‖X‖2 ≡ maxa ‖Xa‖/‖a‖. Karger et al. proved that the spectral radius of the perturbation ‖Z‖2
is in the order of (`r)1/4. Hence, when `rq2 � 1, we expect a separation between the conditional
expectation and the noise.

One way to compute the leading singular vector is to use power iteration: for two vectors u ∈ Rm
and v ∈ Rn, starting with a randomly initialized v, power iteration iteratively updates u and v by
repeating u = Av and v = ATu. It is known that normalized u (and v) converges linearly to the
leading left (and right) singular vector. Then we can use the sign of ui to estimate ti. Writing the

21

update rule for each entry, we get

ui =
∑
j∈∂i

Aijvj , vj =
∑
i∈∂j

Aijui .

Notice that this power iteration update rule is almost identical to those of message passing updates
in (1) and (2). The ` task messages {xi→j}j∈∂i from task i are close in value to the entry ui of the
power iteration. The r worker messages {yj→i}i∈∂j from worker j are close in value to the entry vj
of the power iteration. Numerical simulations in Figure 1 suggest that the quality of the estimates
from the two algorithms are almost identical. However, the known performance guarantee for the
spectral approach is weak. We developed novel analysis techniques to analyze our message passing
algorithm, and provide an upper bound on the error that scales as e−C`q. It might be possible
to apply our algorithm, together with the analysis techniques, to other problems where the top
singular vector of a data matrix is used for inference.

2.6 Connections to belief propagation

The crowdsourcing model described in this paper can naturally be described using a graphical
model. Let G([m]× [n], E,A) denote the weighted bipartite graph, where [m] is the set of m task
nodes, [n] is the set of n worker nodes, E is the set of edges connecting a task to a worker who is
assigned that task, and A is the set of weights on those edges according to the responses. Given such
a graph, we want to find a set of task answers that maximize the following posterior distribution
F (t̂, p) : {±1}m × [0, 1]n → R+.

max
t̂,p

∏
a∈[n]

F(pa)
∏

(i,a)∈E

{
paI(t̂i = Aia) + (1− pa)I(t̂i 6= Aia)

}
,

where with a slight abuse of notation we use F(·) to denote the prior probability density function
of pa’s and we use i and j to denote task nodes and a and b to denote worker nodes. For such
a problem of finding the most probable realization in a graphical model, the celebrated belief
propagation (BP) gives a good approximate solution. To be precise, BP is an approximation for
maximizing the marginal distribution of each variable, and a similar algorithm known as min-sum
algorithm approximates the most probable realization. However, the two algorithms are closely
related, and in this section we only present standard BP. There is a long line of literature providing
the theoretical and empirical evidences supporting the use BP [Pea88, YFW03].

Under the crowdsourcing graphical model, standard BP operates on two sets of messages: the
task messages {x̃i→a}(i,a)∈E and the worker messages {ỹa→i}(i,a)∈E . In our iterative algorithm the
messages were scalar variables with real values, whereas the messages in BP are probability density
functions. Each task message corresponds to an edge and each worker message also corresponds
to an edge. The task node i corresponds to random variable t̂i, and the task message from task
i to worker a, denoted by x̃i→a, represents our belief on the random variable t̂i. Then x̃i→a is a
probability distribution over {±1}. Similarly, a worker node a corresponds to a random variable
pa. The worker message ỹa→i is a probability distribution of pa over [0, 1]. Following the standard
BP framework, we iteratively update the messages according to the following rule. We start with

22

randomly initialized x̃i→a’s and at k-th iteration,

ỹ
(k)
a→i(pa) ∝ F(pa)

∏
j∈∂a\i

{
(pa + p̄a + (pa − p̄a)Aja)x̃(k)

j→a(+1) + (pa + p̄a − (pa − p̄a)Aja)x̃(k)
j→a(−1)

}
,

x̃
(k+1)
i→a (t̂i) ∝

∏
b∈∂i\a

∫ (
ỹ

(k)
b→i(pb)

(
pbI(Aib=t̂i)

+ p̄bI(Aib 6=t̂i)
))
dpb ,

for all (i, a) ∈ E and for p̄ = 1 − p. The above update rule only determines the messages up to
a scaling, where ∝ indicates that the left-hand side is proportional to the right-hand side. The
algorithm produces the same estimates in the end regardless of the scaling. After a predefined
number of iterations, we make a decision by computing the decision variable

x̃i(t̂i) ∝
∏
b∈∂i

∫ (
ỹ

(k)
b→i(pb)

(
pbI(Aib=t̂i)

+ p̄bI(Aib 6=t̂i)
))
dpb ,

and estimating t̂i = sign
(
x̃i(+)− x̃i(−)

)
.

In a special case of a Haldane prior, where a worker either always tells the truth or always gives
the wrong answer,

pj =

{
0 with probability 1/2 ,
1 otherwise ,

the above BP updates boils down to our iterative inference algorithm. Let xi→a = log
(
x̃i→a(+)/x̃i→a(−)

)
denote the log-likelihood of x̃i→a(·). Under Haldane prior, pa is also a binary random variable. We
can use ya→i = log

(
ỹa→i(1)/ỹa→i(0)

)
to denote the log-likelihood of ỹa→i(·). After some simplifi-

cations, the above BP update boils down to

y
(k)
a→i =

∑
j∈∂a\i

Ajax
(k−1)
j→a ,

x
(k)
i→a =

∑
b∈∂i\a

Aiby
(k)
b→i .

This is exactly the same update rule as our iterative inference algorithm (cf. Eqs. (1) ad (2)).
Thus, our algorithms is belief propagation for a very specific prior. Despite this, it is surprising
that it performs near optimally (with random regular graph for task allocation) for all priors. This
robustness property is due to the models assumed in this crowdsourcing problem and is not to be
expected in general.

2.7 Discussion

In this section, we discuss several implications of our main results and possible future research
directions in generalizing the model studied in this paper.

Below phase transition. We first discuss the performance guarantees in the below threshold
regime when ˆ̀̂rq2 < 1. As we will show, the bound in (4) always holds even when ˆ̀̂rq2 ≤ 1.
However, numerical experiments suggest that we should stop our algorithm at first iteration when
we are below the phase transition as discussed in Section 2.2. We provide an upper bound on

23

the resulting error when only one iteration of our iterative inference algorithm is used (which is
equivalent as majority voting algorithm).

Notice that the bound in (4) is only meaningful when it is less than a half. When ˆ̀̂rq2 ≤ 1
or `q < 24 log 2, the right-hand side of inequality (4) is always larger than half. Hence the upper
bound always holds, even without the assumption that ˆ̀̂rq2 > 1, and we only have that assumption
in the statement of our main theorem to emphasize the phase transition in how our algorithm
behaves.

However, we can also try to get a tighter bound than a trivial half implied from (4) in the below
threshold regime. Specifically, we empirically observe that the error rate increases as the number
of iterations k increases. Therefore, it makes sense to use k = 1. In which case, the algorithm
essentially boils down to the majority rule. We can prove the following error bound which generally
holds for any regime of `, r and the worker distribution F . A proof of this statement is provided
in Section 3.6.

Lemma 2.10. For any value of `, r, and m, and any distribution of workers F , the estimates we
get after first step of our algorithm achieve

1

m

m∑
i=1

P
(
ti 6= t̂i

)
≤ e−`µ

2/4 , (6)

where µ = EF [2pj − 1].

Since µ is always between q and q1/2, the scaling of the above error exponent is always worse
than what we have after running our algorithm for a long time (cf. Theorem 2.1). This suggests
that iterating our inference algorithm helps when ˆ̀̂rq2 > 1 and especially when the gap between µ
and q is large. Under these conditions, our approach does significantly better than majority voting
(cf. Figure 1). The gain of using our approach is maximized when there exists both good workers
and bad workers. This is consistent with our intuition that when there is a variety of workers, our
algorithm can identify the good ones and get better estimates.

Golden standard units. Next, consider the variation where we ask questions to workers whose
answers are already known (also known as ‘gold standard units’). We can use these to assess the
quality of the workers. There are two ways we can use this information. First, we can embed ‘seed
gold units’ along with the standard tasks, and use these ‘seed gold units’ in turn to perform more
informed inference. However, we can show that there is no gain in using such ‘seed gold units’.
The optimal lower bound of 1/q log(1/ε) essentially utilizes the existence of oracle that can identify
the reliability of every worker exactly, i.e. the oracle has a lot more information than what can
be gained by such embedded golden questions. Therefore, clearly ‘seed gold units’ do not help the
oracle estimator, and hence the order optimality of our approach still holds even if we include all
the strategies that can utilize these ‘seed gold units’. However, in practice, it is common to use
the ‘seed gold units’, and this can improve the constant factor in the required budget, but not the
scaling.

Alternatively, we can use ‘pilot gold units’ as qualifying or pilot questions that the workers must
complete to qualify to participate. Typically a taskmaster do not have to pay for these qualifying
questions and this provides an effective way to increase the quality of the participating workers.
Our approach can benefit from such ‘pilot gold units’, which has the effect of increasing the effective
collective quality of the crowd q. Further, if we can ‘measure’ how the distribution of workers change

24

when using pilot questions, then our main result fully describes how much we can gain by such
pilot questions. In any case, pilot questions only change the distribution of participating workers,
and the order-optimality of our approach still holds even if we compare all the schemes that use
the same pilot questions.

How to optimize over a multiple choices of crowds. We next consider the scenario where we
have a choice over which crowdsourcing platform to use from a set of platforms with different crowds.
Each crowd might have different worker distributions with different prices. Specifically, suppose
there are K crowds of workers: the k-th crowd has collective quality qk and requires payment of ck
to perform a task. Now our optimality result suggests that the per-task cost scales as ck/qk log(1/ε)
if we only used workers of class k. More generally, if we use a mix of these workers, say αk fraction
of workers from class k, with

∑
k αk = 1, then the effective parameter q =

∑
k αkqk. And subject to

this, the optimal per task cost scales as (
∑

k αkck)/(
∑

k αkqk) log(1/ε). This immediately suggests
that the optimal choice of fraction αk must be such that αk > 0 only if ck/qk = mini ci/qi. That is,
the optimal choice is to select workers only from the classes that have maximal quality per cost ratio
of qk/ck over k ∈ [K]. One implication of this observation is that it suggests a pricing scheme for
crowdsourcing platforms. If you are managing a crowdsourcing platform with the collective quality
q and the cost c and there is another crowdsourcing platform with q′ and c′, you want to choose
the cost such that the quality per cost ratio is at least as good as the other crowd: q/c ≥ q′/c′.

General crowdsourcing models. Finally, we consider possible generalizations of our model.
The model assumed in this paper does not capture several factors: tasks with different level of
difficulties or workers who always answer positive or negative. In general, the responses of a worker
j to a binary question i may depend on several factors: (i) the correct answer to the task; (ii)
the difficulty of the task; (iii) the expertise or the reliability of the worker; (iv) the bias of the
worker towards positive or negative answers. Let ti ∈ {+1,−1} represent the correct answer and
ri ∈ [0,∞) represents the level of difficulty. also, let αj ∈ [−∞,∞] represent the reliability and
βj ∈ (−∞,∞) represent the bias of worker j. In formula, a worker j’s response to a binary task i
can be modeled as

Aij = sign(Zi,j) ,

where Zi,j is a Gaussian random variable distributed as Zi,j ∼ N (αjti + βj , ri) and sign(Z) = 1
almost surely for Z ∼ N (∞, 1). A task with ri = 0 is an easy task and large ri is a difficult task. A
worker with large positive αj is more likely to give the right answer and large negative αj is more
likely to give the wrong answer. When αj = 0, the worker gives independent answers regardless
of what the correct answer is. A worker with large βj is biased towards positive responses and if
βj = 0 then the worker is unbiased. A similar model with multi-dimensional latent variables was
studied in [WBBP10].

Most of the models studied in the crowdsourcing literature can be reduced to a special case
of this model. For example, the early patient-classification model introduced by Dawid and Skene
[DS79] is equivalent to the above Gaussian model with ri = 1. Each worker is represented by two
latent quality parameters p+

j and p−j , such that

Aij =

{
ti with probability ptij ,

−ti otherwise .

25

This model captures the bias of workers. More recently, Whitehill et al. [WRW+09] introduced
another model where P(Aij = ti|ai, bj) = 1/(1+e−aibj), with worker reliability ai and task difficulty
bj . This is again a special case of the above Gaussian model if we set βj = 0. The model we study
in this paper has an underlying assumption that all the tasks share an equal level of difficulty and
the workers are unbiased. It is equivalent to the above Gaussian model with βj = 0 and ri = 1.
In this case, there is a one-to-one relation between the worker reliability pj and αj : pj = Q(αj),
where Q(·) is the tail probability of the standard Gaussian distribution.

3 Proof of main results

In this section, we provide proofs of the main results.

3.1 Proof of the main result in Theorem 2.1

By symmetry, we can assume that all ti’s are +1. Let t̂
(k)
i denote the resulting estimate of task i

after k iterations of our iterative inference algorithm defined in Section 2.1. If we draw a random
task I uniformly in [m], then we want to compute the average error probability, which is the
probability that we make an error on this randomly chosen task:

1

m

∑
i∈[m]

P
(
ti 6= t̂

(k)
i

)
= P

(
tI 6= t̂

(k)
I

)
. (7)

We will prove an upper bound on the probability of error in two steps. First, we prove that the
local neighborhood of a randomly chosen task node I is a tree with high probability. Then, assuming
that the graph is locally tree-like, we provide an upper bound on the error using a technique known
as density evolution.

We construct a random bipartite graph G([m] ∪ [n], E) according to the configuration model.
We start with [m]× [`] half-edges for task nodes and [n]× [r] half-edges for the worker nodes, and
pair all the m` task half-edges to the same number of worker half-edges according to a random
permutation of [m`].

Let Gi,k denote a subgraph of G([m] ∪ [n], E) that includes all the nodes whose distance from
the ‘root’ i is at most k. At first iteration of our inference algorithm, to estimate the task i,
we only use the responses provided by the workers who were assigned to task i. Hence we are
performing inference on the local neighborhood Gi,1. Similarly, when we run k iterations of our
(message-passing) inference algorithm to estimate a task i, we only run inference on local subgraph
Gi,2k−1. Since we update both task and worker messages, we need to grow the subgraph by distance
two at each iteration. When this local subgraph is a tree, then we can apply density evolution to
analyze the probability of error. When this local subgraph is not a tree, we can make a pessimistic
assumption that an error has been made to get an upper bound on the actual error probability.

P
(
tI 6= t̂

(k)
I

)
≤ P

(
GI,2k−1 is not a tree

)
+ P

(
GI,2k−1 is a tree and tI 6= t̂

(k)
I

)
. (8)

Next lemma bounds the first term and shows that the probability that a local subgraph is not a
tree vanishes as m grows. A proof of this lemma is provided in Section 3.2.

26

Lemma 3.1. For a random (`, r)-regular bipartite graph generated according to the configuration
model,

P
(
GI,2k−1 is not a tree

)
≤

(
(`− 1)(r − 1)

)2k−2 3`r

m
. (9)

Then, to bound the second term of (8), we provide a sharp upper bound on the error probability

conditioned on that GI,2k−1 is a tree. Let x
(k)
i denote the decision variable for task i after k iterations

of the iterative algorithm such that t̂
(k)
i = sign(x

(k)
i). Then, we make an error whenever this decision

variable is negative. When this is exactly zero, we make a random decision, in which case we make
an error with probability half. Then,

P
(
tI 6= t̂

(k)
I

∣∣GI,k is a tree
)
≤ P

(
x

(k)
I ≤ 0

∣∣GI,k is a tree
)
. (10)

To analyze the distribution of the decision variable on a locally tree-like graph, we use a standard
probabilistic analysis technique known as ‘density evolution’ in coding theory or ‘recursive distri-
butional equations’ in probabilistic combinatorics [RU08, MM09]. Precisely, we use the following
equality that

P
(
x

(k)
I ≤ 0

∣∣GI,k is a tree
)

= P
(
x̂(k) ≤ 0

)
, (11)

where x̂(k) is defined through density evolution equations (13), (14) and (15) in the following. We
will prove in the following that when ˆ̀̂rq2 > 1,

P
(
x̂(k) ≤ 0

)
≤ e−`q/(2σ

2
k) . (12)

Together with equations (11), (10), (9), (8), and (7), this finishes the proof of Theorem 2.1.

Density evolution. At iteration k the algorithm operates on a set of messages {x(k)
i→j}(i,j)∈E and

{y(k)
j→i}(i,j)∈E . If we chose an edge (i, j) uniformly at random, the values of x and y messages on

that randomly chosen edge define random variables whose randomness comes from random choice
of the edge, any randomness introduced by the inference algorithm, the graph, and the realizations

of pj ’s and Aij ’s. Let x(k) denote this random variable corresponding to the message x
(k)
i→j and y

(k)
p

denote the random variable corresponding to y
(k)
j→i conditioned on the latent worker quality being

p for randomly chosen edge (i, j).
As proved in Lemma 3.1, the (`, r)-regular random graph locally converges in distribution to

a (`, r)-regular tree with high probability. On a tree, there is a recursive way of defining the

distribution of messages x(k) and y
(k)
p . At initialization, we initialize the worker messages with

Gaussian random variable with mean one and variance one. The corresponding random variable

y
(0)
p ∼ N (1, 1), which at initial step is independent of the worker quality p, fully describes the

distribution of y
(0)
j→i for all (i, j). At first iteration, the task messages are updated according to

x
(1)
i→j =

∑
j′∈∂i\j Aij′y

(0)
j′→i. If we know the distribution of Aij′ ’s and y

(0)
j′→i’s, we can update the

distribution of x
(1)
i→j . Since we are assuming a tree, all x

(1)
i→j are independent. Further, because of

the symmetry in the way we construct our random graph, all x
(1)
i→j ’s are identically distributed.

Precisely, they are distributed according to x(1) defined in (13). This recursively defines x(k) and
y(k) through the density evolution equations in (13) and (14) [MM09].

27

Let us first introduce a few definitions first. Here and after, we drop the superscript k denoting
the iteration number whenever it is clear from the context. Let xb’s and yp,a’s be independent ran-
dom variables distributed according to x and yp respectively. Also, zp,a’s and zp,b’s are independent
random variables distributed according to zp, where

zp =

{
+1 with probability p ,
−1 with probability 1− p .

This represents the answer given by a worker conditioned on the worker having quality parameter
p. Let p ∼ F be a random variable distributed according to the distribution of the worker’s quality
F over [0, 1]. Then pa’s are independent random variable distributed according to p. Further,
zp,b’s and xb’s are independent, and zpa,a’s and ypa,a’s are conditionally independent conditioned
on pa.

We initialize yp with a Gaussian distribution, whence it is independent of the latent variable p:

y
(0)
p ∼ N (1, 1). Let

d
= denote equality in distribution. Then, for k ∈ {1, 2, . . .}, the task messages are

distributed as the sum of `− 1 incoming messages that are independent and identically distributed

according to y
(k−1)
p and weighted by i.i.d. responses:

x(k) d
=

∑
a∈[`−1]

zpa,ay
(k−1)
pa,a . (13)

Similarly, the worker messages (conditioned on the latent worker quality p) are distributed as the
sum of r− 1 incoming messages that are independent and identically distributed according to x(k)

and weighted by i.i.d. responses:

y(k)
p

d
=

∑
b∈[r−1]

zp,bx
(k)
b . (14)

For the decision variable x
(k)
I on a randomly chosen task I, we have

x̂(k) d
=

∑
i∈[`]

zpi,iy
(k−1)
pi,i

. (15)

Numerically or analytically computing the densities in (13) and (14) exactly is not computation-
ally feasible when the messages take continuous values as is the case for our algorithm. Typically,
heuristics are used to approximate the densities such as quantizing the messages, approximating the
density with simple functions, or using Monte Carlo method to sample from the density. A novel
contribution of our analysis is that we prove that the messages are sub-Gaussian using recursion,
and we provide an upper bound on the parameters in a closed form. This allows us to prove the
sharp result on the error bound that decays exponentially.

Mean and variance computation. To give an intuition on how the messages behave, we
describe the evolution of the mean and the variance of the random variables in (13) and (14).
Let p be a random variable distributed according to the measure F . Define m(k) ≡ E[x(k)],

m̂
(k)
p ≡ E[y

(k)
p |p], v(k) ≡ Var(x(k)), and v̂

(k)
p ≡ Var(y

(k)
p |p). Also let ˆ̀ = ` − 1 and r̂ = r − 1 to

28

simplify notation. Then, from (13) and (14) we get that

m(k) = ˆ̀Ep

[
(2p− 1)m̂

(k−1)
p

]
,

m̂(k)
p = r̂ (2p− 1)m(k) ,

v(k) = ˆ̀
{
Ep[v̂

(k−1)
p +

(
m̂

(k−1)
p

)2
]−
(
Ep

[
(2p− 1)m̂

(k−1)
p

])2
}
,

v̂(k)
p = r̂

{
v(k) + (m(k))2 −

(
(2p− 1)m(k)

)2}
.

Recall that µ = E[2p − 1] and q = E[(2p − 1)2]. Substituting m̂p and v̂p we get the following
evolution of the first and the second moment of the random variable x(k).

m(k+1) = ˆ̀̂rqm(k) ,

v(k+1) = ˆ̀̂rv(k) + ˆ̀̂r(m(k))2(1− q)(1 + r̂q) .

Since m̂
(0)
p = 1 and v̂(0) = 1 as per our assumption, we have m(1) = µˆ̀ and v(1) = ˆ̀(4− µ2). This

implies that m(k) = µˆ̀(ˆ̀̂rq)k−1, and v(k) = av(k−1) + bck−2, with a = ˆ̀̂r, b = µ2 ˆ̀3r̂(1− q)(1 + r̂q),
and c = (ˆ̀̂rq)2. After some algebra, it follows that v(k) = v(1)ak−1 + bck−2

∑k−2
`=0 (a/c)`.

For ˆ̀̂rq2 > 1, we have a/c < 1 and

v(k) = ˆ̀(4− µ2)(ˆ̀̂r)k−1 + (1− q)(1 + r̂q)µ2 ˆ̀2(ˆ̀̂rq)2k−2 1− 1/(ˆ̀̂rq2)k−1

ˆ̀̂rq2 − 1
.

The first and second moment of the decision variable x̂(k) in (15) can be computed using a
similar analysis: E[x̂(k)] = (`/ˆ̀)m(k) and Var(x̂(k)) = (`/ˆ̀)v(k). In particular, we have

Var(x̂(k))

E[x̂(k)]2
=

ˆ̀(4− µ2)

`ˆ̀µ2(ˆ̀̂rq2)k−1
+

ˆ̀(1− q)(1 + r̂q)

`(ˆ̀̂rq2 − 1)

(
1− 1

(ˆ̀̂rq2)k−1

)
.

Applying Chebyshev’s inequality, it immediately follows that P(x̂(k) < 0) is bounded by the right-
hand side of the above equality. This bound is weak compared to the bound in Theorem 2.1.
In the following, we prove a stronger result using the sub-Gaussianity of x(k). But first, let us
analyze what this weaker bound gives for different regimes of `, r, and q, which indicates that the
messages exhibit a fundamentally different behavior in the regimes separated by a phase transition
at ˆ̀̂rq2 = 1.

In a ‘good’ regime where we have ˆ̀̂rq2 > 1, the bound converges to a finite limit as the number
of iterations k grows. Namely,

lim
k→∞

P(x̂(k) < 0) ≤
ˆ̀(1− q)(1 + r̂q)

`(ˆ̀̂rq2 − 1)
.

Notice that the upper bound converges to (1− q)/(`q) as ˆ̀̂rq2 grows. This scales in the same way
as the known bounds for using the left singular vector directly for inference (cf. [KOS11]). In the
case when ˆ̀̂rq2 < 1, the same analysis gives

Var(x̂(k))

E[x̂(k)]2
= eΘ(k) .

29

Finally, when ˆ̀̂rq2 = 1, we get v(k) = (ˆ̀̂r)k + ˆ̀̂r(1− q)(1 + r̂q)(ˆ̀̂rq)2k−2k, which implies

Var(x̂(k))

E[x̂(k)]2
= Θ(k) .

Analyzing the density. Our strategy to provide a tight upper bound on P(x̂(k) ≤ 0) is to show
that x̂(k) is sub-Gaussian with appropriate parameters and use the Chernoff bound. A random
variable z with mean m is said to be sub-Gaussian with parameter σ̃ if for all λ ∈ R the following
inequality holds:

E[eλz] ≤ emλ+(1/2)σ̃2λ2 .

Define

σ̃2
k ≡ 2ˆ̀(ˆ̀̂r)k−1 + µ2 ˆ̀3r̂(3qr̂ + 1)(q ˆ̀̂r)2k−4 1− (1/q2 ˆ̀̂r)k−1

1− (1/q2 ˆ̀̂r)
,

and mk ≡ µˆ̀(q ˆ̀̂r)k−1 for k ∈ Z. We will first show that, x(k) is sub-Gaussian with mean mk

and parameter σ̃2
k for a regime of λ we are interested in. Precisely, we will show that for |λ| ≤

1/(2mk−1r̂),

E[eλx
(k)

] ≤ emkλ+(1/2)σ̃2
kλ

2
. (16)

By definition, due to distributional independence, we have E[eλx̂
(k)

] = E[eλx
(k)

](`/
ˆ̀). Therefore, it

follows from (16) that x̂(k) satisfies E[eλx̂
(k)

] ≤ e(`/ˆ̀)mkλ+(`/2ˆ̀)σ̃2
kλ

2
. Applying the Chernoff bound

with λ = −mk/(σ̃
2
k), we get

P
(
x̂(k) ≤ 0

)
≤ E

[
eλx̂

(k)] ≤ e−`m
2
k/(2

ˆ̀σ̃2
k) , (17)

Since mkmk−1/(σ̃
2
k) ≤ µ2 ˆ̀2(q ˆ̀̂r)2k−3/(3µ2q ˆ̀3r̂2(q ˆ̀̂r)2k−4) = 1/(3r̂), it is easy to check that |λ| ≤

1/(2mk−1r̂). This implies the desired bound in (12).
Now we are left to prove that x(k) is sub-Gaussian with appropriate parameters. We can write

down a recursive formula for the evolution of the moment generating functions of x and yp as

E
[
eλx

(k)]
=

(
Ep

[
pE[eλy

(k−1)
p |p] + p̄E[e−λy

(k−1)
p |p]

])ˆ̀

, (18)

E
[
eλy

(k)
p
]

=
(
pE
[
eλx

(k)]
+ p̄E

[
e−λx

(k)])r̂
, (19)

where p̄ = 1− p and p̄ = 1− p. We can prove that these are sub-Gaussian using induction.
First, for k = 1, we show that x(1) is sub-Gaussian with mean m1 = µˆ̀ and parameter σ̃2

1 = 2ˆ̀,
where µ ≡ E[2p − 1]. Since yp is initialized as Gaussian with unit mean and variance, we have

E[eλy
(0)
p] = eλ+(1/2)λ2 regardless of p. Substituting this into (18), we get for any λ,

E
[
eλx

(1)
]

=
(
E[p]eλ + (1− E[p])e−λ

)ˆ̀

e(1/2)ˆ̀λ2 ≤ e
ˆ̀µλ+ˆ̀λ2 , (20)

where the inequality follows from the fact that aez + (1 − a)e−z ≤ e(2a−1)z+(1/2)z2 for any z ∈ R
and a ∈ [0, 1] (cf. [AS08, Lemma A.1.5]).

30

Next, assuming E[eλx
(k)

] ≤ emkλ+(1/2)σ̃2
kλ

2
for |λ| ≤ 1/(2mk−1r̂), we show that E[eλx

(k+1)
] ≤

emk+1λ+(1/2)σ̃2
k+1λ

2

for |λ| ≤ 1/(2mkr̂), and compute appropriate mk+1 and σ̃2
k+1. Substituting the

bound E[eλx
(k)

] ≤ emkλ+(1/2)σ̃2
kλ

2
in (19), we get E[eλy

(k)
p] ≤ (pemkλ + p̄e−mkλ)r̂e(1/2)r̂σ̃2

kλ
2
. Further

applying this bound in (18), we get

E
[
eλx

(k+1)
]
≤

(
Ep

[
p(pemkλ + p̄e−mkλ)r̂ + p̄(pe−mkλ + p̄emkλ)r̂

])ˆ̀

e(1/2)ˆ̀̂rσ̃2
kλ

2
. (21)

To bound the first term in the right-hand side, we use the next key lemma. A proof of this lemma
is provided in Section 3.3.

Lemma 3.2. For any |z| ≤ 1/(2r̂) and p ∈ [0, 1] such that q = E[(2p− 1)2], we have

Ep

[
p(pez + p̄e−z)r̂ + p̄(p̄ez + pe−z)r̂

]
≤ eqr̂z+(1/2)(3qr̂2+r̂)z2 .

Applying this inequality to (21) gives

E[eλx
(k+1)

] ≤ eq
ˆ̀̂rmkλ+(1/2)

(
(3q ˆ̀̂r2+ˆ̀̂r)m2

k+ˆ̀̂rσ̃2
k

)
λ2 ,

for |λ| ≤ 1/(2mkr̂). In the regime where q ˆ̀̂r ≥ 1 as per our assumption, mk is non-decreasing in k.
At iteration k, the above recursion holds for |λ| ≤ min{1/(2m1r̂), . . . , 1/(2mk−1r̂)} = 1/(2mk−1r̂).
Hence, we get the following recursion for mk and σ̃k such that (16) holds for |λ| ≤ 1/(2mk−1r̂).

mk+1 = q ˆ̀̂rmk ,

σ̃2
k+1 = (3q ˆ̀̂r2 + ˆ̀̂r)m2

k + ˆ̀̂rσ̃2
k .

With the initialization m1 = µˆ̀ and σ̃2
1 = 2ˆ̀, we have mk = µˆ̀(q ˆ̀̂r)k−1 for k ∈ {1, 2, . . .} and

σ̃2
k = aσ̃2

k−1 +bck−2 for k ∈ {2, 3, . . .}, with a = ˆ̀̂r, b = µ2 ˆ̀2(3q ˆ̀̂r2 + ˆ̀̂r), and c = (q ˆ̀̂r)2. After some

algebra, it follows that σ̃2
k = σ̃2

1a
k−1 + bck−2

∑k−2
`=0 (a/c)`. For ˆ̀̂rq2 6= 1, we have a/c 6= 1, whence

σ̃2
k = σ̃2

1a
k−1 + bck−2(1− (a/c)k−1)/(1− a/c). This finishes the proof of (16).

3.2 Proof of Lemma 3.1

Consider the following discrete time random process that generates the random graph GI,2k−1

starting from the root I. At first step, we connect ` worker nodes to node I according to the
configuration model, where ` half-edges are matches to a randomly chosen subset of nr worker
half-edges of size `. Let α1 denote the probability that the resulting graph is a tree, that is no
pair of edges are connected to the same worker node. Since there are

(
`
2

)
pairs and each pair of

half-edges are connected to the same worker node with probability (r − 1)/(nr − 1):

α1 ≤
(
`

2

)
r − 1

nr − 1
.

Similarly, define

αt ≡ P(GI,2t−1 is not a tree |GI,2t−2 is a tree) , and

βt ≡ P(GI,2t−2 is not a tree |GI,2t−3 is a tree) .

31

Then,

P(GI,2k−1 is not a tree) ≤ α1 +

k∑
t=2

(
αt + βt

)
. (22)

We can upper bound αt’s and βt’s in a similar way. For generating GI,2t−1 conditioned on GI,2t−2

being a tree, there are `(ˆ̀̂r)t−1 half-edges, where ˆ̀ = ` − 1 and r̂ = r − 1. Among
(
`(ˆ̀̂r)t−1

2

)
pairs of these half-edges, each pair will be connected to the same worker with probability at most
(r− 1)/(r(n−

∑t−1
a=1 `(

ˆ̀̂r)a−1)− 1), where
∑t−1

a=1 `(
ˆ̀̂r)a−1 is the total number of worker nodes that

are assigned so far in GI,2t−2. Then,

αt ≤
`2(ˆ̀̂r)2t−2

2

r − 1

r(n− (`((ˆ̀̂r)t−2 − 1))/(ˆ̀̂r − 1))− 1

≤ `2(ˆ̀̂r)2t−2

2(n− `(ˆ̀̂r)t−2/2)

≤ `2(ˆ̀̂r)2t−2

n
+
`(ˆ̀̂r)t−2

n

≤ 3`2(ˆ̀̂r)2t−2

2n
,

where the second inequality follows from the fact that (a − 1)/(b − 1) ≤ a/b for all a ≤ b and
ˆ̀̂r ≥ 2 as per our assumption, and in the third inequality we used the fact that αt is upper
bounded by one and the fact that for f(x) = b/(x − a) which is upper bounded by one, we have
f(x) ≤ (2b/x) + (2a/x). Similarly, we can show that

βt ≤
3`2(ˆ̀̂r)2t−2

ˆ̀2m
.

Substituting αt and βt into (22), we get that

P(GI,2k−1 is not a tree) ≤ (ˆ̀̂r)2k−2 3`r

m
.

3.3 Proof of Lemma 3.2

By the fact that aeb+(1−a)e−b ≤ e(2a−1)b+(1/2)b2 for any b ∈ R and a ∈ [0, 1], we have pez+p̄e−z ≤
e(2p−1)z+(1/2)z2 almost surely. Applying this inequality once again, we get

E
[
p(pez + p̄e−z)r̂ + p̄(p̄ez + pe−z)r̂

]
≤ E

[
e(2p−1)2r̂z+(1/2)(2p−1)2r̂2z2

]
e(1/2)r̂z2 .

Using the fact that ea ≤ 1 + a+ 0.63a2 for |a| ≤ 5/8,

E
[
e(2p−1)2r̂z+(1/2)(2p−1)2r̂2z2

]
≤ E

[
1 + (2p− 1)2r̂z + (1/2)(2p− 1)2r̂2z2 + 0.63((2p− 1)2r̂z + (1/2)(2p− 1)2r̂2z2)2

]
≤ 1 + qr̂z + (3/2)qr̂2z2

≤ eqr̂z+(3/2)qr̂2z2 ,

for |z| ≤ 1/(2r̂). This proves Lemma 3.2.

32

3.4 Proof of a bound on majority voting in Lemma 2.6

Majority voting simply follows what the majority of workers agree on. In formula, t̂i = sign(
∑

j∈Wi
Aij),

where Wi denotes the neighborhood of node i in the graph. It makes a random choice when there
is a tie. We want to compute a lower bound on P(t̂i 6= ti). Let xi =

∑
j∈Wi

Aij . Assuming ti = +1
without loss of generality, the error rate is lower bounded by P(xi < 0). After rescaling, (1/2)(xi+`)
is a standard binomial random variable Binom(`, α), where ` is the number of neighbors of the node
i, α = E[pj], and by assumption each Aij is one with probability α.

It follows that P(xi = −l + 2k) = ((`!)/(` − k)!k!)αk(1 − α)l−k. Further, for k ≤ α` − 1, the
probability distribution function is monotonically increasing. Precisely,

P(xi = −`+ 2(k + 1))

P(xi = −`+ 2k)
≥ α(`− k)

(1− α)(k + 1)
≥ α(`− α`+ 1)

(1− α)α`
> 1 ,

where we used the fact that the above ratio is decreasing in k whence the minimum is achieved at
k = α`− 1 under our assumption.

Let us assume that ` is even, so that xi take even values. When ` is odd, the same analysis
works, but xi takes odd values. Our strategy is to use a simple bound: P(xi < 0) ≥ kP(xi = −2k).
By assumption that α = E[pj] ≥ 1/2, For an appropriate choice of k =

√
l, the right-hand side

closely approximates the error probability. By definition of xi, it follows that

P
(
xi = −2

√
`
)

=

(
`

`/2 +
√
`

)
α`/2−

√
l
(
1− α

)`/2+
√
`
. (23)

Applying Stirling’s approximation, we can show that(
`

`/2 +
√
`

)
≥ C2√

`
2l , (24)

for some positive constant C2. We are interested in the case where worker quality is low, that is α
is close to 1/2. Accordingly, for the second and third terms in (23), we expand in terms of 2α− 1.

log

(
α`/2−

√
`
(

1− α
)`/2+

√
`
)

=
(`

2
−
√
`
)(

log(1 + (2α− 1))− log(2)
)

+
(`

2
+
√
`
)(

log(1− (2α− 1))− log(2)
)

= −` log(2)− `(2α− 1)2

2
+O(

√
`(2α− 1)4) . (25)

We can substitute (24) and (25) in (23) to get the following bound:

P(xi < 0) ≥ exp
{
− C3(`(2α− 1)2 + 1)

}
, (26)

for some positive constant C3.
Now, let `i denote the degree of task node i, such that

∑
i `i = `m. Then for any {ti} ∈ {±1}m,

any distribution of p such that µ = E[2p− 1] = 2α− 1, and any non-adaptive task assignment for
m tasks, the following lower bound is true.

1

m

∑
i∈[m]

P
(
ti 6= t̂i

)
≥ 1

m

m∑
i=1

e−C3(`iµ
2+1)

≥ e−C3(`µ2+1) ,

33

where the last inequality follows from convexity of the exponential function. Under the spammer-
hammer model, where µ = q this gives

min
τ∈T`

max
t∈{±1}m,F∈Fq

1

m

∑
i∈[m]

P
(
ti 6= t̂i

)
≥ e−C3(`q2+1) .

This finishes the proof of lemma.

3.5 Proof of a bound on the adaptive schemes in Theorem 2.7

In this section, we prove that, even with the help of an oracle, the probability of error cannot decay
faster than e−C`q. We consider an labeling algorithm which has access to an oracle that knows the
reliability of every worker (all the pj ’s). At k-th step, after the algorithm assign Tk and all the |Tk|
answers are collected from the k-th worker, the oracle provides the algorithm with pk. Using all
the previously collected answers {Aij}j≤k and the worker reliability {pj}j≤k, the algorithm makes
a decision on the next task assignment Tk+1. This process is repeated until a stopping criterion is
met, and the algorithm outputs the optimal estimate of the true labels. The algorithm can compute
the maximum likelihood estimates, which is known to minimize the probability of making an error.
Let Wi be the set of workers assigned to task i, then

t̂i = sign
(∑
j∈Wi

log
(pj

1− pj

)
Aij

)
. (27)

We are going to show that there exists a family of distributions F such that for any stopping rule
and any task assignment scheme, the probability of error is lower bounded by e−C`q. We define the
following family of distributions according to the spammer-hammer model with imperfect hammers.
We assume that q ≤ a2 and

pj =

{
1/2 with probability 1− (q/a2) ,

1/2(1 + a) with probability q/a2 ,

such that E[(2pj − 1)2] = q.
Let Wi denote the set of workers assigned to task i when the algorithm has stopped. Then

|Wi| is a random variable representing the total number of workers assigned to task i. The oracle
estimator knows all the values necessary to compute the error probability of each task. Let Ei =
E[I(ti 6= t̂i)|{Aij}, {pj}] be the random variable representing the error probability as computed
by the oracle estimator, conditioned on the |Wi| responses we get from the workers and their
reliability pj ’s. We are interested in identifying how the average budget (1/m)

∑
i E
[
|Wi|

]
depends

on the achieve average error rate (1/m)
∑

i E[Ei]. In the following we will show that for any task i,
independent of which task allocation scheme is used, it is necessary that

E
[
|Wi|

]
≥ 0.27

q
log
(1

2E[Ei]

)
. (28)

By convexity of log(1/x) and Jensen’s inequality, this implies that

1

m

m∑
i=1

E
[
|Wi|

]
≥ 0.27

q
log
(1

2(1/m)
∑m

i=1 E[Ei]

)
.

34

Since the total number of queries has to be consistent, we have
∑

j |Tj | =
∑

i |Wi| ≤ m`. Also, by

definition E[Ei] = P(ti 6= t̂i). Then, from the above inequality, we get (1/m)
∑

i∈[m] P(ti 6= t̂i) ≥
(1/2)e−(1/0.27)q`, which finishes the proof of the theorem. Note that this bound holds for any value
of m.

Now, we are left to prove that the inequality (28) holds. Focusing on a single task i, since we
know who the spammers are and spammers give us no information about the task, we only need
the responses from the reliable workers in order to make an optimal estimate as per (27). The
conditional error probability Ei of the optimal estimate depends on the realizations of the answers
{Aij}j∈Wi and the worker reliability {pj}j∈Wi . The following lower bound on the error only depends
on the number of reliable workers, which we denote by `i.

Without loss of generality, let ti = +1. Then, if all the reliable workers provide ‘−’ answers,
the maximum likelihood estimation would be ‘−’ for this task. This leads to an error. Therefore,

Ei ≥ P(all `i reliable workers answered −)

=
1

2

(1− a
2

)`i
,

for all the realizations of {Aij} and {pj}. The scaling by half ensures that the above inequality
holds even when `i = 0. By convexity and Jensen’s inequality, it follows that

E
[
`i
]
≥

log
(
2E[Ei]

)
log
(
(1− a)/2

) .
When we recruit |Wi| workers, we see `i = (q/a2)|Wi| reliable ones on average. Formally, we have
E[`i] = (q/a2)E[|Wi|]. Again applying Jensen’s inequality, we get

E
[
|Wi|

]
≥ 1

q

a2

log
(
(1− a)/2

) log
(
2E[Ei]

)
.

Maximizing over all choices of a ∈ (0, 1), we get

E
[
|Wi|

]
≥ − log

(
2E[Ei]

)0.27

q
,

which in particular is true with a = 0.8. For this choice of a, the result holds in the regime where
q ≤ 0.64. Notice that by changing the constant in the bound, we can ensure that the result holds
for any values of q. This finishes the proof of (28).

3.6 Proof of a bound with one iteration in Lemma 2.10

The probability of making an error after one iteration of our algorithm for node i is P(ti 6= t̂
(1)
i) ≤

P(x̂i ≤ 0), where x̂i =
∑

j∈∂i Aijy
(1)
j→i. Assuming ti = +, without loss of generality, Aij is +1 with

probability E[p] and −1 otherwise. All y
(1)
j→i’s are initialized as Gaussian random variables with

mean one and variance one. All these random variables are independent of one another at this
initial step. Hence, the resulting random variable x̂i is a sum of a shifted binomial random variable
2(Binom(`,E[p])−`) and a zero-mean Gaussian random variable N (0, `). From calculations similar
to (20), it follows that

E
[
eλx̂

(1)
]
≤ e`µλ+`λ2 ≤ e−(1/4)`µ2 ,

where we choose λ = −µ/2. By Chernoff’s inequality, this implies the lemma for any value of m.

35

4 Conclusion

We conclude with some limitations of our results and interesting research directions.
1. More general models. In this paper, we provided an order-optimal task assignment scheme

and an order-optimal inference algorithm for that task assignment assuming a probabilistic crowd-
sourcing model. In this model, we assumed that each worker makes a mistake randomly according
to a worker specific quality parameter. Two main simplifications we make here is that, first, the
worker’s reliability does not depend on whether the task is a positive task or a negative task, and
second, all the tasks are equally easy or difficult. The main remaining challenges in developing
inference algorithms for crowdsourcing is how to develop a solution for more generic models for-
mally described in Section 2.7. When workers exhibit bias and can have heterogeneous quality
parameters depending on the correct answer to the task, spectral methods using low-rank matrix
approximations nicely generalize to give an algorithmic solution. Also, it would be interesting to
find algorithmic solutions with performance guarantees for the generic model where tasks difficulties
are taken into account.

2. Improving the constant. We prove our approach is minimax optimal up to a constant factor.
However, there might be another algorithm with better constant factor than our inference algorithm.
Some modification of the expectation maximization or the belief propagation might achieve a better
constant compared to our inference algorithm. It is an interesting research direction to find such
an algorithm and give an upper bound on the error probability that is smaller than what we have
in our main theorem.

3. Instance-optimality. The optimality of our approach is proved under the worst-case worker
distribution. However, it is not known whether our approach is instance-optimal or not under the
non-adaptive scenario. It would be important to prove lower bounds for all worker distributions
or to find a counter example where another algorithm achieves a strictly better performance for a
particular worker distribution in terms of the scaling of the required budget.

4. Phase transition. We empirically observe that there is a phase transition around ˆ̀̂rq2 = 1.
Below this, no algorithm can do better than majority voting. This phase transition seems to be
an algorithm-independent and fundamental property of the problem (and the random graph). It
might be possible to formally prove the fundamental difference in the way information propagates
under the crowdsourcing model. Such phase transition has been studied for a simpler model of
broadcasting on trees in information theory and statistical mechanics [EKPS00].

References

[AS08] N. Alon and J. H. Spencer, The probabilistic method, John Wiley, 2008.

[BBMK11] M. S. Bernstein, J. Brandt, R. C. Miller, and D. R. Karger, Crowds in two seconds:
enabling realtime crowd-powered interfaces, Proceedings of the 24th annual ACM sym-
posium on User interface software and technology, UIST ’11, 2011, pp. 33–42.

[BJJ+10] J. P. Bigham, C. Jayant, H. Ji, G. Little, A. Miller, R. C. Miller, R. Miller, A. Tatarow-
icz, B. White, S. White, and T. Yeh, Vizwiz: nearly real-time answers to visual ques-
tions, Proceedings of the 23nd annual ACM symposium on User interface software and
technology, UIST ’10, 2010, pp. 333–342.

36

[BLM+10] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman, D. R. Karger,
D. Crowell, and K. Panovich, Soylent: a word processor with a crowd inside, Proceed-
ings of the 23nd annual ACM symposium on User interface software and technology
(New York, NY, USA), ACM UIST, 2010, pp. 313–322.

[Bol01] B. Bollobás, Random Graphs, Cambridge University Press, January 2001.

[CHMA10] L. B. Chilton, J. J. Horton, R. C. Miller, and S. Azenkot, Task search in a human
computation market, Proceedings of the ACM SIGKDD Workshop on Human Compu-
tation, HCOMP ’10, 2010, pp. 1–9.

[DCS09] P. Donmez, J. G. Carbonell, and J. Schneider, Efficiently learning the accuracy of label-
ing sources for selective sampling, Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, 2009, pp. 259–268.

[DS79] A. P. Dawid and A. M. Skene, Maximum likelihood estimation of observer error-rates
using the em algorithm, Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28 (1979), no. 1, 20–28.

[EHR11] Ş. Ertekin, H. Hirsh, and C. Rudin, Approximating the wisdom of the crowd, Proceed-
ings of the Second Workshop on Computational Social Science and the Wisdom of
Crowds (NIPS 2011), 2011.

[EKPS00] W. Evans, C. Kenyon, Y. Peres, and L. J. Schulman, Broadcasting on trees and the
ising model, The Annals of Applied Probability 10 (2000), no. 2, pp. 410–433.

[FHI11] S. Faradani, B. Hartmann, and P. G. Ipeirotis, What’s the right price? pricing tasks
for finishing on time, Human Computation’11, 2011.

[Hol11] S. Holmes, Crowd counting a crowd, 2011, March 2011, Statistics Seminar, Stanford
University.

[Ipe10] P. G. Ipeirotis, Analyzing the amazon mechanical turk marketplace, XRDS 17 (2010),
no. 2, 16–21.

[JG03] R. Jin and Z. Ghahramani, Learning with multiple labels, Advances in neural informa-
tion processing systems, 2003, pp. 921–928.

[KOS11] D. R. Karger, S. Oh, and D. Shah, Budget-optimal crowdsourcing using low-rank matrix
approximations, Proc. of the Allerton Conf. on Commun., Control and Computing,
2011.

[Lan50] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators, Journal of Research of The National Bureau Of
Standards 45 (1950), no. 4, 255–282.

[LW89] N. Littlestone and M. K. Warmuth, The weighted majority algorithm, Foundations of
Computer Science, 1989., 30th Annual Symposium on, oct 1989, pp. 256 –261.

[MM09] M. Mezard and A. Montanari, Information, physics, and computation, Oxford Univer-
sity Press, Inc., New York, NY, USA, 2009.

37

[MW10] W. Mason and D. J. Watts, Financial incentives and the “performance of crowds”,
SIGKDD Explor. Newsl. 11 (2010), no. 2, 100–108.

[Pea88] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann Publ., San
Mateo, Califonia, 1988.

[RU08] T. Richardson and R. Urbanke, Modern Coding Theory, Cambridge University Press,
march 2008.

[RY12] V. C. Raykar and S. Yu, Eliminating spammers and ranking annotators for crowd-
sourced labeling tasks, J. Mach. Learn. Res. 13 (2012), 491–518.

[RYZ+10a] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and L. Moy,
Learning from crowds, J. Mach. Learn. Res. 99 (2010), 1297–1322.

[RYZ+10b] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, L. Moy, and
D. Blei, Learning from crowds, Journal of Machine Learning Research (2010), no. 11,
1297–1322.

[SFB+95] P. Smyth, U. Fayyad, M. Burl, P. Perona, and P. Baldi, Inferring ground truth from
subjective labelling of venus images, Advances in neural information processing systems,
1995, pp. 1085–1092.

[SPI08] V. S. Sheng, F. Provost, and P. G. Ipeirotis, Get another label? improving data quality
and data mining using multiple, noisy labelers, Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’08, ACM,
2008, pp. 614–622.

[WBBP10] P. Welinder, S. Branson, S. Belongie, and P. Perona, The multidimensional wisdom of
crowds, Advances in Neural Information Processing Systems, 2010, pp. 2424–2432.

[WRW+09] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan, Whose vote should count
more: Optimal integration of labels from labelers of unknown expertise, Advances in
Neural Information Processing Systems, vol. 22, 2009, pp. 2035–2043.

[WS67] G. Wyszecki and W. S. Stiles, Color science: Concepts and methods, quantitative data
and formulae, Wiley-Interscience, 1967.

[YFW03] J. S. Yedidia, W. T. Freeman, and Y. Weiss, Understanding belief propagation and its
generalizations, pp. 239–269, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2003.

[YKG10] T. Yan, V. Kumar, and D. Ganesan, Crowdsearch: exploiting crowds for accurate real-
time image search on mobile phones, Proceedings of the 8th international conference
on Mobile systems, applications, and services, MobiSys ’10, 2010, pp. 77–90.

[ZSD10] Y. Zheng, S. Scott, and K. Deng, Active learning from multiple noisy labelers with
varied costs, Data Mining (ICDM), 2010 IEEE 10th International Conference on, dec.
2010, pp. 639 –648.

38

	1 Introduction
	2 Main result
	2.1 Algorithm
	2.2 Performance guarantee and experimental results
	2.2.1 Bound on the average error probability
	2.2.2 Minimax optimality of our approach
	2.2.3 Experimental results

	2.3 Fundamental limit under the non-adaptive scenario
	2.4 Fundamental limit under the adaptive scenario
	2.5 Connections to low-rank matrix approximation
	2.6 Connections to belief propagation
	2.7 Discussion

	3 Proof of main results
	3.1 Proof of the main result in Theorem 2.1
	3.2 Proof of Lemma 3.1
	3.3 Proof of Lemma 3.2
	3.4 Proof of a bound on majority voting in Lemma 2.6
	3.5 Proof of a bound on the adaptive schemes in Theorem 2.7
	3.6 Proof of a bound with one iteration in Lemma 2.10

	4 Conclusion

