2 research outputs found

    Spiking neurons in 3D growing self-organising maps

    Get PDF
    In Kohonen’s Self-Organising Maps (SOM) learning, preserving the map topology to simulate the actual input features appears to be a significant process. Misinterpretation of the training samples can lead to failure in identifying the important features that may affect the outcomes generated by the SOM model. Nonetheless, it is a challenging task as most of the real problems are composed of complex and insufficient data. Spiking Neural Network (SNN) is the third generation of Artificial Neural Network (ANN), in which information can be transferred from one neuron to another using spike, processed, and trigger response as output. This study, hence, embedded spiking neurons for SOM learning in order to enhance the learning process. The proposed method was divided into five main phases. Phase 1 investigated issues related to SOM learning algorithm, while in Phase 2; datasets were collected for analyses carried out in Phase 3, wherein neural coding scheme for data representation process was implemented in the classification task. Next, in Phase 4, the spiking SOM model was designed, developed, and evaluated using classification accuracy rate and quantisation error. The outcomes showed that the proposed model had successfully attained exceptional classification accuracy rate with low quantisation error to preserve the quality of the generated map based on original input data. Lastly, in the final phase, a Spiking 3D Growing SOM is proposed to address the surface reconstruction issue by enhancing the spiking SOM using 3D map structure in SOM algorithm with a growing grid mechanism. The application of spiking neurons to enhance the performance of SOM is relevant in this study due to its ability to spike and to send a reaction when special features are identified based on its learning of the presented datasets. The study outcomes contribute to the enhancement of SOM in learning the patterns of the datasets, as well as in proposing a better tool for data analysis

    Unsupervised machine learning clustering and data exploration of radio-astronomical images

    Get PDF
    In this thesis, I demonstrate a novel and efficient unsupervised clustering and data exploration method with the combination of a Self-Organising Map (SOM) and a Convolutional Autoencoder, applied to radio-astronomical images from the Radio Galaxy Zoo (RGZ) dataset. The rapidly increasing volume and complexity of radio-astronomical data have ushered in a new era of big-data astronomy which has increased the demand for Machine Learning (ML) solutions. In this era, the sheer amount of image data produced with modern instruments and has resulted in a significant data deluge. Furthermore, the morphologies of objects captured in these radio-astronomical images are highly complex and challenging to classify conclusively due to their intricate and indiscrete nature. Additionally, major radio-astronomical discoveries are unplanned and found in the unexpected, making unsupervised ML highly desirable by operating with few assumptions and without labelled training data. In this thesis, I developed a novel unsupervised ML approach as a practical solution to these astronomy challenges. Using this system, I demonstrated the use of convolutional autoencoders and SOM’s as a dimensionality reduction method to delineate the complexity and volume of astronomical data. My optimised system shows that the coupling of these methods is a powerful method of data exploration and unsupervised clustering of radio-astronomical images. The results of this thesis show this approach is capable of accurately separating features by complexity on a SOM manifold and unified distance matrix with neighbourhood similarity and hierarchical clustering of the mapped astronomical features. This method provides an effective means to explore the high-level topological relationships of image features and morphology in large datasets automatically with minimal processing time and computational resources. I achieved these capabilities with a new and innovative method of SOM training using the autoencoder compressed latent feature vector representations of radio-astronomical data, rather than raw images. Using this system, I successfully investigated SOM affine transformation invariance and analysed the true nature of rotational effects on this manifold using autoencoder random rotation training augmentations. Throughout this thesis, I present my method as a powerful new approach to data exploration technique and contribution to the field. The speed and effectiveness of this method indicates excellent scalability and holds implications for use on large future surveys, large-scale instruments such as the Square Kilometre Array and in other big-data and complexity analysis applications
    corecore