708 research outputs found

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    An Intuitionistic Formula Hierarchy Based on High-School Identities

    Get PDF
    We revisit the notion of intuitionistic equivalence and formal proof representations by adopting the view of formulas as exponential polynomials. After observing that most of the invertible proof rules of intuitionistic (minimal) propositional sequent calculi are formula (i.e. sequent) isomorphisms corresponding to the high-school identities, we show that one can obtain a more compact variant of a proof system, consisting of non-invertible proof rules only, and where the invertible proof rules have been replaced by a formula normalisation procedure. Moreover, for certain proof systems such as the G4ip sequent calculus of Vorob'ev, Hudelmaier, and Dyckhoff, it is even possible to see all of the non-invertible proof rules as strict inequalities between exponential polynomials; a careful combinatorial treatment is given in order to establish this fact. Finally, we extend the exponential polynomial analogy to the first-order quantifiers, showing that it gives rise to an intuitionistic hierarchy of formulas, resembling the classical arithmetical hierarchy, and the first one that classifies formulas while preserving isomorphism

    Complexity of validity for propositional dependence logics

    Full text link
    We study the validity problem for propositional dependence logic, modal dependence logic and extended modal dependence logic. We show that the validity problem for propositional dependence logic is NEXPTIME-complete. In addition, we establish that the corresponding problem for modal dependence logic and extended modal dependence logic is NEXPTIME-hard and in NEXPTIME^NP.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    First-order Goedel logics

    Full text link
    First-order Goedel logics are a family of infinite-valued logics where the sets of truth values V are closed subsets of [0, 1] containing both 0 and 1. Different such sets V in general determine different Goedel logics G_V (sets of those formulas which evaluate to 1 in every interpretation into V). It is shown that G_V is axiomatizable iff V is finite, V is uncountable with 0 isolated in V, or every neighborhood of 0 in V is uncountable. Complete axiomatizations for each of these cases are given. The r.e. prenex, negation-free, and existential fragments of all first-order Goedel logics are also characterized.Comment: 37 page

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    Dualized Simple Type Theory

    Full text link
    We propose a new bi-intuitionistic type theory called Dualized Type Theory (DTT). It is a simple type theory with perfect intuitionistic duality, and corresponds to a single-sided polarized sequent calculus. We prove DTT strongly normalizing, and prove type preservation. DTT is based on a new propositional bi-intuitionistic logic called Dualized Intuitionistic Logic (DIL) that builds on Pinto and Uustalu's logic L. DIL is a simplification of L by removing several admissible inference rules while maintaining consistency and completeness. Furthermore, DIL is defined using a dualized syntax by labeling formulas and logical connectives with polarities thus reducing the number of inference rules needed to define the logic. We give a direct proof of consistency, but prove completeness by reduction to L.Comment: 47 pages, 10 figure

    Relating Sequent Calculi for Bi-intuitionistic Propositional Logic

    Get PDF
    Bi-intuitionistic logic is the conservative extension of intuitionistic logic with a connective dual to implication. It is sometimes presented as a symmetric constructive subsystem of classical logic. In this paper, we compare three sequent calculi for bi-intuitionistic propositional logic: (1) a basic standard-style sequent calculus that restricts the premises of implication-right and exclusion-left inferences to be single-conclusion resp. single-assumption and is incomplete without the cut rule, (2) the calculus with nested sequents by Gore et al., where a complete class of cuts is encapsulated into special "unnest" rules and (3) a cut-free labelled sequent calculus derived from the Kripke semantics of the logic. We show that these calculi can be translated into each other and discuss the ineliminable cuts of the standard-style sequent calculus.Comment: In Proceedings CL&C 2010, arXiv:1101.520
    corecore