60 research outputs found

    Improving mass conservation in FE approximations of the Navier Stokes equations using continuous velocity fields: A connection between grad-div stabilization and Scott--Vogelius elements

    Get PDF
    This article studies two methods for obtaining excellent mass conservation in finite element computations of the Navier-Stokes equations using continuous velocity fields. Under mild restrictions, the Scott-Vogelius element pair has recently been shown to be inf-sup stable and have optimal approximation properties, while also providing pointwise mass conservation. We present herein the first numerical tests of this element pair for the time dependent Navier-Stokes equations. We also prove that, again under these mild restrictions, the limit of the grad-div stabilized Taylor-Hood solutions to the Navier-Stokes problem converges to the Scott-Vogelius solution as the stabilization parameter tends to infinity. That is, in this setting, we provide theoretical justification that choosing the parameter large does not destroy the solution. A limiting result is also proven for the general case. Numerical tests are provided which verify the theory, and show how both Scott-Vogelius and grad-div stabilized Taylor-Hood (with large stabilization parameter) elements can provide accurate results with excellent mass conservation for Navier-Stokes approximations

    Improved Accuracy for Fluid Flow Problems Via Enhanced Physics

    Get PDF
    This thesis is an investigation of numerical methods for approximating solutions to fluid flow problems, specifically the Navier-Stokes equations (NSE) and magnetohydrodynamic equations (MHD), with an overriding theme of enforcing more physical behavior in discrete solutions. It is well documented that numerical methods with more physical accuracy exhibit better long-time behavior than comparable methods that enforce less physics in their solutions. This work develops, analyzes and tests finite element methods that better enforce mass conservation in discrete velocity solutions to the NSE and MHD, helicity conservation for NSE, cross-helicity conservation in MHD, and magnetic field incompressibility in MHD

    New connections between finite element formulations of the Navier--Stokes equations

    Get PDF
    We show the velocity solutions to the convective, skew-symmetric, and rotational Galerkin finite element formulations of the Navier-Stokes equations are identical if Scott-Vogelius elements are used, and thus all three formulations will the same pointwise divergence free solution velocity. A connection is then established between the formulations for grad-div stabilized Taylor-Hood elements: under mild restrictions, the formulations' velocity solutions converge to each other (and to the Scott-Vogelius solution) as the stabilization parameter tends to infinity. Thus the benefits of using Scott-Vogelius elements can be obtained with the less expensive Taylor-Hood elements, and moreover the benefits of all the formulations can be retained if the rotational formulation is used. Numerical examples are provided that confirm the theory

    On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond

    Get PDF
    An improved understanding of the divergence-free constraint for the incompressible Navier--Stokes equations leads to the observation that a semi-norm and corresponding equivalence classes of forces are fundamental for their nonlinear dynamics. The recent concept of {\em pressure-robustness} allows to distinguish between space discretisations that discretise these equivalence classes appropriately or not. This contribution compares the accuracy of pressure-robust and non-pressure-robust space discretisations for transient high Reynolds number flows, starting from the observation that in generalised Beltrami flows the nonlinear convection term is balanced by a strong pressure gradient. Then, pressure-robust methods are shown to outperform comparable non-pressure-robust space discretisations. Indeed, pressure-robust methods of formal order kk are comparably accurate than non-pressure-robust methods of formal order 2k2k on coarse meshes. Investigating the material derivative of incompressible Euler flows, it is conjectured that strong pressure gradients are typical for non-trivial high Reynolds number flows. Connections to vortex-dominated flows are established. Thus, pressure-robustness appears to be a prerequisite for accurate incompressible flow solvers at high Reynolds numbers. The arguments are supported by numerical analysis and numerical experiments.Comment: 43 pages, 18 figures, 2 table

    Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier--Stokes equations

    Get PDF
    Inf-sup stable FEM applied to time-dependent incompressible Navier--Stokes flows are considered. The focus lies on robust estimates for the kinetic and dissipation energies in a twofold sense. Firstly, pressure-robustness ensures the fulfilment of a fundamental invariance principle and velocity error estimates are not corrupted by the pressure approximability. Secondly, Re-semi-robustness means that constants appearing on the right-hand side of kinetic and dissipation energy error estimates (including Gronwall constants) do not explicitly depend on the Reynolds number. Such estimates rely on an essential regularity assumption for the gradient of the velocity, which is discussed in detail. In the sense of best practice, we review and establish pressure- and Re-semi-robust estimates for pointwise divergence-free H1-conforming FEM (like Scott--Vogelius pairs or certain isogeometric based FEM) and pointwise divergence-free H(div)-conforming discontinuous Galerkin FEM. For convection-dominated problems, the latter naturally includes an upwind stabilisation for the velocity which is not gradient-based

    Efficient and Accurate Splitting Methods for Flow Problems

    Get PDF

    Mixed finite element methods with convection stabilization for the large eddy simulation of incompressible turbulent flows

    Get PDF
    The variational multiscale method thought as an implicit large eddy simulation model for turbulent flows has been shown to be an alternative to the widely used physical-based models. This method is traditionally combined with equal-order velocity–pressure pairs, since it provides pressure stabilization. In this work, we consider a different approach, based on inf–sup stable elements and convection-only stabilization. In order to do so, we consider a symmetric projection stabilization of the convective term using an orthogonal subscale decomposition. The accuracy and efficiency of this method compared with residual-based algebraic subgrid scales and orthogonal subscales methods for equal-order interpolation is assessed in this paper. Moreover, when inf–sup stable elements are used, the grad–div stabilization term has been shown to be essential to guarantee accurate solutions. Hence, a study of the influence of such term in the large eddy simulation of turbulent incompressible flows is also performed. Furthermore, a recursive block preconditioning strategy has been considered for the resolution of the problem with an implicit treatment of the projection terms. Two different benchmark tests have been solved: the Taylor–Green Vortex flow with Re=1600, and the Turbulent Channel Flow at Reτ=395 and Reτ=590

    On the divergence constraint in mixed finite element methods for incompressible flows

    Get PDF
    The divergence constraint of the incompressible Navier--Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As a result, these methods introduce a pressure-dependent consistency error which can potentially pollute the computed velocity. These methods are not robust in the sense that a contribution from the right-hand side, which influences only the pressure in the continuous equations, impacts both velocity and pressure in the discrete equations. This paper reviews the theory and practical implications of relaxing the divergence constraint. Several approaches for improving the discrete mass balance or even for computing divergence-free solutions will be discussed: grad-div stabilization, higher order mixed methods derived on the basis of an exact de Rham complex, \bH(\mathrm{div})-conforming finite elements, and mixed methods with an appropriate reconstruction of the test functions. Numerical examples illustrate both the potential effects of using non-robust discretizations and the improvements obtained by utilizing pressure-robust discretizations
    corecore