11 research outputs found

    Cross-Modality Deep Feature Learning for Brain Tumor Segmentation

    Get PDF
    Recent advances in machine learning and prevalence of digital medical images have opened up an opportunity to address the challenging brain tumor segmentation (BTS) task by using deep convolutional neural networks. However, different from the RGB image data that are very widespread, the medical image data used in brain tumor segmentation are relatively scarce in terms of the data scale but contain the richer information in terms of the modality property. To this end, this paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data. The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale. The proposed cross-modality deep feature learning framework consists of two learning processes: the cross-modality feature transition (CMFT) process and the cross-modality feature fusion (CMFF) process, which aims at learning rich feature representations by transiting knowledge across different modality data and fusing knowledge from different modality data, respectively. Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance when compared with the baseline methods and state-of-the-art methods.Comment: published on Pattern Recognition 202

    Brain Tumor Area Segmentation of MRI Images

    Get PDF
    Accurate and timely detection of the brain tumor area has a great impact on the choice of treatment, its success rate, and following the disease process during treatment. The existing algorithms for brain tumor diagnosis have problems in terms of good performance on various brain images with different qualities, low sensitivity of the results to the parameters introduced in the algorithm, and also reliable diagnosis of tumors in the early stages of formation. In this study, a two-stage segmentation method for accurate detection of the tumor area in magnetic resonance imaging of the brain is presented. In the first stage, after performing the necessary preprocessing on the image, the location of the tumor is located using a threshold-based segmentation method, and in the second stage, it is used as an indicator in a pond segmentation method based on the marker used. Placed. Given that in the first stage there is not much emphasis on accurate detection of the tumor area, the selection of threshold values over a large range of values will not affect the final results. In the second stage, the use of the marker-based pond segmentation method will lead to accurate detection of the tumor area. The results of the implementations show that the proposed method for accurate detection of the tumor area in a large range of changes in input parameters has the same and accurate results

    Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge

    Get PDF
    International Brain Tumor Segmentation (BraTS) challengeGliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.This work was supported in part by the 1) National Institute of Neurological Disorders and Stroke (NINDS) of the NIH R01 grant with award number R01-NS042645, 2) Informatics Technology for Cancer Research (ITCR) program of the NCI/NIH U24 grant with award number U24-CA189523, 3) Swiss Cancer League, under award number KFS-3979-08-2016, 4) Swiss National Science Foundation, under award number 169607.Article signat per 427 autors/es: Spyridon Bakas1,2,3,†,‡,∗ , Mauricio Reyes4,† , Andras Jakab5,†,‡ , Stefan Bauer4,6,169,† , Markus Rempfler9,65,127,† , Alessandro Crimi7,† , Russell Takeshi Shinohara1,8,† , Christoph Berger9,† , Sung Min Ha1,2,† , Martin Rozycki1,2,† , Marcel Prastawa10,† , Esther Alberts9,65,127,† , Jana Lipkova9,65,127,† , John Freymann11,12,‡ , Justin Kirby11,12,‡ , Michel Bilello1,2,‡ , Hassan M. Fathallah-Shaykh13,‡ , Roland Wiest4,6,‡ , Jan Kirschke126,‡ , Benedikt Wiestler126,‡ , Rivka Colen14,‡ , Aikaterini Kotrotsou14,‡ , Pamela Lamontagne15,‡ , Daniel Marcus16,17,‡ , Mikhail Milchenko16,17,‡ , Arash Nazeri17,‡ , Marc-Andr Weber18,‡ , Abhishek Mahajan19,‡ , Ujjwal Baid20,‡ , Elizabeth Gerstner123,124,‡ , Dongjin Kwon1,2,† , Gagan Acharya107, Manu Agarwal109, Mahbubul Alam33 , Alberto Albiol34, Antonio Albiol34, Francisco J. Albiol35, Varghese Alex107, Nigel Allinson143, Pedro H. A. Amorim159, Abhijit Amrutkar107, Ganesh Anand107, Simon Andermatt152, Tal Arbel92, Pablo Arbelaez134, Aaron Avery60, Muneeza Azmat62, Pranjal B.107, Wenjia Bai128, Subhashis Banerjee36,37, Bill Barth2 , Thomas Batchelder33, Kayhan Batmanghelich88, Enzo Battistella42,43 , Andrew Beers123,124, Mikhail Belyaev137, Martin Bendszus23, Eze Benson38, Jose Bernal40 , Halandur Nagaraja Bharath141, George Biros62, Sotirios Bisdas76, James Brown123,124, Mariano Cabezas40, Shilei Cao67, Jorge M. Cardoso76, Eric N Carver41, Adri Casamitjana138, Laura Silvana Castillo134, Marcel Cat138, Philippe Cattin152, Albert Cerigues ´ 40, Vinicius S. Chagas159 , Siddhartha Chandra42, Yi-Ju Chang45, Shiyu Chang156, Ken Chang123,124, Joseph Chazalon29 , Shengcong Chen25, Wei Chen46, Jefferson W Chen80, Zhaolin Chen130, Kun Cheng120, Ahana Roy Choudhury47, Roger Chylla60, Albert Clrigues40, Steven Colleman141, Ramiro German Rodriguez Colmeiro149,150,151, Marc Combalia138, Anthony Costa122, Xiaomeng Cui115, Zhenzhen Dai41, Lutao Dai50, Laura Alexandra Daza134, Eric Deutsch43, Changxing Ding25, Chao Dong65 , Shidu Dong155, Wojciech Dudzik71,72, Zach Eaton-Rosen76, Gary Egan130, Guilherme Escudero159, Tho Estienne42,43, Richard Everson87, Jonathan Fabrizio29, Yong Fan1,2 , Longwei Fang54,55, Xue Feng27, Enzo Ferrante128, Lucas Fidon42, Martin Fischer95, Andrew P. French38,39 , Naomi Fridman57, Huan Fu90, David Fuentes58, Yaozong Gao68, Evan Gates58, David Gering60 , Amir Gholami61, Willi Gierke95, Ben Glocker128, Mingming Gong88,89, Sandra Gonzlez-Vill40, T. Grosges151, Yuanfang Guan108, Sheng Guo64, Sudeep Gupta19, Woo-Sup Han63, Il Song Han63 , Konstantin Harmuth95, Huiguang He54,55,56, Aura Hernndez-Sabat100, Evelyn Herrmann102 , Naveen Himthani62, Winston Hsu111, Cheyu Hsu111, Xiaojun Hu64, Xiaobin Hu65, Yan Hu66, Yifan Hu117, Rui Hua68,69, Teng-Yi Huang45, Weilin Huang64, Sabine Van Huffel141, Quan Huo68, Vivek HV70, Khan M. Iftekharuddin33, Fabian Isensee22, Mobarakol Islam81,82, Aaron S. Jackson38 , Sachin R. Jambawalikar48, Andrew Jesson92, Weijian Jian119, Peter Jin61, V Jeya Maria Jose82,83 , Alain Jungo4 , Bernhard Kainz128, Konstantinos Kamnitsas128, Po-Yu Kao79, Ayush Karnawat129 , Thomas Kellermeier95, Adel Kermi74, Kurt Keutzer61, Mohamed Tarek Khadir75, Mahendra Khened107, Philipp Kickingereder23, Geena Kim135, Nik King60, Haley Knapp60, Urspeter Knecht4 , Lisa Kohli60, Deren Kong64, Xiangmao Kong115, Simon Koppers32, Avinash Kori107, Ganapathy Krishnamurthi107, Egor Krivov137, Piyush Kumar47, Kaisar Kushibar40, Dmitrii Lachinov84,85 , Tryphon Lambrou143, Joon Lee41, Chengen Lee111, Yuehchou Lee111, Matthew Chung Hai Lee128 , Szidonia Lefkovits96, Laszlo Lefkovits97, James Levitt62, Tengfei Li51, Hongwei Li65, Wenqi Li76,77 , Hongyang Li108, Xiaochuan Li110, Yuexiang Li133, Heng Li51, Zhenye Li146, Xiaoyu Li67, Zeju Li158 , XiaoGang Li162, Wenqi Li76,77, Zheng-Shen Lin45, Fengming Lin115, Pietro Lio153, Chang Liu41 , Boqiang Liu46, Xiang Liu67, Mingyuan Liu114, Ju Liu115,116, Luyan Liu112, Xavier Llado´ 40, Marc Moreno Lopez132, Pablo Ribalta Lorenzo72, Zhentai Lu53, Lin Luo31, Zhigang Luo162, Jun Ma73 , Kai Ma117, Thomas Mackie60, Anant Madabhushi129, Issam Mahmoudi74, Klaus H. Maier-Hein22 , Pradipta Maji36, CP Mammen161, Andreas Mang165, B. S. Manjunath79, Michal Marcinkiewicz71 , Steven McDonagh128, Stephen McKenna157, Richard McKinley6 , Miriam Mehl166, Sachin Mehta91 , Raghav Mehta92, Raphael Meier4,6 , Christoph Meinel95, Dorit Merhof32, Craig Meyer27,28, Robert Miller131, Sushmita Mitra36, Aliasgar Moiyadi19, David Molina-Garcia142, Miguel A.B. Monteiro105 , Grzegorz Mrukwa71,72, Andriy Myronenko21, Jakub Nalepa71,72, Thuyen Ngo79, Dong Nie113, Holly Ning131, Chen Niu67, Nicholas K Nuechterlein91, Eric Oermann122, Arlindo Oliveira105,106, Diego D. C. Oliveira159, Arnau Oliver40, Alexander F. I. Osman140, Yu-Nian Ou45, Sebastien Ourselin76 , Nikos Paragios42,44, Moo Sung Park121, Brad Paschke60, J. Gregory Pauloski58, Kamlesh Pawar130, Nick Pawlowski128, Linmin Pei33, Suting Peng46, Silvio M. Pereira159, Julian Perez-Beteta142, Victor M. Perez-Garcia142, Simon Pezold152, Bao Pham104, Ashish Phophalia136 , Gemma Piella101, G.N. Pillai109, Marie Piraud65, Maxim Pisov137, Anmol Popli109, Michael P. Pound38, Reza Pourreza131, Prateek Prasanna129, Vesna Pr?kovska99, Tony P. Pridmore38, Santi Puch99, lodie Puybareau29, Buyue Qian67, Xu Qiao46, Martin Rajchl128, Swapnil Rane19, Michael Rebsamen4 , Hongliang Ren82, Xuhua Ren112, Karthik Revanuru139, Mina Rezaei95, Oliver Rippel32, Luis Carlos Rivera134, Charlotte Robert43, Bruce Rosen123,124, Daniel Rueckert128 , Mohammed Safwan107, Mostafa Salem40, Joaquim Salvi40, Irina Sanchez138, Irina Snchez99 , Heitor M. Santos159, Emmett Sartor160, Dawid Schellingerhout59, Klaudius Scheufele166, Matthew R. Scott64, Artur A. Scussel159, Sara Sedlar139, Juan Pablo Serrano-Rubio86, N. Jon Shah130 , Nameetha Shah139, Mazhar Shaikh107, B. Uma Shankar36, Zeina Shboul33, Haipeng Shen50 , Dinggang Shen113, Linlin Shen133, Haocheng Shen157, Varun Shenoy61, Feng Shi68, Hyung Eun Shin121, Hai Shu52, Diana Sima141, Matthew Sinclair128, Orjan Smedby167, James M. Snyder41 , Mohammadreza Soltaninejad143, Guidong Song145, Mehul Soni107, Jean Stawiaski78, Shashank Subramanian62, Li Sun30, Roger Sun42,43, Jiawei Sun46, Kay Sun60, Yu Sun69, Guoxia Sun115 , Shuang Sun115, Yannick R Suter4 , Laszlo Szilagyi97, Sanjay Talbar20, Dacheng Tao26, Dacheng Tao90, Zhongzhao Teng154, Siddhesh Thakur20, Meenakshi H Thakur19, Sameer Tharakan62 , Pallavi Tiwari129, Guillaume Tochon29, Tuan Tran103, Yuhsiang M. Tsai111, Kuan-Lun Tseng111 , Tran Anh Tuan103, Vadim Turlapov85, Nicholas Tustison28, Maria Vakalopoulou42,43, Sergi Valverde40, Rami Vanguri48,49, Evgeny Vasiliev85, Jonathan Ventura132, Luis Vera142, Tom Vercauteren76,77, C. A. Verrastro149,150, Lasitha Vidyaratne33, Veronica Vilaplana138, Ajeet Vivekanandan60, Guotai Wang76,77, Qian Wang112, Chiatse J. Wang111, Weichung Wang111, Duo Wang153, Ruixuan Wang157, Yuanyuan Wang158, Chunliang Wang167, Guotai Wang76,77, Ning Wen41, Xin Wen67, Leon Weninger32, Wolfgang Wick24, Shaocheng Wu108, Qiang Wu115,116 , Yihong Wu144, Yong Xia66, Yanwu Xu88, Xiaowen Xu115, Peiyuan Xu117, Tsai-Ling Yang45 , Xiaoping Yang73, Hao-Yu Yang93,94, Junlin Yang93, Haojin Yang95, Guang Yang170, Hongdou Yao98, Xujiong Ye143, Changchang Yin67, Brett Young-Moxon60, Jinhua Yu158, Xiangyu Yue61 , Songtao Zhang30, Angela Zhang79, Kun Zhang89, Xuejie Zhang98, Lichi Zhang112, Xiaoyue Zhang118, Yazhuo Zhang145,146,147, Lei Zhang143, Jianguo Zhang157, Xiang Zhang162, Tianhao Zhang168, Sicheng Zhao61, Yu Zhao65, Xiaomei Zhao144,55, Liang Zhao163,164, Yefeng Zheng117 , Liming Zhong53, Chenhong Zhou25, Xiaobing Zhou98, Fan Zhou51, Hongtu Zhu51, Jin Zhu153, Ying Zhuge131, Weiwei Zong41, Jayashree Kalpathy-Cramer123,124,† , Keyvan Farahani12,†,‡ , Christos Davatzikos1,2,†,‡ , Koen van Leemput123,124,125,† , and Bjoern Menze9,65,127,†,∗Preprin

    The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.

    Get PDF
    Automated semantic segmentation of multiple knee joint tissues is desirable to allow faster and more reliable analysis of large datasets and to enable further downstream processing e.g. automated diagnosis. In this work, we evaluate the use of conditional Generative Adversarial Networks (cGANs) as a robust and potentially improved method for semantic segmentation compared to other extensively used convolutional neural network, such as the U-Net. As cGANs have not yet been widely explored for semantic medical image segmentation, we analysed the effect of training with different objective functions and discriminator receptive field sizes on the segmentation performance of the cGAN. Additionally, we evaluated the possibility of using transfer learning to improve the segmentation accuracy. The networks were trained on i) the SKI10 dataset which comes from the MICCAI grand challenge "Segmentation of Knee Images 2010″, ii) the OAI ZIB dataset containing femoral and tibial bone and cartilage segmentations of the Osteoarthritis Initiative cohort and iii) a small locally acquired dataset (Advanced MRI of Osteoarthritis (AMROA) study) consisting of 3D fat-saturated spoiled gradient recalled-echo knee MRIs with manual segmentations of the femoral, tibial and patellar bone and cartilage, as well as the cruciate ligaments and selected peri-articular muscles. The Sørensen-Dice Similarity Coefficient (DSC), volumetric overlap error (VOE) and average surface distance (ASD) were calculated for segmentation performance evaluation. DSC ≥ 0.95 were achieved for all segmented bone structures, DSC ≥ 0.83 for cartilage and muscle tissues and DSC of ≈0.66 were achieved for cruciate ligament segmentations with both cGAN and U-Net on the in-house AMROA dataset. Reducing the receptive field size of the cGAN discriminator network improved the networks segmentation performance and resulted in segmentation accuracies equivalent to those of the U-Net. Pretraining not only increased segmentation accuracy of a few knee joint tissues of the fine-tuned dataset, but also increased the network's capacity to preserve segmentation capabilities for the pretrained dataset. cGAN machine learning can generate automated semantic maps of multiple tissues within the knee joint which could increase the accuracy and efficiency for evaluating joint health.European Union's Horizon 2020 Framework Programme [grant number 761214] Addenbrooke’s Charitable Trust (ACT) National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre University of Cambridge Cambridge University Hospitals NHS Foundation Trust GSK VARSITY: PHD STUDENTSHIP Funder reference: 300003198

    Collaborative Artificial Intelligence Algorithms for Medical Imaging Applications

    Get PDF
    In this dissertation, we propose novel machine learning algorithms for high-risk medical imaging applications. Specifically, we tackle current challenges in radiology screening process and introduce cutting-edge methods for image-based diagnosis, detection and segmentation. We incorporate expert knowledge through eye-tracking, making the whole process human-centered. This dissertation contributes to machine learning, computer vision, and medical imaging research by: 1) introducing a mathematical formulation of radiologists level of attention, and sparsifying their gaze data for a better extraction and comparison of search patterns. 2) proposing novel, local and global, image analysis algorithms. Imaging based diagnosis and pattern analysis are high-risk Artificial Intelligence applications. A standard radiology screening procedure includes detection, diagnosis and measurement (often done with segmentation) of abnormalities. We hypothesize that having a true collaboration is essential for a better control mechanism, in such applications. In this regard, we propose to form a collaboration medium between radiologists and machine learning algorithms through eye-tracking. Further, we build a generic platform consisting of novel machine learning algorithms for each of these tasks. Our collaborative algorithm utilizes eye tracking and includes an attention model and gaze-pattern analysis, based on data clustering and graph sparsification. Then, we present a semi-supervised multi-task network for local analysis of image in radiologists\u27 ROIs, extracted in the previous step. To address missing tumors and analyze regions that are completely missed by radiologists during screening, we introduce a detection framework, S4ND: Single Shot Single Scale Lung Nodule Detection. Our proposed detection algorithm is specifically designed to handle tiny abnormalities in lungs, which are easy to miss by radiologists. Finally, we introduce a novel projective adversarial framework, PAN: Projective Adversarial Network for Medical Image Segmentation, for segmenting complex 3D structures/organs, which can be beneficial in the screening process by guiding radiologists search areas through segmentation of desired structure/organ
    corecore