135 research outputs found

    Concurrent Design and Manufacturing for Mechanical Systems

    Get PDF
    The conventional product development process employs a design-build-break philosophy. The sequentially executed product development process often results in a prolonged lead-time and an elevated product cost. The proposed concurrent design and manu facturing (CDM) paradigm employs physics-based computational methods together with computer graphics techniques for product de sign. This proposed approach employs Virtual Prototyping (VP) technology to support a cross-functional team in analyzing product per formance, reliability, and manufacturing cost early in the product development stage; and in conducting quantitative trade-off for design decision making. Physical prototypes of the product design are then produced using Rapid Prototyping (RP) technique primarily for de sign verification purposes. The proposed CDM approach holds potential for shortening the overall product development cycle, improving product quality, and reducing product cost. A software tool environment that supports CDM for mechanical systems is being built at the Concurrent Design and Manufacturing Research Laboratory (http://cdm.ou.edu) at the University of Oklahoma. A snapshot of the envi ronment is illustrated using a two-stroke engine example. This paper presents three unique concepts and methods for product develop ment : (1) bringing product performance, quality, and manufacturing cost together in early design stage for design considerations, (2) supporting design decision-making through a quantitative approach, and (3) incorporating rapid prototyping for design verification through physical prototypes.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Integrating Aircraft Cost Modeling into Conceptual Design

    Get PDF
    The article presents cost modeling results from the application of the Genetic-Causal cost modeling principle. Industrial results from redesign are also presented to verify the opportunity for early concept cost optimization by using Genetic-Causal cost drivers to guide the conceptual design process for structural assemblies. The acquisition cost is considered through the modeling of the recurring unit cost and non-recurring design cost. The operational cost is modeled relative to acquisition cost and fuel burn for predominately metal or composites designs. The main contribution of this study is the application of the Genetic-Causal principle to the modeling of cost, helping to understand how conceptual design parameters impact on cost, and linking that to customer requirements and life cycle cost

    A survey of virtual prototyping techniques for mechanical product development

    Get PDF
    Repeated, efficient, and extensive use of prototypes is a vital activity that can make the difference between successful and unsuccessful entry of new products into the competitive world market. In this respect, physical prototyping can prove to be very lengthy and expensive, especially if modifications resulting from design reviews involve tool redesign. The availability and affordability of advanced computer technology has paved the way for increasing utilization of prototypes that are digital and created in computer-based environments, i.e. they are virtual as opposed to being physical. The technology for using virtual prototypes was pioneered and adopted initially by large automotive and aerospace industries. Small-to-medium enterprises (SMEs) in the manufacturing industry also need to take virtual prototyping (VP) technology more seriously in order to exploit the benefits. VP is becoming very advanced and may eventually dominate the product development process. However, physical prototypes will still be required for the near future, albeit less frequently. This paper presents a general survey of the available VP techniques and highlights some of the most important developments and research issues while providing sources for further reference. The purpose of the paper is to provide potential SME users with a broad picture of the field of VP and to identify issues and information relevant to the deployment and implementation of VP technology

    Redesign of an In-Market Conveyor System for Manufacturing Cost Reduction and Design Efficiency Using DFMA Methodology

    Get PDF
    To remain competitive in the market, it is crucial to reduce the time and costs involved in product development. Design for manufacturing and assembly is an engineering methodology that can reduce costs without compromising reliability, performance and time to market objectives. This paper presents a case study for an in-market Table Top Chain (TTC) conveyor system used by a reputed company in Saudi Arabia. TTC conveyor systems are extensively used by major food companies around the world for transporting packaged bottles, glass and cans. There are three main types of these systems, i.e., straight running, side flexing and multiflex. This work focuses on the redesign of a side flexing TTC conveyor system. The existing design of the TTC conveyor system was analysed using the DFMA 9.3 software. The outcomes of the initial analysis were utilised to redesign the TTC conveyor system for cost and design efficiency improvements. The optimum design was selected using Pugh controlled convergence method and further tested for its structural performance using finite element analysis. The redesigned model showed substantial improvements with cost reductions of 29% and an increase in design efficiency from 1.7% to 5%. Finite element analysis has also been carried out with SolidWorks 2019 to validate the structural integrity of the new concept design

    The Threat of Plant Toxins and Bioterrorism: A Review

    Get PDF
    The intentional use of highly pathogenic microorganisms, such as bacteria, viruses or their toxins, to spread mass-scale diseases that destabilize populations (with motivations of religious or ideological belief, monetary implications, or political decisions) is defined as bioterrorism. Although the success of a bioterrorism attack is not very realistic due to technical constraints, it is not unlikely and the threat of such an attack is higher than ever before. It is now a fact that the capability to create panic has allured terrorists for the use of biological agents (BAs) to cause terror attacks. In the era of biotechnology and nanotechnology, accessibility in terms of price and availability has spread fast, with new sophisticated BAs often being produced and used. Moreover, there are some BAs that are becoming increasingly important, such as toxins produced by bacteria (e.g., Botulinum toxin, BTX), or Enterotoxyn type B, also known as Staphylococcal Enterotoxin B (SEB)) and extractions from plants. The most increasing records are with regards to the extraction / production of ricin, abrin, modeccin, viscumin and volkensin, which are the most lethal plant toxins known to humans, even in low amounts. Moreover, ricin was also developed as an aerosol biological warfare agent (BWA) by the US and its allies during World War II, but was never used. Nowadays, there are increasing records that show how easy it can be to extract plant toxins and transform them into biological weapon agents (BWAs), regardless of the scale of the group of individuals

    Critical appraisal of product development expertise in Irish SMEs

    Get PDF
    The focus of this research was on the product development expertise of Irish SMEs. In particular, SMEs developing physical products (a physical product is defined as an electronic, medical device, plastic or general engineering product). A survey of Irish SMEs was conducted across industry sectors developing physical products with the objective of understanding how indigenous SMEs and therefore Ireland is progressing towards becoming a knowledge economy. SME characteristics (customers and markets, organisational structures, systems, processes and procedures, human and financial resources, culture and behaviour) were researched and used to understand the issues SMEs have with product development (PD research is mostly considered from the perspective of large companies). In relation to product development: strategy, innovation and learning, strategic techniques, organisational structure, product development process design, types of product development processes, tools and methodologies, technology, intellectual property, change management, marketing and branding and performance measurement were all examined. Survey items (variables) were identified from the literature review and used to create a survey designed based on ‘best practice’ PD and SME characteristics. This survey was conducted based on identified survey best practice in order to increase response rate and went through two pre-tests and a pilot before the final study. Descriptive analysis, reliability/consistency analysis and regression analysis were conducted on the constructs of product development. Specific relationships identified in the literature review were examined. The results of this analysis revealed that Irish SMEs are operating in a ‘Knowledge Based Development’ or learning environment. They carry out many of the techniques associated with various tools and methodologies but reported no use of these T&M which could aid their approach. There is a high use of technology, especially CAD and technology is mostly developed within the product development process. There was a high use of Cross Functional Teams and in general strategy and fuzzy front end/voice of the customer usage was carried out well. There were no issues with change management and in relation to intellectual property the use of an IP policy, strategy and portfolios was low. Generally, Irish SMEs are ready to reach the next stage of company evolution by linking ‘organisational (innovation) processes’

    A design framework for agile virtual enterprise collaboration

    Get PDF
    The market in which engineering companies must operate is increasingly turbulent and unpredictable, largely due to the global nature of the engineering industry in the 21st century. This turbulent environment is further exacerbated by the increasing focus on customisation for individual consumers, rather than the mass manufacturing market of the past. In order to thrive in this turbulent environment companies are increasingly focussing on their core competences, and building strategic alliances with complementary partner companies to satisfy the overall needs of an individual project. This is true of the design as well as manufacturing stages of product development. The increasing levels of collaboration and the requirement for companies to be agile in their response to unexpected events are the background to this research. Specifically, this research addressed the ability of collaborating groups of companies to respond to unexpected events during the design stages of product development. The hypothesis was that through the specific implementation of a novel collection of tools and techniques the agility of collaborative design projects can be increased. A multi-method approach was adopted for the research, beginning with an industrial survey identifying those tools and techniques from the literature which are linked to an increased level of agility. These results form the basis for the definition of the Agile Design Framework which takes the form of a series of implementation steps carried out by a collaborative design team to put in place tools and techniques for increasing their responsiveness to unexpected events. The second stage of the research tested the Agile Design Framework in a controlled laboratory environment with both an experimental and control group undertaking the same collaborative design project. Unexpected events were introduced and the responses of both groups are analysed. The experiment group using the Agile Design Framework had a Key Agility Index score of 0.04 compared with a score of 0.13 for the control group. A low score on the Key Agility Index indicates a higher level of agility while high scores tending to 1 have a lower agility level. The results supported further calibration of the Agile Design Framework for the final stage of the research which was an implementation of the framework in industry for a real-life collaborative design project. This industrial implementation showed an improvement in the agility of the collaborative design project using the Agile Design Framework, improving the Key Agility Index from 0.54 to 0.43.The research makes three novel contributions to knowledge in this field. The first is the Agile Design Framework which is a set of tools and techniques with a specific implementation process, which has been shown to increase agility for collaborative design projects. Secondly, a four-level classification scheme for unexpected events will be presented which allows categorisation of unexpected events into Trivial, Minor, Major and fatal, based on specific criteria. Finally, through the use of easily obtainable data the Key Agility Index is validated as a meaningful quantitative metric for the measurement of agility at the project or departmental level

    Process improvement strategies for the production of a business machine frame

    Get PDF
    In industry the key to excellent products is continual process improvement. Although process improvement is a timely procedure, results can be actualized through quality management and engineering concepts. This paper will analyze the production start-up of a copier frame and will further utilize process improvement strategies to improve the production process. The improvement strategies will include frame redesign, avoidance of material warpage due to welding, total quality management, as well as statistical process control guidelines. The frame redesign will look at eliminating unnecessary piece parts and reducing the overall production time and cost of the frame. This analysis will be conducted with the aid of Boothroyd and Dewhurst\u27s (BDI) Design for Assembly (DFA) software. Next finite element analysis (FEA) and heat transfer techniques will be utilized to examine the warpage that the frames experience from welding. Algor SuperSap will be the software package utilized for the FEA. Finally, total quality management (TQM) and statistical process control (SQC) procedures will be examined. The best practices for this application have been implemented or will be recommended for future implementation

    Internal and External Involvements in Integrated Product Development: A Two-Step Clustering Approach

    Get PDF
    © 2017 The Authors. The term Integrated Product Development (IPD) has been introduced as a focus for cross-disciplinary research and can have several forms, or manifestations, with regard to the existing disciplines such as concurrent engineering and design for manufacturing. Of central importance to IPD is the interpretation of the term "integration", particularly with regard to internal and external elements. However, there is not yet an explicit understanding of an appropriate degree of integration, or involvement, with respect to its different forms, that can assure successful implementation of IPD frameworks in practice. Through a review and clustering of the literature, this paper aims to address this challenge

    Introductory Chapter: Product Lifecycle Management - Terminology

    Get PDF
    corecore