19,667 research outputs found

    A Formal Model of Metaphor in Frame Semantics

    Get PDF
    A formal model of metaphor is introduced. It models metaphor, first, as an interaction of “frames” according to the frame semantics, and then, as a wave function in Hilbert space. The practical way for a probability distribution and a corresponding wave function to be assigned to a given metaphor in a given language is considered. A series of formal definitions is deduced from this for: “representation”, “reality”, “language”, “ontology”, etc. All are based on Hilbert space. A few statements about a quantum computer are implied: The sodefined reality is inherent and internal to it. It can report a result only “metaphorically”. It will demolish transmitting the result “literally”, i.e. absolutely exactly. A new and different formal definition of metaphor is introduced as a few entangled wave functions corresponding to different “signs” in different language formally defined as above. The change of frames as the change from the one to the other formal definition of metaphor is interpreted as a formal definition of thought. Four areas of cognition are unified as different but isomorphic interpretations of the mathematical model based on Hilbert space. These are: quantum mechanics, frame semantics, formal semantics by means of quantum computer, and the theory of metaphor in linguistics

    Challenging the Computational Metaphor: Implications for How We Think

    Get PDF
    This paper explores the role of the traditional computational metaphor in our thinking as computer scientists, its influence on epistemological styles, and its implications for our understanding of cognition. It proposes to replace the conventional metaphor--a sequence of steps--with the notion of a community of interacting entities, and examines the ramifications of such a shift on these various ways in which we think

    Theories about architecture and performance of multi-agent systems

    Get PDF
    Multi-agent systems are promising as models of organization because they are based on the idea that most work in human organizations is done based on intelligence, communication, cooperation, and massive parallel processing. They offer an alternative for system theories of organization, which are rather abstract of nature and do not pay attention to the agent level. In contrast, classical organization theories offer a rather rich source of inspiration for developing multi-agent models because of their focus on the agent level. This paper studies the plausibility of theoretical choices in the construction of multi-agent systems. Multi-agent systems have to be plausible from a philosophical, psychological, and organizational point of view. For each of these points of view, alternative theories exist. Philosophically, the organization can be seen from the viewpoints of realism and constructivism. Psychologically, several agent types can be distinguished. A main problem in the construction of psychologically plausible computer agents is the integration of response function systems with representational systems. Organizationally, we study aspects of the architecture of multi-agent systems, namely topology, system function decomposition, coordination and synchronization of agent processes, and distribution of knowledge and language characteristics among agents. For each of these aspects, several theoretical perspectives exist.

    Information and Experience in Metaphor: A Perspective From Computer Analysis

    Get PDF
    Novel linguistic metaphor can be seen as the assignment of attributes to a topic through a vehicle belonging to another domain. The experience evoked by the vehicle is a significant aspect of the meaning of the metaphor, especially for abstract metaphor, which involves more than mere physical similarity. In this article I indicate, through description of a specific model, some possibilities as well as limitations of computer processing directed toward both informative and experiential/affective aspects of metaphor. A background to the discussion is given by other computational treatments of metaphor analysis, as well as by some questions about metaphor originating in other disciplines. The approach on which the present metaphor analysis model is based is consistent with a theory of language comprehension that includes both the intent of the originator and the effect on the recipient of the metaphor. The model addresses the dual problem of (a) determining potentially salient properties of the vehicle concept, and (b) defining extensible symbolic representations of such properties, including affective and other connotations. The nature of the linguistic analysis underlying the model suggests how metaphoric expression of experiential components in abstract metaphor is dependent on the nominalization of actions and attributes. The inverse process of undoing such nominalizations in computer analysis of metaphor constitutes a translation of a metaphor to a more literal expression within the metaphor-nonmetaphor dichotomy

    Abstraction as a basis for the computational interpretation of creative cross-modal metaphor

    Get PDF
    Various approaches to computational metaphor interpretation are based on pre-existing similarities between source and target domains and/or are based on metaphors already observed to be prevalent in the language. This paper addresses similarity-creating cross-modal metaphoric expressions. It is shown how the “abstract concept as object” (or reification) metaphor plays a central role in a large class of metaphoric extensions. The described approach depends on the imposition of abstract ontological components, which represent source concepts, onto target concepts. The challenge of such a system is to represent both denotative and connotative components which are extensible, together with a framework of general domains between which such extensions can conceivably occur. An existing ontology of this kind, consistent with some mathematic concepts and widely held linguistic notions, is outlined. It is suggested that the use of such an abstract representation system is well adapted to the interpretation of both conventional and unconventional metaphor that is similarity-creating

    Development and validation of computational models of cellular interaction

    Get PDF
    In this paper we take the view that computational models of biological systems should satisfy two conditions – they should be able to predict function at a systems biology level, and robust techniques of validation against biological models must be available. A modelling paradigm for developing a predictive computational model of cellular interaction is described, and methods of providing robust validation against biological models are explored, followed by a consideration of software issues

    Connecting Levels of Analysis in Educational Neuroscience: A Review of Multi-level Structure of Educational Neuroscience with Concrete Examples

    Get PDF
    In its origins educational neuroscience has started as an endeavor to discuss implications of neuroscience studies for education. However, it is now on its way to become a transdisciplinary field, incorporating findings, theoretical frameworks and methodologies from education, and cognitive and brain sciences. Given the differences and diversity in the originating disciplines, it has been a challenge for educational neuroscience to integrate both theoretical and methodological perspective in education and neuroscience in a coherent way. We present a multi-level framework for educational neuroscience, which argues for integration of multiple levels of analysis, some originating in brain and cognitive sciences, others in education, as a roadmap for the future of educational neuroscience with concrete examples in moral education
    • …
    corecore