6,291 research outputs found

    Mind: meet network. Emergence of features in conceptual metaphor.

    Get PDF
    As a human product, language reflects the psychological experience of man (Radden and Dirven, 2007). One model of language and human cognition in general is connectionism, by many linguists is regarded as mathematical and, therefore, too reductive. This opinion trend seems to be reversing, however, due to the fact that many cognitive researchers begin to appreciate one attribute of network models: feature emergence. In the course of a network simulation properties emerge that were neither inbuilt nor intended by its creators (Elman, 1998), in other words, the whole becomes more than just the sum of its parts. Insight is not only drawn from the network's output, but also the means that the network utilizes to arrive at the output.\ud It may seem obvious that the events of life should be meaningful for human beings, yet there is no widely accepted theory as to how do we derive that meaning. The most promising hypothesis regarding the question how the world is meaningful to us is that of embodied cognition (cf. Turner 2009), which postulates that the functions of the brain evolved so as to ‘understand’ the body, thus grounding the mind in an experiential foundation. Yet, the relationship between the body and the mind is far from perspicuous, as research insight is still intertwined with metaphors specific for the researcher’s methodology (Eliasmith 2003). It is the aim of this paper to investigate the conceptual metaphor in a manner that will provide some insight with regard to the role that objectification, as defined by Szwedek (2002), plays in human cognition and identify one possible consequence of embodied cognition.\ud If the mechanism for concept formation, or categorization of the world, resembles a network, it is reasonable to assume that evidence for this is to be sought in language. Let us then postulate the existence of a network mechanism for categorization and concept formation present in the human mind and initially developed to cope with the world directly accessible to the early human (i.e. tangible). Such a network would convert external inputs to form an internal, multi modal representation of a perceived object in the brain. The sheer amount of available information and the computational restrictions of the brain would force some sort of data compression, or a computational funnel. It has been shown that a visual perception network of this kind can learn to accurately label patterns (Elman, 1998). What is more, the compression of data facilitated the recognition of prototypes of a given pattern category rather than its peripheral representations, an emergent property that supports the prototype theory of the mental lexicon (cf. Radden and Dirven, 2007).\ud The present project proposes that, in the domain of cognition, the process of objectification, as defined by Szwedek (2002), would be an emergent property of such a system, or that if an abstract notion is computed by a neural network designed to cope with tangible concepts the data compression mechanism would require the notion to be conceptualized as an object to permit further processing. The notion of emergence of meaning from the operation of complex systems is recognised as an important process in a number of studies on metaphor comprehension. Feature emergence is said to occur when a non-salient feature of the target and the vehicle becomes highly salient in the metaphor (Utsumi 2005). Therefore, for example, should objectification emerge as a feature in the metaphor KNOWLEDGE IS A TREASURE, the metaphor would be characterised as having more\ud features of an object than either the target or vehicle alone. This paper focuses on providing a theoretical connectionist network based on the Elman-type network (Elman, 1998) as a model of concept formation where objectification would be an emergent feature. This is followed by a psychological experiment whereby the validity of this assumption is tested through a questionnaire where two groups of participants are asked to evaluate either metaphors or their components. The model proposes an underlying relation between the mechanism for concept formation and the omnipresence of conceptual metaphors, which are interpreted as resulting from the properties of the proposed network system.\ud Thus, an evolutionary neural mechanism is proposed for categorization of the world, that is able to cope with both concrete and abstract notions and the by-product of which are the abstract language-related phenomena, i.e. metaphors. The model presented in this paper aims at providing a unified account of how the various types of phenomena, objects, feelings etc. are categorized in the human mind, drawing on evidence from language.\ud References:\ud Szwedek, Aleksander. 2002. Objectification: From Object Perception To Metaphor Creation. In B. Lewandowska-Tomaszczyk and K. Turewicz (eds). Cognitive Linguistics To-day, 159-175. Frankfurt am Main: Peter Lang.\ud Radden, GĂŒnter and Dirven, RenĂ©. 2007. Cognitive English Grammar. Amsterdam/ Philadelphia: John Benjamins Publishing Company\ud Eliasmith, Chris. 2003. Moving beyond metaphors: understanding the mind for what it is. Journal of Philosophy. C(10):493- 520.\ud Elman, J. L. et al. 1998. Rethinking innateness: A connectionist perspective on development. Cambridge, MA: MIT Press\ud Turner, Mark. 2009. Categorization of Time and Space Through Language. (Paper presented at the FOCUS2009 conference "Categorization of the world through language". Serock, 25-28 February 2009).\ud Utsumi, Akira. 2005. The role of feature emergence in metaphor appreciation, Metaphor and Symbol, 20(3), 151-172

    Cognitive networks: brains, internet, and civilizations

    Get PDF
    In this short essay, we discuss some basic features of cognitive activity at several different space-time scales: from neural networks in the brain to civilizations. One motivation for such comparative study is its heuristic value. Attempts to better understand the functioning of "wetware" involved in cognitive activities of central nervous system by comparing it with a computing device have a long tradition. We suggest that comparison with Internet might be more adequate. We briefly touch upon such subjects as encoding, compression, and Saussurean trichotomy langue/langage/parole in various environments.Comment: 16 page

    On staying grounded and avoiding Quixotic dead ends

    Get PDF
    The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing

    The color of smiling: computational synaesthesia of facial expressions

    Get PDF
    This note gives a preliminary account of the transcoding or rechanneling problem between different stimuli as it is of interest for the natural interaction or affective computing fields. By the consideration of a simple example, namely the color response of an affective lamp to a sensed facial expression, we frame the problem within an information- theoretic perspective. A full justification in terms of the Information Bottleneck principle promotes a latent affective space, hitherto surmised as an appealing and intuitive solution, as a suitable mediator between the different stimuli.Comment: Submitted to: 18th International Conference on Image Analysis and Processing (ICIAP 2015), 7-11 September 2015, Genova, Ital

    Big data and the SP theory of intelligence

    Get PDF
    This article is about how the "SP theory of intelligence" and its realisation in the "SP machine" may, with advantage, be applied to the management and analysis of big data. The SP system -- introduced in the article and fully described elsewhere -- may help to overcome the problem of variety in big data: it has potential as "a universal framework for the representation and processing of diverse kinds of knowledge" (UFK), helping to reduce the diversity of formalisms and formats for knowledge and the different ways in which they are processed. It has strengths in the unsupervised learning or discovery of structure in data, in pattern recognition, in the parsing and production of natural language, in several kinds of reasoning, and more. It lends itself to the analysis of streaming data, helping to overcome the problem of velocity in big data. Central in the workings of the system is lossless compression of information: making big data smaller and reducing problems of storage and management. There is potential for substantial economies in the transmission of data, for big cuts in the use of energy in computing, for faster processing, and for smaller and lighter computers. The system provides a handle on the problem of veracity in big data, with potential to assist in the management of errors and uncertainties in data. It lends itself to the visualisation of knowledge structures and inferential processes. A high-parallel, open-source version of the SP machine would provide a means for researchers everywhere to explore what can be done with the system and to create new versions of it.Comment: Accepted for publication in IEEE Acces

    Feature and Variable Selection in Classification

    Full text link
    The amount of information in the form of features and variables avail- able to machine learning algorithms is ever increasing. This can lead to classifiers that are prone to overfitting in high dimensions, high di- mensional models do not lend themselves to interpretable results, and the CPU and memory resources necessary to run on high-dimensional datasets severly limit the applications of the approaches. Variable and feature selection aim to remedy this by finding a subset of features that in some way captures the information provided best. In this paper we present the general methodology and highlight some specific approaches.Comment: Part of master seminar in document analysis held by Marcus Eichenberger-Liwick

    Development and validation of computational models of cellular interaction

    Get PDF
    In this paper we take the view that computational models of biological systems should satisfy two conditions – they should be able to predict function at a systems biology level, and robust techniques of validation against biological models must be available. A modelling paradigm for developing a predictive computational model of cellular interaction is described, and methods of providing robust validation against biological models are explored, followed by a consideration of software issues
    • 

    corecore