10,936 research outputs found

    SYNDEEP: a deep learning approach for the prediction of cancer drugs synergy.

    Get PDF
    Drug combinations can be the prime strategy for increasing the initial treatment options in cancer therapy. However, identifying the combinations through experimental approaches is very laborious and costly. Notably, in vitro and/or in vivo examination of all the possible combinations might not be plausible. This study presented a novel computational approach to predicting synergistic drug combinations. Specifically, the deep neural network-based binary classification was utilized to develop the model. Various physicochemical, genomic, protein-protein interaction and protein-metabolite interaction information were used to predict the synergy effects of the combinations of different drugs. The performance of the constructed model was compared with shallow neural network (SNN), k-nearest neighbors (KNN), random forest (RF), support vector machines (SVMs), and gradient boosting classifiers (GBC). Based on our findings, the proposed deep neural network model was found to be capable of predicting synergistic drug combinations with high accuracy. The prediction accuracy and AUC metrics for this model were 92.21% and 97.32% in tenfold cross-validation. According to the results, the integration of different types of physicochemical and genomics features leads to more accurate prediction of synergy in cancer drugs

    A network inference method for large-scale unsupervised identification of novel drug-drug interactions

    Get PDF
    Characterizing interactions between drugs is important to avoid potentially harmful combinations, to reduce off-target effects of treatments and to fight antibiotic resistant pathogens, among others. Here we present a network inference algorithm to predict uncharacterized drug-drug interactions. Our algorithm takes, as its only input, sets of previously reported interactions, and does not require any pharmacological or biochemical information about the drugs, their targets or their mechanisms of action. Because the models we use are abstract, our approach can deal with adverse interactions, synergistic/antagonistic/suppressing interactions, or any other type of drug interaction. We show that our method is able to accurately predict interactions, both in exhaustive pairwise interaction data between small sets of drugs, and in large-scale databases. We also demonstrate that our algorithm can be used efficiently to discover interactions of new drugs as part of the drug discovery process

    Improved Network Performance via Antagonism: From Synthetic Rescues to Multi-drug Combinations

    Get PDF
    Recent research shows that a faulty or sub-optimally operating metabolic network can often be rescued by the targeted removal of enzyme-coding genes--the exact opposite of what traditional gene therapy would suggest. Predictions go as far as to assert that certain gene knockouts can restore the growth of otherwise nonviable gene-deficient cells. Many questions follow from this discovery: What are the underlying mechanisms? How generalizable is this effect? What are the potential applications? Here, I will approach these questions from the perspective of compensatory perturbations on networks. Relations will be drawn between such synthetic rescues and naturally occurring cascades of reaction inactivation, as well as their analogues in physical and other biological networks. I will specially discuss how rescue interactions can lead to the rational design of antagonistic drug combinations that select against resistance and how they can illuminate medical research on cancer, antibiotics, and metabolic diseases.Comment: Online Open "Problems and Paradigms" articl
    corecore