7,637 research outputs found

    Cloud robotic architectures: directions for future research from a comparative analysis

    Get PDF
    Advances in robotics and cloud computing have led to the emergence of cloud robotics where robots can benefit from remote processing, greater memory and computational power, and massive data storage. The integration of robotics and cloud computing has often been regarded as a complex aspect due to the various components involved in such systems. In order to address this issue, different studies have attempted to create cloud robotic architectures to simplify representation into different blocks or components. However, limited study has been undertaken to critically review and compare these architectures. As such, this paper investigates and performs a comparative analysis of existing cloud robotic architectures in order to identify key limitations and recommend on the future of cloud robotic architectures. As part of this study, 7 such architectures have been reviewed and compared and results showed limited evaluation of existing architectures in favour of security weaknesses

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft

    Cloud robotic architectures: directions for future research from a comparative analysis

    Get PDF
    Advances in robotics and cloud computing have led to the emergence of cloud robotics where robots can benefit from remote processing, greater memory and computational power, and massive data storage. The integration of robotics and cloud computing has often been regarded as a complex aspect due to the various components involved in such systems. In order to address this issue, different studies have attempted to create cloud robotic architectures to simplify representation into different blocks or components. However, limited study has been undertaken to critically review and compare these architectures. As such, this paper investigates and performs a comparative analysis of existing cloud robotic architectures in order to identify key limitations and recommend on the future of cloud robotic architectures. As part of this study, 7 such architectures have been reviewed and compared and results showed limited evaluation of existing architectures in favour of security weaknesses

    Distributed Robotic Systems in the Edge-Cloud Continuum with ROS 2: a Review on Novel Architectures and Technology Readiness

    Full text link
    Robotic systems are more connected, networked, and distributed than ever. New architectures that comply with the \textit{de facto} robotics middleware standard, ROS\,2, have recently emerged to fill the gap in terms of hybrid systems deployed from edge to cloud. This paper reviews new architectures and technologies that enable containerized robotic applications to seamlessly run at the edge or in the cloud. We also overview systems that include solutions from extension to ROS\,2 tooling to the integration of Kubernetes and ROS\,2. Another important trend is robot learning, and how new simulators and cloud simulations are enabling, e.g., large-scale reinforcement learning or distributed federated learning solutions. This has also enabled deeper integration of continuous interaction and continuous deployment (CI/CD) pipelines for robotic systems development, going beyond standard software unit tests with simulated tests to build and validate code automatically. We discuss the current technology readiness and list the potential new application scenarios that are becoming available. Finally, we discuss the current challenges in distributed robotic systems and list open research questions in the field

    Cloud robotics platforms: review and comparative analysis

    Get PDF
    Due to the various advantages that the cloud can offer to robots, there has been the recent emergence of the cloud robotics paradigm. Cloud robotics permits robots to unload computing and storage related tasks into the cloud, and as such, robots can be built with smaller on-board computers. The use of cloud-robotics also allows robots to share knowledge within the community over a dedicated cloud space. In order to build-up robots that benefit from the cloud-robotics paradigm, different cloud-robotics platforms have been released during recent years. This paper critically reviews and compares existing cloud robotic platforms in order to provide recommendations on future use and gaps that still need to be addressed. To achieve this, 8 cloud robotic platforms were investigated. Key findings reveal varying underlying architectures and models adopted by these platforms, in addition to different features offered to end-users

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Cloud robotics platforms: review and comparative analysis

    Get PDF
    Due to the various advantages that the cloud can offer to robots, there has been the recent emergence of the cloud robotics paradigm. Cloud robotics permits robots to unload computing and storage related tasks into the cloud, and as such, robots can be built with smaller on-board computers. The use of cloud-robotics also allows robots to share knowledge within the community over a dedicated cloud space. In order to build-up robots that benefit from the cloud-robotics paradigm, different cloud-robotics platforms have been released during recent years. This paper critically reviews and compares existing cloud robotic platforms in order to provide recommendations on future use and gaps that still need to be addressed. To achieve this, 8 cloud robotic platforms were investigated. Key findings reveal varying underlying architectures and models adopted by these platforms, in addition to different features offered to end-users
    • …
    corecore