787 research outputs found

    Enhancement of Metaheuristic Algorithm for Scheduling Workflows in Multi-fog Environments

    Get PDF
    Whether in computer science, engineering, or economics, optimization lies at the heart of any challenge involving decision-making. Choosing between several options is part of the decision- making process. Our desire to make the "better" decision drives our decision. An objective function or performance index describes the assessment of the alternative's goodness. The theory and methods of optimization are concerned with picking the best option. There are two types of optimization methods: deterministic and stochastic. The first is a traditional approach, which works well for small and linear problems. However, they struggle to address most of the real-world problems, which have a highly dimensional, nonlinear, and complex nature. As an alternative, stochastic optimization algorithms are specifically designed to tackle these types of challenges and are more common nowadays. This study proposed two stochastic, robust swarm-based metaheuristic optimization methods. They are both hybrid algorithms, which are formulated by combining Particle Swarm Optimization and Salp Swarm Optimization algorithms. Further, these algorithms are then applied to an important and thought-provoking problem. The problem is scientific workflow scheduling in multiple fog environments. Many computer environments, such as fog computing, are plagued by security attacks that must be handled. DDoS attacks are effectively harmful to fog computing environments as they occupy the fog's resources and make them busy. Thus, the fog environments would generally have fewer resources available during these types of attacks, and then the scheduling of submitted Internet of Things (IoT) workflows would be affected. Nevertheless, the current systems disregard the impact of DDoS attacks occurring in their scheduling process, causing the amount of workflows that miss deadlines as well as increasing the amount of tasks that are offloaded to the cloud. Hence, this study proposed a hybrid optimization algorithm as a solution for dealing with the workflow scheduling issue in various fog computing locations. The proposed algorithm comprises Salp Swarm Algorithm (SSA) and Particle Swarm Optimization (PSO). In dealing with the effects of DDoS attacks on fog computing locations, two Markov-chain schemes of discrete time types were used, whereby one calculates the average network bandwidth existing in each fog while the other determines the number of virtual machines existing in every fog on average. DDoS attacks are addressed at various levels. The approach predicts the DDoS attack’s influences on fog environments. Based on the simulation results, the proposed method can significantly lessen the amount of offloaded tasks that are transferred to the cloud data centers. It could also decrease the amount of workflows with missed deadlines. Moreover, the significance of green fog computing is growing in fog computing environments, in which the consumption of energy plays an essential role in determining maintenance expenses and carbon dioxide emissions. The implementation of efficient scheduling methods has the potential to mitigate the usage of energy by allocating tasks to the most appropriate resources, considering the energy efficiency of each individual resource. In order to mitigate these challenges, the proposed algorithm integrates the Dynamic Voltage and Frequency Scaling (DVFS) technique, which is commonly employed to enhance the energy efficiency of processors. The experimental findings demonstrate that the utilization of the proposed method, combined with the Dynamic Voltage and Frequency Scaling (DVFS) technique, yields improved outcomes. These benefits encompass a minimization in energy consumption. Consequently, this approach emerges as a more environmentally friendly and sustainable solution for fog computing environments

    An SLR on Edge Computing Security and possible threat protection

    Full text link
    Mobile and Internet of Things devices are generating enormous amounts of multi-modal data due to their exponential growth and accessibility. As a result, these data sources must be directly analyzed in real time at the network edge rather than relying on the cloud. Significant processing power at the network's edge has made it possible to gather data and make decisions prior to data being sent to the cloud. Moreover, security problems have significantly towered as a result of the rapid expansion of mobile devices, Internet of Things (IoT) devices, and various network points. It's much harder than ever to guarantee the privacy of sensitive data, including customer information. This systematic literature review depicts the fact that new technologies are a great weapon to fight with the attack and threats to the edge computing security

    Toward a real-time TCP SYN Flood DDoS mitigation using Adaptive Neuro-Fuzzy classifier and SDN Assistance in Fog Computing

    Full text link
    The growth of the Internet of Things (IoT) has recently impacted our daily lives in many ways. As a result, a massive volume of data is generated and needs to be processed in a short period of time. Therefore, the combination of computing models such as cloud computing is necessary. The main disadvantage of the cloud platform is its high latency due to the centralized mainframe. Fortunately, a distributed paradigm known as fog computing has emerged to overcome this problem, offering cloud services with low latency and high-access bandwidth to support many IoT application scenarios. However, Attacks against fog servers can take many forms, such as Distributed Denial of Service (DDoS) attacks that severely affect the reliability and availability of fog services. To address these challenges, we propose mitigation of Fog computing-based SYN Flood DDoS attacks using an Adaptive Neuro-Fuzzy Inference System (ANFIS) and Software Defined Networking (SDN) Assistance (FASA). The simulation results show that FASA system outperforms other algorithms in terms of accuracy, precision, recall, and F1-score. This shows how crucial our system is for detecting and mitigating TCP SYN floods DDoS attacks.Comment: 16 page

    Security, Privacy and Safety Risk Assessment for Virtual Reality Learning Environment Applications

    Full text link
    Social Virtual Reality based Learning Environments (VRLEs) such as vSocial render instructional content in a three-dimensional immersive computer experience for training youth with learning impediments. There are limited prior works that explored attack vulnerability in VR technology, and hence there is a need for systematic frameworks to quantify risks corresponding to security, privacy, and safety (SPS) threats. The SPS threats can adversely impact the educational user experience and hinder delivery of VRLE content. In this paper, we propose a novel risk assessment framework that utilizes attack trees to calculate a risk score for varied VRLE threats with rate and duration of threats as inputs. We compare the impact of a well-constructed attack tree with an adhoc attack tree to study the trade-offs between overheads in managing attack trees, and the cost of risk mitigation when vulnerabilities are identified. We use a vSocial VRLE testbed in a case study to showcase the effectiveness of our framework and demonstrate how a suitable attack tree formalism can result in a more safer, privacy-preserving and secure VRLE system.Comment: Tp appear in the CCNC 2019 Conferenc

    A Software Defined Networking Architecture for DDoS-Attack in the storage of Multi-Microgrids

    Get PDF
    Multi-microgrid systems can improve the resiliency and reliability of the power system network. Secure communication for multi-microgrid operation is a crucial issue that needs to be investigated. This paper proposes a multi-controller software defined networking (SDN) architecture based on fog servers in multi-microgrids to improve the electricity grid security, monitoring and controlling. The proposed architecture defines the support vector machine (SVM) to detect the distributed denial of service (DDoS) attack in the storage of microgrids. The information of local SDN controllers on fog servers is managed and supervised by the master controller placed in the application plane properly. Based on the results of attack detection, the power scheduling problem is solved and send a command to change the status of tie and sectionalize switches. The optimization application on the cloud server implements the modified imperialist competitive algorithm (MICA) to solve this stochastic mixed-integer nonlinear problem. The effective performance of the proposed approach using an SDN-based architecture is evaluated through applying it on a multi-microgrid based on IEEE 33-bus radial distribution system with three microgrids in simulation results

    Challenges in Blockchain as a Solution for IoT Ecosystem Threats and Access Control: A Survey

    Full text link
    The Internet of Things (IoT) is increasingly influencing and transforming various aspects of our daily lives. Contrary to popular belief, it raises security and privacy issues as it is used to collect data from consumers or automated systems. Numerous articles are published that discuss issues like centralised control systems and potential alternatives like integration with blockchain. Although a few recent surveys focused on the challenges and solutions facing the IoT ecosystem, most of them did not concentrate on the threats, difficulties, or blockchain-based solutions. Additionally, none of them focused on blockchain and IoT integration challenges and attacks. In the context of the IoT ecosystem, overall security measures are very important to understand the overall challenges. This article summarises difficulties that have been outlined in numerous recent articles and articulates various attacks and security challenges in a variety of approaches, including blockchain-based solutions and so on. More clearly, this contribution consolidates threats, access control issues, and remedies in brief. In addition, this research has listed some attacks on public blockchain protocols with some real-life examples that can guide researchers in taking preventive measures for IoT use cases. Finally, a future research direction concludes the research gaps by analysing contemporary research contributions

    Security and risk analysis in the cloud with software defined networking architecture

    Get PDF
    Cloud computing has emerged as the actual trend in business information technology service models, since it provides processing that is both cost-effective and scalable. Enterprise networks are adopting software-defined networking (SDN) for network management flexibility and lower operating costs. Information technology (IT) services for enterprises tend to use both technologies. Yet, the effects of cloud computing and software defined networking on business network security are unclear. This study addresses this crucial issue. In a business network that uses both technologies, we start by looking at security, namely distributed denial-of-service (DDoS) attack defensive methods. SDN technology may help organizations protect against DDoS assaults provided the defensive architecture is structured appropriately. To mitigate DDoS attacks, we offer a highly configurable network monitoring and flexible control framework. We present a dataset shift-resistant graphic model-based attack detection system for the new architecture. The simulation findings demonstrate that our architecture can efficiently meet the security concerns of the new network paradigm and that our attack detection system can report numerous threats using real-world network data

    Mitigating Security Threats for Digital Twin Platform: A Systematic Review with Future Scope and Research Challenges

    Get PDF
    In Industry 4.0, the digital twin (DT) enables users to simulate future states and configurations for prediction, optimization, and estimation. Although the potential of digital twin technology has been demonstrated by its proliferation in traditional industrial sectors, including construction, manufacturing, transportation, supply chain, healthcare, and agriculture, the risks involved with their integration have frequently been overlooked. Moreover, as a digital approach, it is intuitive to believe it is susceptible to adversarial attacks. This issue necessitates research into the multitude of attacks that the digital twin may face. This study enumerates various probable operation-specific attacks against digital twin platforms. Also, a comprehensive review of different existing techniques has been carried out to combat these attacks. A comparison of these strategies is provided to shed light on their efficacy against various attacks. Finally, future directions and research issues are highlighted that will help researchers expand the digital twin platform
    • …
    corecore