187,444 research outputs found

    Modelling on-demand preprocessing framework towards practical approach in clinical analysis of diabetic retinopathy

    Get PDF
    Diabetic retinopathy (DR) refers to a complication of diabetes and a prime cause of vision loss in middle-aged people. A timely screening and diagnosis process can reduce the risk of blindness. Fundus imaging is mainly preferred in the clinical analysis of DR. However; the raw fundus images are usually subjected to artifacts, noise, low and varied contrast, which is very hard to process by human visual systems and automated systems. In the existing literature, many solutions are given to enhance the fundus image. However, such approaches are particular and limited to a specific objective that cannot address multiple fundus images. This paper has presented an on-demand preprocessing frame work that integrates different techniques to address geometrical issues, random noises, and comprehensive contrast enhancement solutions. The performance of each preprocessing process is evaluated against peak signal-to-noise ratio (PSNR), and brightness is quantified in the enhanced image. The motive of this paper is to offer a flexible approach of preprocessing mechanism that can meet image enhancement needs based on different preprocessing requirements to improve the quality of fundus imaging towards early-stage diabetic retinopathy identification

    NDELS: A Novel Approach for Nighttime Dehazing, Low-Light Enhancement, and Light Suppression

    Full text link
    This paper tackles the intricate challenge of improving the quality of nighttime images under hazy and low-light conditions. Overcoming issues including nonuniform illumination glows, texture blurring, glow effects, color distortion, noise disturbance, and overall, low light have proven daunting. Despite the inherent difficulties, this paper introduces a pioneering solution named Nighttime Dehazing, Low-Light Enhancement, and Light Suppression (NDELS). NDELS utilizes a unique network that combines three essential processes to enhance visibility, brighten low-light regions, and effectively suppress glare from bright light sources. In contrast to limited progress in nighttime dehazing, unlike its daytime counterpart, NDELS presents a comprehensive and innovative approach. The efficacy of NDELS is rigorously validated through extensive comparisons with eight state-of-the-art algorithms across four diverse datasets. Experimental results showcase the superior performance of our method, demonstrating its outperformance in terms of overall image quality, including color and edge enhancement. Quantitative (PSNR, SSIM) and qualitative metrics (CLIPIQA, MANIQA, TRES), measure these results

    Image Enhancement of Colon Cancer Images using a Two-Stage Hybrid Approach of TV and Shift-Invariant Filtering

    Get PDF
    Medical imaging holds a critical position in both disease diagnosis and treatment strategies, including colon cancer. However, the quality of medical images can often be compromised by noise and artifacts, making accurate interpretation challenging. Here, we suggest a innovative two-stage hybrid method aimed at enhancing colon cancer images, leveraging the strengths of Total Variation (TV) denoising and shift-invariant filtering techniques. The primary objective of this study is to increase visual superiority as well as diagnostic accurateness of colon cancer image while preserving crucial anatomical information.The first stage of our approach employs Total Variation (TV) denoising to reduce noise and enhance image contrast. TV regularization is known for its ability to preserve edges and fine details, making it well-suited for medical image enhancement. In the second stage, we apply shift-invariant filtering to further enhance the image quality. This technique is designed to address the limitations of traditional filtering methods and adapt to the specific characteristics of colon cancer images. To evaluate the effectiveness of our hybrid approach, we conducted a comprehensive set of experiments using a relevant dataset. We employed a range of quantitative metrics, including the Global Relative Error (EGRAS), Root Mean Squared Error (RMSE), Universal Image Quality Index (UQI), and Pixel-Based Visual Information Fidelity (VIFP), to assess the quality and fidelity of enhanced images. Our results demonstrate that the hybrid combination consistently outperforms existing methods, yielding superior image quality and diagnostic potential. This study makes a valuable contribution to the realm of medical imaging by introducing a robust and effective method to improve the quality of colon cancer images. Findings suggest that the proposed two-stage hybrid method holds promise for improving the accuracy of diagnosis and treatment planning. Further research in this direction may lead to advancements in medical image enhancement techniques, ultimately benefiting patient care and medical research

    Stable Backward Diffusion Models that Minimise Convex Energies

    Get PDF
    The inverse problem of backward diffusion is known to be ill-posed and highly unstable. Backward diffusion processes appear naturally in image enhancement and deblurring applications. It is therefore greatly desirable to establish a backward diffusion model which implements a smart stabilisation approach that can be used in combination with an easy to handle numerical scheme. So far, existing stabilisation strategies in literature require sophisticated numerics to solve the underlying initial value problem. We derive a class of space-discrete one-dimensional backward diffusion as gradient descent of energies where we gain stability by imposing range constraints. Interestingly, these energies are even convex. Furthermore, we establish a comprehensive theory for the time-continuous evolution and we show that stability carries over to a simple explicit time discretisation of our model. Finally, we confirm the stability and usefulness of our technique in experiments in which we enhance the contrast of digital greyscale and colour images

    Stable Backward Diffusion Models that Minimise Convex Energies

    Get PDF
    The inverse problem of backward diffusion is known to be ill-posed and highly unstable. Backward diffusion processes appear naturally in image enhancement and deblurring applications. It is therefore greatly desirable to establish a backward diffusion model which implements a smart stabilisation approach that can be used in combination with an easy-to-handle numerical scheme. So far, existing stabilisation strategies in the literature require sophisticated numerics to solve the underlying initial value problem. We derive a class of space-discrete one-dimensional backward diffusion as gradient descent of energies where we gain stability by imposing range constraints. Interestingly, these energies are even convex. Furthermore, we establish a comprehensive theory for the time-continuous evolution and we show that stability carries over to a simple explicit time discretisation of our model. Finally, we confirm the stability and usefulness of our technique in experiments in which we enhance the contrast of digital greyscale and colour images

    MRI of the lung (3/3)-current applications and future perspectives

    Get PDF
    BACKGROUND: MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women. METHODS: Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value. RESULTS: In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a "buffet" of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice. CONCLUSION: New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages • MRI evolves as a third lung imaging modality, combining morphological and functional information. • It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients. • In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT. • In interstitial lung disease, it serves for research, but the clinical value remains to be proven. • New users are advised to make themselves familiar with the particular advantages and limitations
    • …
    corecore