25 research outputs found

    Performance analysis of a threshold-based dynamic TXOP scheme for intra-AC QoS in wireless LANs

    Get PDF
    PublishedJournal ArticleThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The IEEE 802.11e Enhanced Distributed Channel Access (EDCA) protocol has been proposed for provisioning of differentiated Quality-of-Service (QoS) between various Access Categories (ACs), i.e., inter-AC QoS, in Wireless Local Area Networks (WLANs). However, the EDCA lacks the support of the intra-AC QoS provisioning, which is indispensable in practical WLANs since the network loads are always asymmetric between traffic flows of ACs with the same priority. To address the intra-AC QoS issue, this paper proposes a Threshold-Based Dynamic Transmission Opportunity (TBD-TXOP) scheme which sets the TXOP limits adaptive to the current status of the transmission queue based on the pre-setting threshold. An analytical model is further developed to evaluate the QoS performance of this scheme in terms of throughput, end-to-end delay, and frame loss probability. NS-2 simulation experiments validate the accuracy of the proposed analytical model. The performance results demonstrate the efficacy of TBD-TXOP for the intra-AC QoS differentiation. © 2013 Elsevier B.V. All rights reserved

    Performance Evaluation of Wireless Medium Access Control Protocols for Internet of Things

    Get PDF
    The Internet of Things makes the residents in Smart Cities enjoy a more efficient and high-quality lifestyle by wirelessly interconnecting the physical and visual world. However, the performance of wireless networks is challenged by the ever-growing wireless traffic data, the complexity of the network structures, and various requirements of Quality of Service (QoS), especially on the Internet of Vehicle and wireless sensor networks. Consequently, the IEEE 802.11p and 802.11ah standards were designed to support effective inter-vehicle communications and large-scale sensor networks, respectively. Although their Medium Access Control protocols have attracted much research interest, they have yet to fully consider the influences of channel errors and buffer sizes on the performance evaluation of these Medium Access Control (MAC) protocols. Therefore, this thesis first proposed a new analytical model based on a Markov chain and Queuing analysis to evaluate the performance of IEEE 802.11p under imperfect channels with both saturated and unsaturated traffic. All influential factors of the Enhanced Distributed Channel Access (EDCA) mechanism in IEEE 802.11p are considered, including the backoff counter freezing, Arbitration Inter-Frame Spacing (AIFS) defers, the internal collision, and finite MAC buffer sizes. Furthermore, this proposed model considers more common and actual conditions with the influence of channel errors and finite MAC buffer sizes. The effectiveness and accuracy of the developed model have been validated through extensive ns-3 simulation experiments. Second, this thesis proposes a developed analytical model based on Advanced Queuing Analysis and the Gilbert-Elliot model to analyse the performance of IEEE 802.11p with burst error transmissions. This proposed analytical model simultaneously describes transmission queues for all four Access Categories (AC) queues with the influence of burst errors. Similarly, this presented model can analyse QoS performance, including throughputs and end-to-end delays with the unsaturated or saturated load traffics. Furthermore, this model operates under more actual bursty error channels in vehicular environments. In addition, a series of simulation experiments with a natural urban environment is designed to validate the efficiency and accuracy of the presented model. The simulation results reflect the reliability and effectiveness of the presented model in terms of throughput and end-to-end delays under various channel conditions. Third, this thesis designed and implemented a simulation experiment to analyse the performance of IEEE 802.11ah. These simulation experiments are based on ns-3 and an extension. These simulation experiments' results indicate the Restricted Access Window (RAW) mechanism's influence on the throughputs, end-to-end delays, and packet loss rates. Furthermore, the influences of channel errors and bursty errors are considered in the simulations. The results also show the strong impact of channel errors on the performance of IEEE 802.11ah due to urban environments. Finally, the potential future work based on the proposed models and simulations is analysed in this thesis. The proposed models of IEEE 802.11p can be an excellent fundamental to optimise the QoS due to the precise evaluation of the influence of factors on the performance of IEEE 802.11p. Moreover, it is possible to migrate the analytical models of IEEE 802.11p to evaluate the performance of IEEE 802.11ah

    Modelling the IEEE 802.11 wireless MAC layer under heterogeneous VoIP traffic to evaluate and dimension QoE

    Get PDF
    PhDAs computers become more popular in the home and workplace, sharing resources and Internet access locally is a necessity. The simplest method of choice is by deploying a Wireless Local Area Network; they are inexpensive, easy to configure and require minimal infrastructure. The wireless local area network of choice is the IEEE 802.11 standard; IEEE 802.11, however, is now being implemented on larger scales outside of the original scope of usage. The realistic usage spans from small scale home solutions to commercial ‘hot spots,’ providing access within medium size areas such as cafés, and more recently blanket coverage in metropolitan. Due to increasing Internet availability and faster network access, in both wireless and wired, the concept of using such networks for real-time services such as internet telephony is also becoming popular. IEEE 802.11 wireless access is shared with many clients on a single channel and there are three non-overlapping channels available. As more stations communicate on a single channel there is increased contention resulting in longer delays due to the backoff overhead of the IEEE 802.11 protocol and hence loss and delay variation; not desirable for time critical traffic. Simulation of such networks demands super-computing resource, particularly where there are over a dozen clients on a given. Fortunately, the author has access to the UK’s super computers and therefore a clear motivation to develop a state of the art analytical model with the required resources to validate. The goal was to develop an analytical model to deal with realistic IEEE 802.11 deployments and derive results without the need for super computers. A network analytical model is derived to model the characteristics of the IEEE 802.11 protocol from a given scenario, including the number of clients and the traffic load of each. The model is augmented from an existing published saturated case, where each client is assumed to always have traffic to transmit. The nature of the analytical model is to allow stations to have a variable load, which is achieved by modifying the existing models and then to allow stations to operate with different traffic profiles. The different traffic profiles, for each station, is achieved by using the augmented model state machine per station and distributing the probabilities to each station’s state machine accordingly. To address the gap between the analytical models medium access delay and standard network metrics which include the effects of buffering traffic, a queueing model is identified and augmented which transforms the medium access delay into standard network metrics; delay, loss and jitter. A Quality of Experience framework, for both computational and analytical results, is investigated to allow the results to be represented as user perception scores and the acceptable voice call carrying capacity found. To find the acceptable call carrying capacity, the ITU-T G.107 E-Model is employed which can be used to give each client a perception rating in terms of user satisfaction. PAGE 4 OF 162 QUEEN MARY, UNIVERSITY OF LONDON OLIVER SHEPHERD With the use of a novel framework, benchmarking results show that there is potential to maximise the number of calls carried by the network with an acceptable user perception rating. Dimensioning of the network is undertaken, again compared with simulation from the super computers, to highlight the usefulness of the analytical model and framework and provides recommendations for network configurations, particularly for the latest Wireless Multimedia extensions available in IEEE 802.11. Dimensioning shows an overall increase of acceptable capacity of 43%; from 7 to 10 bidirectional calls per Access Point by using a tuned transmission opportunity to allow each station to send 4 packets per transmission. It is found that, although the accuracy of the results from the analytical model is not precise, the model achieves a 1 in 13,000 speed up compared to simulation. Results show that the point of maximum calls comes close to simulation with the analytical model and framework and can be used as a guide to configure the network. Alternatively, for specific capacity figures, the model can be used to home-in on the optimal region for further experiments and therefore achievable with standard computational resource, i.e. desktop machines

    Distributed Medium Access Control for QoS Support in Wireless Networks

    Get PDF
    With the rapid growth of multimedia applications and the advances of wireless communication technologies, quality-of-service (QoS) provisioning for multimedia services in heterogeneous wireless networks has been an important issue and drawn much attention from both academia and industry. Due to the hostile transmission environment and limited radio resources, QoS provisioning in wireless networks is much more complex and difficult than in its wired counterpart. Moreover, due to the lack of central controller in the networks, distributed network control is required, adding complexity to QoS provisioning. In this thesis, medium access control (MAC) with QoS provisioning is investigated for both single- and multi-hop wireless networks including wireless local area networks (WLANs), wireless ad hoc networks, and wireless mesh networks. Originally designed for high-rate data traffic, a WLAN has limited capability to support delay-sensitive voice traffic, and the service for voice traffic may be impacted by data traffic load, resulting in delay violation or large delay variance. Aiming at addressing these limitations, we propose an efficient MAC scheme and a call admission control algorithm to provide guaranteed QoS for voice traffic and, at the same time, increase the voice capacity significantly compared with the current WLAN standard. In addition to supporting voice traffic, providing better services for data traffic in WLANs is another focus of our research. In the current WLANs, all the data traffic receives the same best-effort service, and it is difficult to provide further service differentiation for data traffic based on some specific requirements of customers or network service providers. In order to address this problem, we propose a novel token-based scheduling scheme, which provides great flexibility and facility to the network service provider for service class management. As a WLAN has small coverage and cannot meet the growing demand for wireless service requiring communications ``at anywhere and at anytime", a large scale multi-hop wireless network (e.g., wireless ad hoc networks and wireless mesh networks) becomes a necessity. Due to the location-dependent contentions, a number of problems (e.g., hidden/exposed terminal problem, unfairness, and priority reversal problem) appear in a multi-hop wireless environment, posing more challenges for QoS provisioning. To address these challenges, we propose a novel busy-tone based distributed MAC scheme for wireless ad hoc networks, and a collision-free MAC scheme for wireless mesh networks, respectively, taking the different network characteristics into consideration. The proposed schemes enhance the QoS provisioning capability to real-time traffic and, at the same time, significantly improve the system throughput and fairness performance for data traffic, as compared with the most popular IEEE 802.11 MAC scheme

    Performance Modeling and Analysis of Wireless Local Area Networks with Bursty Traffic

    Get PDF
    The explosive increase in the use of mobile digital devices has posed great challenges in the design and implementation of Wireless Local Area Networks (WLANs). Ever-increasing demands for high-speed and ubiquitous digital communication have made WLANs an essential feature of everyday life. With audio and video forming the highest percentage of traffic generated by multimedia applications, a huge demand is placed for high speed WLANs that provide high Quality-of-Service (QoS) and can satisfy end user’s needs at a relatively low cost. Providing video and audio contents to end users at a satisfactory level with various channel quality and current battery capacities requires thorough studies on the properties of such traffic. In this regard, Medium Access Control (MAC) protocol of the 802.11 standard plays a vital role in the management and coordination of shared channel access and data transmission. Therefore, this research focuses on developing new efficient analytical models that evaluate the performance of WLANs and the MAC protocol in the presence of bursty, correlated and heterogeneous multimedia traffic using Batch Markovian Arrival Process (BMAP). BMAP can model the correlation between different packet size distributions and traffic rates while accurately modelling aggregated traffic which often possesses negative statistical properties. The research starts with developing an accurate traffic generator using BMAP to capture the existing correlations in multimedia traffics. For validation, the developed traffic generator is used as an arrival process to a queueing model and is analyzed based on average queue length and mean waiting time. The performance of BMAP/M/1 queue is studied under various number of states and maximum batch sizes of BMAP. The results clearly indicate that any increase in the number of states of the underlying Markov Chain of BMAP or maximum batch size, lead to higher burstiness and correlation of the arrival process, prompting the speed of the queue towards saturation. The developed traffic generator is then used to model traffic sources in IEEE 802.11 WLANs, measuring important QoS metrics of throughput, end-to-end delay, frame loss probability and energy consumption. Performance comparisons are conducted on WLANs under the influence of multimedia traffics modelled as BMAP, Markov Modulated Poisson Process and Poisson Process. The results clearly indicate that bursty traffics generated by BMAP demote network performance faster than other traffic sources under moderate to high loads. The model is also used to study WLANs with unsaturated, heterogeneous and bursty traffic sources. The effects of traffic load and network size on the performance of WLANs are investigated to demonstrate the importance of burstiness and heterogeneity of traffic on accurate evaluation of MAC protocol in wireless multimedia networks. The results of the thesis highlight the importance of taking into account the true characteristics of multimedia traffics for accurate evaluation of the MAC protocol in the design and analysis of wireless multimedia networks and technologies

    Performance Analysis of IEEE 802.11 WLANs With Saturated and Unsaturated Sources

    Full text link

    Traffic Control and Quality of Service in Wireless LANs

    Get PDF
    The thesis deals with two aspects of the IEEE 802.11 standard. The first is the so-called “performance anomaly”: the variable bandwidth of the links and the use of multiple transmission rates push the throughput of all stations to align to the slowest one. To tackle this problem we designed and developed a simple channel-aware scheduling algorithm, called DTT, which actualises the proportional fairness concept, thus leading to noteworthy improvements, and in particular to flow isolation. This is achieved by measuring link quality as the time needed to deliver a frame. The resource to share is no longer capacity, but the time the channel is in use. DTT has then been integrated into a prototype Access Point, which is the first working implementation of a scheduler based on proportional fairness. Secondly, we focused on 802.11e networks, which, though enhancing QoS support, still offer scarce reliability of QoS guarantees and suffer from network congestion. We devised two admission control algorithms to assess the maximum number of users allowable to the services while satisfying QoS requirements. Following the studies on DTT, both algorithms centre the admission test on the time occupancy of the medium. The first algorithm builds on an analytical model of the EDCA mode in non-saturation conditions. This closely matches the real behaviour of a network carrying time-sensitive applications, thus overcoming the limits of all previous works, based on saturation models. The second algorithm uses and extends to 802.11e the NUC, a parameter defined and proved effective for 802.11b systems. This scheme needs measures of the actual state of the network. Simulations run within the E-model framework show good accuracy performance for both models

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic
    corecore