8 research outputs found

    Sensitivity Conjecture and Log-rank Conjecture for functions with small alternating numbers

    Get PDF
    The Sensitivity Conjecture and the Log-rank Conjecture are among the most important and challenging problems in concrete complexity. Incidentally, the Sensitivity Conjecture is known to hold for monotone functions, and so is the Log-rank Conjecture for f(x∧y)f(x \wedge y) and f(x⊕y)f(x\oplus y) with monotone functions ff, where ∧\wedge and ⊕\oplus are bit-wise AND and XOR, respectively. In this paper, we extend these results to functions ff which alternate values for a relatively small number of times on any monotone path from 0n0^n to 1n1^n. These deepen our understandings of the two conjectures, and contribute to the recent line of research on functions with small alternating numbers

    A Composition Theorem for Randomized Query Complexity

    Get PDF
    Let the randomized query complexity of a relation for error probability epsilon be denoted by R_epsilon(). We prove that for any relation f contained in {0,1}^n times R and Boolean function g:{0,1}^m -> {0,1}, R_{1/3}(f o g^n) = Omega(R_{4/9}(f).R_{1/2-1/n^4}(g)), where f o g^n is the relation obtained by composing f and g. We also show using an XOR lemma that R_{1/3}(f o (g^{xor}_{O(log n)})^n) = Omega(log n . R_{4/9}(f) . R_{1/3}(g))$, where g^{xor}_{O(log n)} is the function obtained by composing the XOR function on O(log n) bits and g

    Query-To-Communication Lifting for BPP Using Inner Product

    Get PDF

    Communication Complexity with Small Advantage

    Get PDF
    We study problems in randomized communication complexity when the protocol is only required to attain some small advantage over purely random guessing, i.e., it produces the correct output with probability at least epsilon greater than one over the codomain size of the function. Previously, Braverman and Moitra (STOC 2013) showed that the set-intersection function requires Theta(epsilon n) communication to achieve advantage epsilon. Building on this, we prove the same bound for several variants of set-intersection: (1) the classic "tribes" function obtained by composing with And (provided 1/epsilon is at most the width of the And), and (2) the variant where the sets are uniquely intersecting and the goal is to determine partial information about (say, certain bits of the index of) the intersecting coordinate

    Linear Sketching over F_2

    Get PDF
    We initiate a systematic study of linear sketching over F_2. For a given Boolean function treated as f : F_2^n -> F_2 a randomized F_2-sketch is a distribution M over d x n matrices with elements over F_2 such that Mx suffices for computing f(x) with high probability. Such sketches for d << n can be used to design small-space distributed and streaming algorithms. Motivated by these applications we study a connection between F_2-sketching and a two-player one-way communication game for the corresponding XOR-function. We conjecture that F_2-sketching is optimal for this communication game. Our results confirm this conjecture for multiple important classes of functions: 1) low-degree F_2-polynomials, 2) functions with sparse Fourier spectrum, 3) most symmetric functions, 4) recursive majority function. These results rely on a new structural theorem that shows that F_2-sketching is optimal (up to constant factors) for uniformly distributed inputs. Furthermore, we show that (non-uniform) streaming algorithms that have to process random updates over F_2 can be constructed as F_2-sketches for the uniform distribution. In contrast with the previous work of Li, Nguyen and Woodruff (STOC\u2714) who show an analogous result for linear sketches over integers in the adversarial setting our result does not require the stream length to be triply exponential in n and holds for streams of length O(n) constructed through uniformly random updates

    One-way communication complexity and non-adaptive decision trees

    Get PDF
    We study the relationship between various one-way communication complexity measures of a composed function with the analogous decision tree complexity of the outer function. We consider two gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs. More generally, we show the following when the gadget is Inner Product on 2b input bits for all b ≥ 2, denoted IP. If f is a total Boolean function that depends on all of its n input bits, then the bounded-error one-way quantum communication complexity of f ◦ IP equals Ω(n(b - 1)). If f is a partial Boolean function, then the deterministic one-way communication complexity of f ◦ IP is at least Ω(b · D→dt (f)), where D→dt (f) denotes non-adaptive decision tree complexity of f. To prove our quantum lower bound, we first show a lower bound on the VC-dimension of f ◦ IP. We then appeal to a result of Klauck [STOC’00], which immediately yields our quantum lower bound. Our deterministic lower bound relies on a combinatorial result independently proven by Ahlswede and Khachatrian [Adv. Appl. Math.’98], and Frankl and Tokushige [Comb.’99]. It is known due to a result of Montanaro and Osborne [arXiv’09] that the deterministic one-way communication complexity of f ◦ XOR equals the non-adaptive parity decision tree complexity of f. In contrast, we show the following when the inner gadget is the AND function on 2 input bits. There exists a function for which even the quantum non-adaptive AND decision tree complexity of f is exponentially large in the deterministic one-way communication complexity of f ◦ AND. However, for symmetric functions f, the non-adaptive AND decision tree complexity of f is at most quadratic in the (even two-way) communication complexity of f ◦ AND. In view of the first bullet, a lower bound on non-adaptive AND decision tree complexity of f does not lift to a lower bound on one-way communication complexity of f ◦ AND. The proof of the first bullet above uses the well-studied Odd-Max-Bit function. For the second bullet, we first observe a connection between the one-way communication complexity of f and the Möbius sparsity of f, and then give a lower bound on the Möbius sparsity of symmetric functions. An upper bound on the non-adaptive AND decision tree complexity of symmetric functions follows implicitly from prior work on combinatorial group testing; for the sake of completeness, we include a proof of this result. It is well known that the rank of the communication matrix of a function F is an upper bound on its deterministic one-way communication complexity. This bound is known to be tight for some F. However, in our final result we show that this is not the case when F = f ◦ AND. More precisely we show that for all f, the deterministic one-way communication complexity of F = f ◦ AND is at most (rank(MF))(1 - Ω(1)), where MF denotes the communication matrix of F

    A Composition Theorem for Conical Juntas

    Get PDF
    We describe a general method of proving degree lower bounds for conical juntas (nonnegative combinations of conjunctions) that compute recursively defined boolean functions. Such lower bounds are known to carry over to communication complexity. We give two applications: - AND-OR trees. We show a near-optimal ~Omega(n^{0.753...}) randomised communication lower bound for the recursive NAND function (a.k.a. AND-OR tree). This answers an open question posed by Beame and Lawry. - Majority trees. We show an Omega(2.59^k) randomised communication lower bound for the 3-majority tree of height k. This improves over the state-of-the-art already in the context of randomised decision tree complexity
    corecore