
A Composition Theorem for Randomized Query
Complexity∗

Anurag Anshu1, Dmitry Gavinsky†2, Rahul Jain3, Srijita Kundu4,
Troy Lee5, Priyanka Mukhopadhyay6, Miklos Santha‡7, and
Swagato Sanyal8

1 Centre for Quantum Technologies, National University of Singapore, Block
S15, 3 Science Drive 2, Singapore 117543
a0109169@u.nus.edu

2 Institute of Mathematics, Czech Academy of Sciences, 115 67 Žitna 25, Praha
1, Czech Republic

3 Centre for Quantum Technologies, National University of Singapore, Block
S15, 3 Science Drive 2, Singapore 117543 and MajuLab, UMI 3654, Singapore
rahul@comp.nus.edu.sg

4 Centre for Quantum Technologies, National University of Singapore, Block
S15, 3 Science Drive 2, Singapore 117543 and MajuLab, UMI 3654, Singapore
srijita.kundu@u.nus.edu

5 SPMS, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
and Centre for Quantum Technologies, National University of Singapore,
Block S15, 3 Science Drive 2, Singapore 117543
troyjlee@gmail.com

6 Centre for Quantum Technologies, National University of Singapore, Block
S15, 3 Science Drive 2, Singapore 117543 and MajuLab, UMI 3654, Singapore
a0109168@u.nus.edu

7 IRIF, Université Paris Diderot, CNRS, 75205 Paris, France and Centre for
Quantum Technologies, National University of Singapore, Block S15, 3 Science
Drive 2, Singapore 117543
santha@irif.fr

8 SPMS, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
and Centre for Quantum Technologies, National University of Singapore,
Block S15, 3 Science Drive 2, Singapore 117543
ssanyal@ntu.edu.sg

Abstract

Let the randomized query complexity of a relation for error probability ε be denoted by Rε(·).
We prove that for any relation f ⊆ {0, 1}n × R and Boolean function g : {0, 1}m → {0, 1},
R1/3(f ◦gn) = Ω(R4/9(f) ·R1/2−1/n4(g)), where f ◦gn is the relation obtained by composing f and
g. We also show using an XOR lemma that R1/3

(
f ◦
(
g⊕O(logn)

)n)
= Ω(logn ·R4/9(f) ·R1/3(g)),

where g⊕O(logn) is the function obtained by composing the XOR function on O(logn) bits and g.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes

∗ This work was partially supported by the National Research Foundation, including under NRF RF
Award No. NRF-NRFF2013-13, the Prime Minister’s Office, Singapore and the Ministry of Education,
Singapore under the Research Centres of Excellence programme and by Grant No. MOE2012-T3-1- 009.

† D.G. is partially funded by the grant P202/12/G061 of GA ČR and by RVO: 67985840.
‡ M. S. is partially funded by the ANR Blanc program under contract ANR-12-BS02-005 (RDAM project).

© Anurag Anshu, Dmitry Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka Mukhopadhyay,
Miklos Santha, and Swagato Sanyal;
licensed under Creative Commons License CC-BY

37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2017).
Editors: Satya Lokam and R. Ramanujam; Article No. 10; pp. 10:1–10:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 A Composition Theorem for Randomized Query Complexity

Keywords and phrases Query algorithms and complexity, Decision trees, Composition theorem,
XOR lemma, Hardness amplification

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.10

1 Introduction

Given two Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, the composed
function f ◦ gn : ({0, 1}m)n → {0, 1} is defined as follows: For x = (x(1), . . . , x(n)) ∈
({0, 1}m)n, f ◦ gn(x) = f(g(x(1)), . . . , g(x(n))). Composition of Boolean functions has long
been a topic of active research in complexity theory. In many works, composition of Boolean
function is studied in the context of a certain complexity measure. The objective is to
understand the relation between the complexity of the composed function in terms of the
complexities of the individual functions. Let D(·) denote the deterministic query complexity.
It is easy to see that D(f ◦ gn) ≤ D(f) · D(g) since f ◦ g can be computed by simulating an
optimal query algorithm of f ; whenever the algorithm makes a query, we simulate an optimal
query algorithm of g and serve the query. It can be shown by an adversary argument that
this is an optimal query algorithm and D(f ◦ gn) = D(f) · D(g) [11, 15].

However, such a characterization is not so obvious for randomized query complexity. Although
a similar upper bound still holds true (possibly accommodating a logarithmic overhead), it
is no more as clear that it also asymptotically bounds the randomized query complexity of
f ◦ gn from below. Let Rε(·) denote the ε-error randomized query complexity. Our main
theorem in this work is the following.

I Theorem 1 (Main Theorem). For any relation f ⊆ {0, 1}n × R and Boolean function
g : {0, 1}m → {0, 1},

R1/3(f ◦ gn) = Ω(R4/9(f) · R1/2−1/n4(g)).

See Section 2 for definitions of composition and various complexity measures of relations.
Theorem 1 implies that if g is a function that is hard to compute with error 1/2 − 1/n4,
f ◦ gn is hard to compute with error 1/3.

In the special case where f is a function, Theorem 1 implies that R1/3(f ◦ gn) = Ω(R1/3(f) ·
R1/2−1/n4(g)), since the success probability of query algorithms for functions can be boosted
from 5/9 to 2/3 by constantly many independent repetitions followed by taking a majority
of the different outputs.

Theorem 1 is useful only when the function g is hard against randomized query algorithms
even for error 1/2− 1/n4. In Section 3.1 we prove the following consequence of Theorem 1.

I Theorem 2. Let f ⊆ {0, 1}n ×R be any relation. Let g : {0, 1}m → {0, 1} be a function.
Let g⊕t : ({0, 1}m)t → {0, 1} be defined as follows: for x = (x(1), . . . , x(t)) ∈ ({0, 1}m)t,
g⊕t (x) = ⊕ti=1g(x(i)). Then,

R1/3

(
f ◦
(
g⊕O(logn)

)n)
= Ω(logn · R4/9(f) · R1/3(g)).

Theorem 2 is proved by establishing, via an XOR lemma by Andrew Drucker [5], that if g is
hard for error 1/3 then g⊕O(logn) is hard for error 1/2− 1/n4.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.10

A. Anshu et al. 10:3

Composition theorems for randomized query complexity have been extensively studied in the
past. Göös and Jayram [6] showed a composition theorem for a constrained version of conical
junta degree, which is a lower bound on randomized query complexity. Composition theorem
for approximate degree (which also bounds randomized query complexity from below) for the
special case of TRIBES function has seen a long line of research culminating in independent
works of Sherstov [14] and Bun and Thaler [3] who settle the question by proving optimal
bounds.

Composition theorem has been studied and shown in the context of communication and
query complexities by the works of Göös, Pitassi and Watson [7, 8], Chattopadhyay et al. [4]
when the function g is the indexing function or the inner product function with large enough
arity. The work of Hatami, Hosseini and Lovett [9] proves a composition theorem in the
context of communication and parity query complexites when the function g is the two-bit
XOR function. Ben-David and Kothari [1] proved a composition theorem for the sabotage
complexity of Boolean functions, a novel complexity measure defined in the same work that
the authors prove to give quadratically tight bound on the randomized query complexity.

Composition theorems have also been successfully used in the past in constructing separating
examples for various complexity measures, and bounding one complexity measure in terms
of another. Kulkarni and Tal [10] proved an upper bound on fractional block sensitivity
in terms of degree by analyzing the behavior of fractional block sensitivity under function
composition. Separation between block sensitivity and degree was obtained by composing
Kushilevitz’s hemi-icosahedron function repeatedly with itself [13, 12, 2]. Separation between
parity decision tree complexity and Fourier sparsity has been obtained by O’Donnell et al.
by studying the behavior of parity kill number under function composition [13].

1.1 Our techniques

In this section, we give a high level overview of our proof of Theorem 1. We refer the reader to
Section 2 for formal definitions of composition and various complexity measures of relations.

Let ε = 1/2− 1/n4. Let µ be the distribution over the domain {0, 1}m of g for which Rε(g)
is achieved, i.e., Rε(g) = Dµ

ε (g) (see Fact 3). For b ∈ {0, 1}, let µb denote the distribution
obtained by conditioning µ to the event that g(x) = b (see Section 2 for a formal definition).

We show that for every probability distribution λ over the domain {0, 1}n of f , there exists a
deterministic query algorithm A with worst case query complexity at most R1/3(f ◦gn)/Rε(g),
such that Prz∼λ[(z,A(z)) ∈ f] ≥ 5/9. By the minimax principle (Fact 3) this proves
Theorem 1.

Now using the distribution λ over {0, 1}n we define a probability distribution γ over
({0, 1}m)n. To define γ, we begin by defining a family of distributions {γz : z ∈ {0, 1}n}
over ({0, 1}m)n. For a fixed z = (z1, . . . , zn) ∈ {0, 1}n, we define γz by giving a sampling
procedure:

1. For each i = 1, . . . , n, sample x(i) = (x(i)
1 , . . . , x

(i)
m) from {0, 1}m independently according

to µzi .
2. Return x = (x(1), . . . , x(n)).

Thus for z = (z1, . . . , zn) ∈ {0, 1}n and x = (x(1), . . . , x(n)) ∈ ({0, 1}m)n, γz(x) = Πn
i=1

µzi(x(i)). Note that γz is supported only on strings x for which the following is true: for
each r ∈ R, (x, r) ∈ f ◦ gn if and only if (z, r) ∈ f .

FSTTCS 2017

10:4 A Composition Theorem for Randomized Query Complexity

Having defined the distributions γz, we define the distribution γ by giving a sampling
procedure:

1. Sample a z = (z1, . . . , zn) from {0, 1}n according to λ.
2. Sample an x = (x(1), . . . , x(n)) from ({0, 1}m)n according to γz. Return x.

By minimax principle (Fact 3), there is a deterministic query algorithm B of worst case
complexity at most R1/3(f ◦ gn) such that Prx∼γ [(x,B(x)) ∈ f ◦ gn] ≥ 2/3. We will use B to
construct a randomized query algorithm A′ for f with the desired properties. A deterministic
query algorithm A for f with required performance guarantees can then be obtained by
appropriately fixing the randomness of A′.

See Algorithm 1 for a formal description of A′. Given an input z = (z1, . . . , zn),A′ simulates
B. Recall that an input to B is an nm bit long string (x(i)

j) i=1,...,n
j=1,...,m

. Whenever B asks for

(queries) an input bit x(i)
j , a response bit is appropriately generated and passed to B. To

generate a response to a query by B, a bit in z may be queried; those queries will contribute
to the query complexity of A′. The queries are addressed as follows. Let the simulation of B
request bit x(i)

j .

If less than Dµε (g) queries have been made into x(i) (including the current query) then a
bit b is sampled from the marginal distribution of x(i)

j according to µ, conditioned on the
responses to the past queries. b is passed to the simulation of B.
If Dµ

ε (g) queries have been made into x(i) (including the current query) then first the
input bit zi is queried; then a bit b is sampled from the marginal distribution of x(i)

j

according to µzi , conditioned on the responses to the past queries. b is passed to the
simulation of B.

The simulation of B continues until B terminates in a leaf. Then A′ also terminates and
outputs the label of the leaf.

We use Claims 8 and 9 to prove that for a fixed z ∈ {0, 1}n, the probability distribution
induced by A′ on the leaves of B is statistically close to the probability distribution induced
by B on its leaves for a random input from γz. Averaging over different z’s, the correctness
of A′ follows from the correctness of B. The reader is referred to Section 3 for the details.

2 Preliminaries

In this section, we define some basic concepts, and set up our notations. We begin with
defining the 2-sided error randomized and distributional query complexity measures of
relations. The relations considered in this work will all be between the Boolean hypercube
{0, 1}k of some dimension k, and an arbitrary set S. The strings x ∈ {0, 1}n will be called
as inputs to the relation, and {0, 1}n will be referred to as the input space and the domain
of relations.

I Definition 1 (2-sided Error Randomized Query Complexity). Let S be any set. Let h ⊆
{0, 1}k × S be any relation and ε ∈ [0, 1/2). The 2-sided error randomized query complexity
Rε(h) is the minimum number of queries made in the worst case by a randomized query
algorithm A (the worst case is over inputs and the internal randomness of A) that on each
input x ∈ {0, 1}k satisfies Pr[(x,A(x)) ∈ h] ≥ 1− ε (where the probability is over the internal
randomness of A).

A. Anshu et al. 10:5

I Definition 2 (Distributional Query Complexity). Let h ⊆ {0, 1}k × S be any relation, µ
a distribution on the input space {0, 1}k of h, and ε ∈ [0, 1/2). The distributional query
complexity Dµε (h) is the minimum number of queries made in the worst case (over inputs) by
a deterministic query algorithm A for which Prx∼µ[(x,A(x)) ∈ h] ≥ 1− ε.

In particular, if h is a function and A is a randomized or distributional query algorithm
computing h with error ε, then Pr[h(x) = A(x)] ≥ 1− ε, where the probability is over the
respective sources of randomness.

The following theorem is von Neumann’s minimax principle stated for decision trees.

I Fact 3 (minimax principle). For any integer k, set S, and relation h ⊆ {0, 1}k × S,

Rε(h) = max
µ

Dµε (h).

Let g : {0, 1}m → {0, 1} be a Boolean function. Let µ be a probability distribution on
{0, 1}m which intersects non-trivially both with g−1(0) and with g−1(1). For each z ∈ {0, 1},
let µz be the distribution obtained by restricting µ to g−1(z). Formally,

µz(x) =
{

0 if g(x) 6= z
µ(x)∑

y:g(y)=z
µ(y)

if g(x) = z

Notice that µ0 and µ1 are defined with respect to some Boolean function g, which will always
be clear from the context.

I Definition 4 (Subcube, Co-dimension). A subset C of {0, 1}m is called a subcube if there
exists a set S ⊆ {1, . . . ,m} of indices and an assignment function A : S → {0, 1} such that
C = {x ∈ {0, 1}m : ∀i ∈ S, xi = A(i)}. The co-dimension codim(C) of C is defined to be |S|.

Let C ⊆ {0, 1}m be a subcube and µ be a probability distribution on {0, 1}m. We will often
abuse notation and use C to denote the event that a random string x belongs to the subcube
C. The probability Prx∼µ[x ∈ C] will be denoted by Prµ[C]. For subcubes C1 and C2, the
conditional probability Prx∼µ[x ∈ C2 | x ∈ C1] will be denoted by Prµ[C2 | C1].

I Definition 5 (Bias of a subcube). Let g : {0, 1}m → {0, 1} be a Boolean function. Let µ be
a probability distribution over {0, 1}m. Let C ⊆ {0, 1}m be a subcube such that Prµ[C] > 0.
The bias of C with respect to µ, biasµ(C), is defined to be:

biasµ(C) = | Pr
x∼µ

[g(x) = 0 | x ∈ C]− Pr
x∼µ

[g(x) = 1 | x ∈ C]|.

A Boolean function g is implicit in the definition of bias, which will always be clear from the
context.

I Proposition 6. Let g : {0, 1}m → {0, 1} be a Boolean function, and Dµε (g) > 0. Then,

min
b∈{0,1}

{ Pr
x∼µ

[g(x) = b]} > ε.

In particular, biasµ({0, 1}m) < 1− 2ε.

Proof. Towards a contradiction, assume that minb∈{0,1}{Prx∼µ[g(x) = b]} ≤ ε. Then, the
algorithm that outputs arg maxb∈{0,1}{Prx∼µ[g(x) = b]} makes 0 query and is correct with
probability at least 1− ε. This contradicts the hypothesis that Dµε (g) > 0. J

FSTTCS 2017

10:6 A Composition Theorem for Randomized Query Complexity

Now we define composition of two relations.

I Definition 7 (Composition of relations). Let f ⊆ {0, 1}n × R and g ⊆ {0, 1}m × {0, 1}
be two relations. The composed relation f ◦ gn ⊆ ({0, 1}m)n × R is defined as follows:
For x = (x(1), . . . , x(n)) ∈ ({0, 1}m)n and r ∈ R, (x, r) ∈ f ◦ gn if and only if there exists
b = (b(1), . . . , b(n)) ∈ {0, 1}n such that for each i = 1, . . . , n, (x(i), b(i)) ∈ g and (b, r) ∈ f .

We will often view a deterministic query algorithm as a binary decision tree. In each vertex
v of the tree, an input variable is queried. Depending on the outcome of the query, the
computation goes to a child of v. The child of v corresponding to outcome b to the query
made is denoted by vb. It is well known that the set of inputs that lead the computation of a
decision tree to a certain vertex forms a subcube. We will denote the subcube corresponding
to a vertex v by Cv.

We next prove two claims about bias, probability and co-dimension of subcubes that will be
useful. Claim 8 states that for a function with large distributional query complexity, the bias
of most shallow leaves of any deterministic query procedure is small.

I Claim 8. Let g : {0, 1}m → {0, 1} be a Boolean function. Let ε ∈ [1/4, 1/2) and let
δ = 1/2− ε. Let µ be a probability distribution on {0, 1}m, and Dµ

ε (g) = c > 0. Let B be
any deterministic query algorithm for strings in {0, 1}m. For each y ∈ {0, 1}m, let `y be the
unique leaf of B that contains y. Then,

(a) Pry∼µ[codim(`y) < c and biasµ(`y) ≥ 2δ1/2] < δ1/2.

(b) For each b ∈ {0, 1}, Pry∼µb [codim(`y) < c and biasµ(`y) ≥ 2δ1/2] < 4δ1/2.

In the above claim B could just be a deterministic procedure that makes queries and eventually
terminates; whether or not it makes any output upon termination is not of any consequence
here.

Proof. We first show that part (a) implies part (b). To this end, assume part (a) and fix a
b ∈ {0, 1}. Let a(y) be the indicator variable for the event codim(`y) < c and biasµ(`y) ≥ 2δ1/2.
Thus, part (a) states that Pry∼µ[a(y) = 1] < δ1/2. Now,

Pr
y∼µb

[codim(`y) < c and biasµ(`y) ≥ 2δ1/2]

=
∑

y:a(y)=1

µb(y)

= 1∑
y:g(y)=b µ(y)

∑
y:a(y)=1

µ(y) (From the definition of µb)

<
1
ε

Pr
y∼µ

[a(y) = 1] (From Proposition 6)

< 4δ1/2. (By the hypothesis ε ≥ 1/4 and part (a))

We now prove part (a). Towards a contradiction assume that

Pr
y∼µ

[codim(`y) < c and biasµ(`y) ≥ 2δ1/2] ≥ δ1/2.

Now consider the following query algorithm A on m bit strings:

Begin simulating B. Let C be the subcube associated with the current node of B in the
simulation. Simulate B unless one of the following happens.

A. Anshu et al. 10:7

B terminates.
The number of queries made is c− 1.
biasµ(C) ≥ 2δ1/2.

Upon termination, if biasµ(C) ≥ 2δ1/2, output arg maxb∈{0,1} Pry∼µ[g(y) = b | y ∈ C]. Else
output a uniformly random bit.

It immediately follows that the worst case query complexity of A is at most c−1. Now, we will
prove that Pry∼µ[A(y) = g(y)] ≥ 1− ε. This will contradict the hypothesis that Dµε (g) = c.
Let L be the node of B at which the computation of A ends. Let Pry∼µ[biasµ(L) ≥ 2δ1/2] = p.
By our assumption, the probability (over µ) that L is a leaf and biasµ(L) ≥ 2δ1/2 is at least
δ1/2; in particular p ≥ δ1/2. Now,

Pr
y∼µ

[A(y) = g(y)]

= Pr
y∼µ

[biasµ(L) ≥ 2δ1/2] · Pr
y∼µ

[A(y) = g(y) | biasµ(L) ≥ 2δ1/2]+

Pr
y∼µ

[biasµ(L) < 2δ1/2] · Pr
y∼µ

[A(y) = g(y) | biasµ(L) < 2δ1/2]

≥ p · (1/2 + δ1/2) + (1− p).12 (from our assumption)

= 1/2 + p · δ1/2

≥ 1/2 + δ (since p ≥ δ1/2)
= 1− ε.

This completes the proof. J

The next claim states that if a subcube has low bias with respect to a distribution µ, then
the distributions µ0 and µ1 ascribe almost the same probability to it.

I Claim 9. Let g : {0, 1}m → {0, 1} be a Boolean function and δ ∈ (0, 1
2]. Let µ be a

distribution on {0, 1}m. Let C be a subcube such that Prµ[C] > 0 and biasµ(C) ≤ δ. Also
assume that biasµ({0, 1}m) ≤ δ. Then for any b ∈ {0, 1} we have,

(a) Prµ[C] ≤ (1 + 4δ) · Prµb [C],
(b) Prµ[C] ≥ (1− 4δ) · Prµb [C].

Proof. We prove part (a) of the claim. The proof of part (b) is similar.

By the definition of bias and the hypothesis, for each b ∈ {0, 1},

∑
y∈Hm:g(y)=b

µ(y) ≤
(

1
2 + δ

2

)
·
∑
y∈Hm

µ(y) = 1
2 + δ

2 , (1)

∑
y∈C:g(y)=b

µ(y) ≥
(

1
2 −

δ

2

)
·
∑
y∈C

µ(y) > 0. (2)

Now,

Pr
µb

[C] =
∑
y∈C

µb(y)

=
∑
y∈C:g(y)=b µ(y)∑
y∈Hm:g(y)=b µ(y)

FSTTCS 2017

10:8 A Composition Theorem for Randomized Query Complexity

≥
(1/2− δ/2) ·

∑
y∈C µ(y)

1/2 + δ/2 (From Equations (1) and (2)

= 1/2− δ/2
1/2 + δ/2 · Pr

µ
[C]

Thus,

Pr
µ

[C] ≤ 1/2 + δ/2
1/2− δ/2 · Pr

µb
[C] ≤ (1 + 4δ) · Pr

µb
[C]. (since δ ≤ 1

2) J

3 Composition Theorem

In this section we prove our main theorem. We restate it below.

I Theorem 1 (Main Theorem). For any relation f ⊆ {0, 1}n × R and Boolean function
g : {0, 1}m → {0, 1},

R1/3(f ◦ gn) = Ω(R4/9(f) · R1/2−1/n4(g)).

Proof. We begin by recalling the notations defined in Section 1.1 that we will use in this
proof.

Let ε = 1/2− 1/n4. Let µ be the distribution over the domain {0, 1}m of g for which Rε(g)
is achieved, i.e., Rε(g) = Dµε (g). (see Fact 3)

We show that for every probability distribution λ over the input space {0, 1}n of f , there exists
a deterministic query algorithm A with worst case query complexity at most R1/3(f ◦g)/Rε(g),
such that Prz∼λ[(z,A(z)) ∈ f] ≥ 5/9. By the minimax principle (Fact 3) this will prove
Theorem 1.

Using λ, we define a probability distribution γ over ({0, 1}m)n. We first define a family of
distributions {γz : z ∈ {0, 1}n} over ({0, 1}m)n. For a fixed z ∈ {0, 1}n, we define γz by
giving a sampling procedure:

1. For each i = 1, . . . , n, sample x(i) = (x(i)
1 , . . . , x

(i)
m) from {0, 1}m independently according

to µzi .
2. Return x = (x(1), . . . , x(n)).

Thus for z = (z1, . . . , zn) ∈ {0, 1}n and x = (x(1), . . . , x(n)) ∈ ({0, 1}m)n, γz(x) = Πn
i=1

µzi(x(i)). Note that γz is supported only on strings x for which the following is true: for
each r ∈ R, (x, r) ∈ f ◦ gn if and only if (z, r) ∈ f .

Now, we define the distribution γ by giving a sampling procedure:

1. Sample a z = (z1, . . . , zn) from {0, 1}n according to λ.
2. Sample an x = (x(1), . . . , x(n)) from ({0, 1}m)n according to γz. Return x.

By the minimax principle (Fact 3), there is a deterministic query algorithm B of worst case
complexity at most R1/3(f ◦ gn) such that Prx∼γ [(x,B(x)) ∈ f ◦ gn] ≥ 2/3. We will use B to
construct a randomized query algorithm A′ for f with the desired properties. A deterministic
query algorithm A for f with required performance guarantees can then be obtained by
appropriately fixing the randomness of A′. Algorithm 1 formally defines the algorithm A′
that we construct.

A. Anshu et al. 10:9

Algorithm 1: Randomized query algorithm A′ for f
Input: z ∈ {0, 1}n

1 Initialize v ← root of the decision tree B, Q← ∅
2 while v is not a leaf do
3 Let a bit in x(i) be queried at v
4 if i 6∈ Q then /* codim(C(i)

v) < Dµε (g) if this is satisfied */
5 Set v ← vb with probability Prµ[C(i)

vb | C
(i)
v]

6 if codim(C(i)
v) = Dµε (g)− 1 then

7 Query zi
8 Set Q← Q ∪ {i}

9 else
10 if Prµzi [C

(i)
v] = 0 then

11 Output 0
12 else
13 Set v ← vb with probability Prµzi [C

(i)
vb | C

(i)
v]

14 Output label of v

From the definition of bias one can verify that the event in step 5 in Algorithm 1 that is
being conditioned on, has non-zero probabilities under the respective distribution; hence, the
probabilistic process is well-defined.

From the description of A′ it is immediate that zi is queried only if the underlying simulation
of B queries at least Rε(g) locations in x(i). Thus the worst-case query complexity of A′ is at
most R1/3(f ◦ gn)/Rε(g).

We are left with the task of bounding the error of A′. Let L be the set of leaves of the
decision tree B. Each leaf ` ∈ L is labelled with b` ∈ R; whenever the computation reaches `,
b` is output.

For a vertex v, let the corresponding subcube Cv be C(1)
v × . . .×C(n)

v , where C(i)
v is a subcube

of the domain of the i-th copy of g (corresponding to the input x(i)). Recall from Section 2
that for b ∈ {0, 1}, vb denotes the b-th child of v.

For each leaf ` ∈ L and i = 1, . . . , n, define snip(i)(`) to be 1 if there is a node t in the unique
path from the root of B to ` such that codim(C(i)

t) < Dµ
ε (g) and biasµ(C(i)

t) ≥ 2
n2 , and 0

otherwise. Define snip(`) := ∨ni=1snip(i)(`).

For each ` ∈ L, define pz` to be the probability that for an input drawn from γz, the
computation of B terminates at leaf `. We have,

Pr
x∼γz

[(x,B(x)) ∈ f ◦ gn] = Pr
x∼γz

[(z,B(x)) ∈ f] =
∑

`∈L:(z,b`)∈f

pz` . (3)

From our assumption about B we also have that,

Pr
x∼γ

[(x,B(x)) ∈ f ◦ gn] = E
z∼λ

Pr
x∼γz

[(x,B(x)) ∈ f ◦ gn] ≥ 2
3 . (4)

Now, consider a run of A′ on z. For each ` ∈ L of B, define qz` to be the probability that
the computation of A′ on z terminates at leaf ` of B. Note that the probability is over the
internal randomness of A′.

FSTTCS 2017

10:10 A Composition Theorem for Randomized Query Complexity

To finish the proof, we need the following two claims. The first one states that the leaves
` ∈ L are sampled with similar probabilities by B and A′.

I Claim 10. For each ` ∈ L such that snip(`) = 0, and for each z ∈ {0, 1}n, 8
9 ·p

z
` ≤ qz` ≤ 10

9 ·p
z
` .

The next Claim states that for each z, the probability according to γz of the leaves ` for
which snip(`) = 1 is small.

I Claim 11.

∀z ∈ {0, 1}n,
∑

`∈L,snip(`)=1

pz` ≤
4
n
.

We first finish the proof of Theorem 1 assuming Claims 10 and 11, and then prove the claims.
For a fixed input z ∈ {0, 1}n, the probability that A′, when run on z, outputs an r such that
(z, r) ∈ f , is at least∑

`∈L,
(z,b`)∈f,snip(`)=0

qz` ≥
∑
`∈L,

(z,b`)∈f,snip(`)=0

8
9 · p

z
` (By Claim 10)

= 8
9

 ∑
`∈L,

(z,b`)∈f

pz` −
∑
`∈L,

(z,b`)∈f,snip(`)=1

pz`

≥ 8

9

 ∑
`∈L,

(z,b`)∈f

pz` −
4
n

 . (By Claim 11) (5)

Thus, the success probability of A′ is at least

E
z∼λ

∑
`∈L,

(z,b`)∈f,snip(`)=0

qz` ≥
8
9 ·

 E
z∼λ

∑
`∈L,

(z,b`)∈f

pz` −
4
n

 (By Equation (5))

≥ 8
9 ·
(

2
3 −

4
n

)
(By Equations (3) and (4))

≥ 5
9 . (For large enough n)

We now give the proofs of Claims 10 and 11.

Proof of Claim 10. We will prove the first inequality. The proof of the second inequality is
similar1.

Fix a z ∈ {0, 1}n and a leaf ` ∈ L such that snip(`) = 0. For each i = 1, . . . , n, assume that
codim(C(i)

`) = d(i), and in the path from the root of B to ` the variables x(i)
1 , . . . , x

(i)
d(i) are set

to bits b1, . . . , bd(i) in this order.

We first observe that if v is a vertex of B for which the condition in step 10 of A′ is satisfied,
then co-dimension of C(i)

v is at most Dµ
ε (g) − 1, and bias(C(i)

v) = 1; hence each leaf `′ of B
reachable from v has snip(`′) = 1.

1 Note that only the first inequality is used in the proof of Theorem 1.

A. Anshu et al. 10:11

The computation of A′ terminates at leaf ` if the values of the different bits x(i)
j sampled by

A′ agree with the leaf `. The probability of that happening is given by

qz` =
n∏
i=1

Pr
A′

[x(i)
1 = b1, . . . , x

(i)
d(i) = bd(i) | z] (6)

=
n∏
i=1

Pr
x∼µ

[x(i)
1 = b1, . . . , x

(i)
Dµε (g)−1 = bDµε (g)−1]·

Pr
x∼µzi

[x(i)
Dµε (g) = bDµε (g), . . . , x

(i)
d(i) = bd(i) | x(i)

1 = b1, . . . , x
(i)
Dµε (g)−1 = bDµε (g)−1]. (7)

The second equality above follows from the observation that in Algorithm 1, the first Dµε (g)−1
bits of x(i) are sampled from their marginal distributions with respect to µ, and the subsequent
bits are sampled from their marginal distributions with respect to µzi . In equation (7),
the term Prx∼µzi [x

(i)
Dµε (g) = bDµε (g), . . . , x

(i)
d(i) = bd(i) | x(i)

1 = b1, . . . , x
(i)
Dµε (g)−1 = bDµε (g)−1] is

interpreted as 1 if d(i) < Dµε (g).

We invoke Claim 9(b) with C set to the subcube {x ∈ {0, 1}m : x(i)
1 = b1, . . . , x

(i)
Dµε (g)−1 =

bDµε (g)−1} and δ set to 2
n2 . To see that the claim is applicable here, note that from the

assumption snip(`) = 0 we have that bias(C) < δ = 2
n2 <

1
2 , where the last inequality holds

for large enough n. Also, since Dµ
ε (g) > 0, by Proposition 6 the bias of {0, 1}m is at most

2
n4 <

2
n2 = δ. Continuing from Equation (7), by invoking Claim 9(b) we have,

qz` ≥
n∏
i=1

(1− 8/n2) Pr
x∼µzi

[x(i)
1 = b1, . . . , x

(i)
Dµε (g)−1 = bDµε (g)−1]·

Pr
x∼µzi

[x(i)
Dµε (g) = bDµε (g), . . . , x

(i)
d(i) = bd(i) | x(i)

1 = b1, . . . , x
(i)
Dµε (g)−1 = bDµε (g)−1]

= (1− 8/n2)n
n∏
i=1

Pr
x∼µzi

[x(i)
1 = b1, . . . , x

(i)
d(i) = bd(i)]

≥ 8
9 · p

z
` . (For large enough n) J

Proof of Claim 11. Fix a z ∈ {0, 1}n. We shall prove that for each i,
∑
`∈L,snip(i)(`)=1 p

z
` ≤

4
n2 . That will prove the claim, since

∑
`∈L,snip(`)=1 p

z
` ≤

∑n
i=1
∑
`∈L,snip(i)(`)=1 p

z
` .

To this end, fix an i ∈ {1, . . . , n}. For a random x drawn from γz, let p be the probability
that in strictly less than Dµ

ε (g) queries the computation of B reaches a node t such that
bias(C(i)

t) is at least 2
n2 . Note that this probability is over the choice of the different x(j)’s.

We shall show that p ≤ 4
n2 . This is equivalent to showing that

∑
`∈L,snip(i)(`)=1 p

z
` ≤ 4

n2 .

Note that each x(j) is independently distributed according to µzj . By averaging, there exists
a choice of x(j) for each j 6= i such that for a random x(i) chosen according to µzi , a node t
as above is reached within at most Dµ

ε (g)− 1 steps with probability at least p. Fix such a
setting for each x(j), j 6= i. Claim 11 follows from Claim 8 (note that ε = 1

2 −
1
n4 ≥ 1

4 for
large enough n). J

This completes the proof of Theorem 1. J

3.1 Hardness Amplification Using XOR Lemma

In this section we prove Theorem 2.

FSTTCS 2017

10:12 A Composition Theorem for Randomized Query Complexity

Theorem 1 is useful only when the function g is hard against randomized query algorithms
even for error 1/2− 1/n4. In this section we use an XOR lemma to show a procedure that,
given any g that is hard against randomized query algorithms with error 1/3, obtains another
function on a slightly larger domain that is hard against randomized query algorithms with
error 1/2− 1/n4. This yields the proof of Theorem 2.

Let g : {0, 1}m → {0, 1} be a function. Let g⊕t : ({0, 1}m)t → {0, 1} be defined as follows.
For x = (x(1), . . . , x(t)) ∈ ({0, 1}m)t,

g⊕t (x) = ⊕ti=1g(x(i)).

The following theorem is obtained by specializing Theorem 3 of Andrew Drucker’s paper [5]
to this setting.

I Theorem 12 (Drucker 2011 [5] Theorem 3).

R1/2−2−Ω(t)(g⊕t) = Ω(t · R1/3(g)).

Theorem 2 (restated below) follows by setting t = Θ(logn) and combining Theorem 12 with
Theorem 1.

I Theorem 2. Let f ⊆ {0, 1}n ×R be any relation. Let g : {0, 1}m → {0, 1} be a function.
Let g⊕t : ({0, 1}m)t → {0, 1} be defined as follows: for x = (x(1), . . . , x(t)) ∈ ({0, 1}m)t,
g⊕t (x) = ⊕ti=1g(x(i)). Then,

R1/3

(
f ◦
(
g⊕O(logn)

)n)
= Ω(logn · R4/9(f) · R1/3(g)).

References

1 Shalev Ben-David and Robin Kothari. Randomized query complexity of sabotaged and
composed functions. In 43rd International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 60:1–60:14, 2016.

2 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theor. Comput. Sci., 288(1):21–43, 2002.

3 Mark Bun and Justin Thaler. Dual lower bounds for approximate degree and Markov-
Bernstein inequalities. In Automata, Languages, and Programming - 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages 303–
314, 2013.

4 Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Simula-
tion theorems via pseudorandom properties. CoRR, abs/1704.06807, 2017.

5 Andrew Drucker. Improved direct product theorems for randomized query complexity. In
Proceedings of the 26th Annual IEEE Conference on Computational Complexity, CCC 2011,
San Jose, California, June 8-10, 2011, pages 1–11, 2011.

6 Mika Göös and T. S. Jayram. A composition theorem for conical juntas. In 31st Conference
on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages
5:1–5:16, 2016.

7 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. par-
tition number. In IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1077–1088, 2015.

8 Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for
BPP. CoRR, abs/1703.07666, 2017.

A. Anshu et al. 10:13

9 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for XOR
functions. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 282–288,
2016.

10 Raghav Kulkarni and Avishay Tal. On fractional block sensitivity. Chicago J. Theor.
Comput. Sci., 2016, 2016.

11 Ashley Montanaro. A composition theorem for decision tree complexity. Chicago J. Theor.
Comput. Sci., 2014, 2014.

12 Noam Nisan and Avi Wigderson. On rank vs. communication complexity. In 35th Annual
Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22
November 1994, pages 831–836, 1994.

13 Ryan O’Donnell, John Wright, Yu Zhao, Xiaorui Sun, and Li-Yang Tan. A composition
theorem for parity kill number. In IEEE 29th Conference on Computational Complexity,
CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages 144–154, 2014.

14 Alexander A. Sherstov. Approximating the AND-OR tree. Theory of Computing, 9:653–663,
2013.

15 Avishay Tal. Properties and applications of boolean function composition. In Innovations
in Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages
441–454, 2013.

FSTTCS 2017

	Introduction
	Our techniques

	Preliminaries
	Composition Theorem
	Hardness Amplification Using XOR Lemma

