3,081 research outputs found

    Vehicle Routing with Traffic Congestion and Drivers' Driving and Working Rules

    Get PDF
    For the intensively studied vehicle routing problem (VRP), two real-life restrictions have received only minor attention in the VRP-literature: traffic congestion and driving hours regulations. Traffic congestion causes late arrivals at customers and long travel times resulting in large transport costs. To account for traffic congestion, time-dependent travel times should be considered when constructing vehicle routes. Next, driving hours regulations, which restrict the available driving and working times for truck drivers, must be respected. Since violations are severely fined, also driving hours regulations should be considered when constructing vehicle routes, even more in combination with congestion problems. The objective of this paper is to develop a solution method for the VRP with time windows (VRPTW), time-dependent travel times, and driving hours regulations. The major difficulty of this VRPTW extension is to optimize each vehicle’s departure times to minimize the duty time of each driver. Having compact duty times leads to cost savings. However, obtaining compact duty times is much harder when time-dependent travel times and driving hours regulations are considered. We propose a restricted dynamic programming (DP) heuristic for constructing the vehicles routes, and an efficient heuristic for optimizing the vehicle’s departure times for each (partial) vehicle route, such that the complete solution algorithm runs in polynomial time. Computational experiments emonstrate the trade-off between travel distance minimization and duty time minimization, and illustrate the cost savings of extending the depot opening hours such that traveling before the morning peak and after the evening peak becomes possible

    Thirty years of heterogeneous vehicle routing

    No full text
    It has been around thirty years since the heterogeneous vehicle routing problem was introduced, and significant progress has since been made on this problem and its variants. The aim of this survey paper is to classify and review the literature on heterogeneous vehicle routing problems. The paper also presents a comparative analysis of the metaheuristic algorithms that have been proposed for these problems

    Driver Routing and Scheduling with Synchronization Constraints

    Full text link
    This paper investigates a novel type of driver routing and scheduling problem motivated by a practical application in long-distance bus networks. A key difference from other crew scheduling problems is that drivers can be exchanged between buses en route. These exchanges may occur at arbitrary intermediate stops such that our problem requires additional synchronization constraints. We present a mathematical model for this problem that leverages a time-expanded multi-digraph and derive bounds for the total number of required drivers. Moreover, we develop a destructive-bound-enhanced matheuristic that converges to provably optimal solutions and apply it to a real-world case study for Flixbus, one of Europe's leading coach companies. We demonstrate that our matheuristic outperforms a standalone MIP implementation in terms of solution quality and computational time and improves current approaches used in practice by up to 56%. Our solution approach provides feasible solutions for all instances within seconds and solves instances with up to 390 locations and 70 requests optimally with an average computational time under 210 seconds. We further study the impact of driver exchanges on personnel costs and show that allowing for such exchanges leads to savings of up to 75%

    On Achieving Diversity in the Presence of Outliers in Participatory Camera Sensor Networks

    Get PDF
    This paper addresses the problem of collection and delivery of a representative subset of pictures, in participatory camera networks, to maximize coverage when a significant portion of the pictures may be redundant or irrelevant. Consider, for example, a rescue mission where volunteers and survivors of a large-scale disaster scout a wide area to capture pictures of damage in distressed neighborhoods, using handheld cameras, and report them to a rescue station. In this participatory camera network, a significant amount of pictures may be redundant (i.e., similar pictures may be reported by many) or irrelevant (i.e., may not document an event of interest). Given this pool of pictures, we aim to build a protocol to store and deliver a smaller subset of pictures, among all those taken, that minimizes redundancy and eliminates irrelevant objects and outliers. While previous work addressed removal of redundancy alone, doing so in the presence of outliers is tricky, because outliers, by their very nature, are different from other objects, causing redundancy minimizing algorithms to favor their inclusion, which is at odds with the goal of finding a representative subset. To eliminate both outliers and redundancy at the same time, two seemingly opposite objectives must be met together. The contribution of this paper lies in a new prioritization technique (and its in-network implementation) that minimizes redundancy among delivered pictures, while also reducing outliers.unpublishedis peer reviewe

    Rich Vehicle Routing Problems and Applications

    Get PDF

    Cyclic transfers in school timetabling

    Get PDF
    In this paper we propose a neighbourhood structure based\ud on sequential/cyclic moves and a Cyclic Transfer algorithm for the high school timetabling problem. This method enables execution of complex moves for improving an existing solution, while dealing with the challenge of exploring the neighbourhood efficiently. An improvement graph is used in which certain negative cycles correspond to the neighbours; these cycles are explored using a recursive method. We address the problem of applying large neighbourhood structure methods on problems where the cost function is not exactly the sum of independent cost functions, as it is in the set partitioning problem. For computational experiments we use four real world datasets for high school timetabling in the Netherlands and England. We present results of the cyclic transfer algorithm with different settings on these datasets. The costs decrease by 8% to 28% if we use the cyclic transfers for local optimization compared to our initial solutions. The quality of the best initial solutions are comparable to the solutions found in practice by timetablers

    Passenger-Centric Urban Air Mobility: Fairness Trade-Offs and Operational Efficiency

    Full text link
    Urban Air Mobility (UAM) has the potential to revolutionize transportation. It will exploit the third dimension to help smooth ground traffic in densely populated areas. To be successful, it will require an integrated approach able to balance efficiency and safety while harnessing common resources and information. In this work we focus on future urban air-taxi services, and present the first methods and algorithms to efficiently operate air-taxi at scale. Our approach is twofold. First, we use a passenger-centric perspective which introduces traveling classes, and information sharing between transport modes to differentiate quality of services. This helps smooth multimodal journeys and increase passenger satisfaction. Second, we provide a flight routing and recharging solution which minimizes direct operational costs while preserving long term battery life through reduced energy-intense recharging. Our methods, which surpass the performance of a general state-of-the-art commercial solver, are also used to gain meaningful insights on the design space of the air-taxi problem, including solutions to hidden fairness issues.Comment: Submitted to Transportation Research Part C: Emerging Technologie
    • 

    corecore