66,565 research outputs found

    Weighted Class Complexity: A Measure of Complexity for Object Oriented System

    Get PDF
    Software complexity metrics are used to predict critical information about reliability and maintainability of software systems. Object oriented software development requires a different approach to software complexity metrics. In this paper, we propose a metric to compute the structural and cognitive complexity of class by associating a weight to the class, called as Weighted Class Complexity (WCC). On the contrary, of the other metrics used for object oriented systems, proposed metric calculates the complexity of a class due to methods and attributes in terms of cognitive weight. The proposed metric has been demonstrated with OO examples. The theoretical and practical evaluations based on the information theory have shown that the proposed metric is on ratio scale and satisfies most of the parameters required by the measurement theor

    Evaluation Criteria for Object-oriented Metrics

    Get PDF
    In this paper an evaluation model for object-oriented (OO) metrics is proposed. We have evaluated the existing evaluation criteria for OO metrics, and based on the observations, a model is proposed which tries to cover most of the features for the evaluation of OO metrics. The model is validated by applying it to existing OO metrics. In contrast to the other existing criteria, the proposed model is simple in implementation and includes the practical and important aspects of evaluation; hence it suitable to evaluate and validate any OO complexity metric

    An Extended Stable Marriage Problem Algorithm for Clone Detection

    Full text link
    Code cloning negatively affects industrial software and threatens intellectual property. This paper presents a novel approach to detecting cloned software by using a bijective matching technique. The proposed approach focuses on increasing the range of similarity measures and thus enhancing the precision of the detection. This is achieved by extending a well-known stable-marriage problem (SMP) and demonstrating how matches between code fragments of different files can be expressed. A prototype of the proposed approach is provided using a proper scenario, which shows a noticeable improvement in several features of clone detection such as scalability and accuracy.Comment: 20 pages, 10 figures, 6 table

    How Scale Affects Structure in Java Programs

    Full text link
    Many internal software metrics and external quality attributes of Java programs correlate strongly with program size. This knowledge has been used pervasively in quantitative studies of software through practices such as normalization on size metrics. This paper reports size-related super- and sublinear effects that have not been known before. Findings obtained on a very large collection of Java programs -- 30,911 projects hosted at Google Code as of Summer 2011 -- unveils how certain characteristics of programs vary disproportionately with program size, sometimes even non-monotonically. Many of the specific parameters of nonlinear relations are reported. This result gives further insights for the differences of "programming in the small" vs. "programming in the large." The reported findings carry important consequences for OO software metrics, and software research in general: metrics that have been known to correlate with size can now be properly normalized so that all the information that is left in them is size-independent.Comment: ACM Conference on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), October 2015. (Preprint

    A framework for the simulation of structural software evolution

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 ACM.As functionality is added to an aging piece of software, its original design and structure will tend to erode. This can lead to high coupling, low cohesion and other undesirable effects associated with spaghetti architectures. The underlying forces that cause such degradation have been the subject of much research. However, progress in this field is slow, as its complexity makes it difficult to isolate the causal flows leading to these effects. This is further complicated by the difficulty of generating enough empirical data, in sufficient quantity, and attributing such data to specific points in the causal chain. This article describes a framework for simulating the structural evolution of software. A complete simulation model is built by incrementally adding modules to the framework, each of which contributes an individual evolutionary effect. These effects are then combined to form a multifaceted simulation that evolves a fictitious code base in a manner approximating real-world behavior. We describe the underlying principles and structures of our framework from a theoretical and user perspective; a validation of a simple set of evolutionary parameters is then provided and three empirical software studies generated from open-source software (OSS) are used to support claims and generated results. The research illustrates how simulation can be used to investigate a complex and under-researched area of the development cycle. It also shows the value of incorporating certain human traits into a simulation—factors that, in real-world system development, can significantly influence evolutionary structures

    From a Domain Analysis to the Specification and Detection of Code and Design Smells

    Get PDF
    Code and design smells are recurring design problems in software systems that must be identified to avoid their possible negative consequences\ud on development and maintenance. Consequently, several smell detection\ud approaches and tools have been proposed in the literature. However,\ud so far, they allow the detection of predefined smells but the detection\ud of new smells or smells adapted to the context of the analysed systems\ud is possible only by implementing new detection algorithms manually.\ud Moreover, previous approaches do not explain the transition from\ud specifications of smells to their detection. Finally, the validation\ud of the existing approaches and tools has been limited on few proprietary\ud systems and on a reduced number of smells. In this paper, we introduce\ud an approach to automate the generation of detection algorithms from\ud specifications written using a domain-specific language. This language\ud is defined from a thorough domain analysis. It allows the specification\ud of smells using high-level domain-related abstractions. It allows\ud the adaptation of the specifications of smells to the context of\ud the analysed systems.We specify 10 smells, generate automatically\ud their detection algorithms using templates, and validate the algorithms\ud in terms of precision and recall on Xerces v2.7.0 and GanttProject\ud v1.10.2, two open-source object-oriented systems.We also compare\ud the detection results with those of a previous approach, iPlasma
    • …
    corecore